source: trunk/LMDZ.TITAN/libf/phytitan/optcv.F90 @ 2117

Last change on this file since 2117 was 2095, checked in by jvatant, 6 years ago

Update radiative transfer with some of the latest updates in the generic model
Cf r2056 by AB and r1987-1991 by JL
--JVO

  • Property svn:executable set to *
File size: 14.5 KB
RevLine 
[2050]1SUBROUTINE OPTCV(PQMO,NLAY,PLEV,TMID,PMID,  &
[2046]2     DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT)
[253]3
[716]4  use radinc_h
[2050]5  use radcommon_h, only: gasv,gasv_recomb,tlimit,Cmk,gzlat_ig, &
6                         tgasref,pfgasref,wnov,scalep,indv,gweight
[716]7  use gases_h
[1947]8  use comcstfi_mod, only: r
[2050]9  use callkeys_mod, only: continuum,graybody,callgasvis,corrk_recombin,  &
10                          callclouds,callmufi,seashaze,uncoupl_optic_haze
[1897]11  use tracer_h, only: nmicro,nice
12  use MMP_OPTICS
[253]13
[716]14  implicit none
[253]15
[716]16  !==================================================================
17  !     
18  !     Purpose
19  !     -------
20  !     Calculates shortwave optical constants at each level.
21  !     
22  !     Authors
23  !     -------
24  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
[1822]25  !     Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17)
[716]26  !     
27  !==================================================================
28  !     
29  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
[1722]30  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
[716]31  !     LAYER: WBAR, DTAU, COSBAR
32  !     LEVEL: TAU
33  !     
34  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
35  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
36  !     
37  !     TLEV(L) - Temperature at the layer boundary
38  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
39  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
40  !     
41  !-------------------------------------------------------------------
[253]42
43
[1822]44  !==========================================================
45  ! Input/Output
46  !==========================================================
[2050]47  REAL*8, INTENT(IN)  :: PQMO(nlay,nmicro)  ! Tracers for microphysics optics (X/m2).
48  INTEGER, INTENT(IN) :: NLAY               ! Number of pressure layers (for pqmo)
[1822]49  REAL*8, INTENT(IN)  :: PLEV(L_LEVELS)
50  REAL*8, INTENT(IN)  :: TMID(L_LEVELS), PMID(L_LEVELS)
[1826]51  REAL*8, INTENT(IN)  :: TAURAY(L_NSPECTV)
[2046]52  REAL*8, INTENT(IN)  :: SEASHAZEFACT(L_LEVELS)
[1822]53 
54  REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
55  REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
56  REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
57  REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
58  REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
[1823]59  REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1)
[1822]60  ! ==========================================================
61 
[1722]62  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
[253]63
[1648]64  ! Titan customisation
65  ! J. Vatant d'Ollone (2016)
[1722]66  real*8 DHAZE_T(L_LEVELS,L_NSPECTI)
67  real*8 DHAZES_T(L_LEVELS,L_NSPECTI)
68  real*8 SSA_T(L_LEVELS,L_NSPECTI)
69  real*8 ASF_T(L_LEVELS,L_NSPECTI)
[1648]70  real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI)
71  real*8 K_HAZE(L_NLAYRAD,L_NSPECTI)
72 
73  CHARACTER*2  str2
74  ! ==========================
75
[873]76  integer L, NW, NG, K, LK, IAER
[716]77  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
78  real*8  ANS, TAUGAS
79  real*8  TRAY(L_LEVELS,L_NSPECTV)
80  real*8  DPR(L_LEVELS), U(L_LEVELS)
81  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
[253]82
[1788]83  real*8 DCONT
[1722]84  real*8 DRAYAER
[873]85  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
86  double precision p_cross
[253]87
[873]88  real*8  KCOEF(4)
[1725]89 
90  ! temporary variable to reduce memory access time to gasv
91  real*8 tmpk(2,2)
[253]92
[716]93  ! temporary variables for multiple aerosol calculation
[918]94  real*8 atemp(L_NLAYRAD,L_NSPECTV)
95  real*8 btemp(L_NLAYRAD,L_NSPECTV)
96  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
[253]97
[716]98  ! variables for k in units m^-1
[873]99  real*8 dz(L_LEVELS)
[253]100
[1648]101  integer igas, jgas, ilay
[253]102
[873]103  integer interm
104
[1897]105  real*8 m0as,m3as,m0af,m3af
106  real*8 ext_s,sca_s,ssa_s,asf_s
107  real*8 ext_f,sca_f,ssa_f,asf_f
108  logical,save :: firstcall=.true.
109  !$OMP THREADPRIVATE(firstcall)
110
111
[873]112  !! AS: to save time in computing continuum (see bilinearbig)
113  IF (.not.ALLOCATED(indv)) THEN
[878]114      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
[873]115      indv = -9999 ! this initial value means "to be calculated"
116  ENDIF
[1792]117 
118  ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1)
119  ! I should check this - For now we set vars to zero : better than nans - JVO 2017
120 
121  dhaze_t(:,:) = 0.
122  ssa_t(:,:) = 0.
123  asf_t(:,:) = 0.
[873]124
[1792]125
[716]126  !=======================================================================
127  !     Determine the total gas opacity throughout the column, for each
128  !     spectral interval, NW, and each Gauss point, NG.
129  !     Calculate the continuum opacities, i.e., those that do not depend on
130  !     NG, the Gauss index.
[253]131
[716]132  taugsurf(:,:) = 0.0
133  dpr(:)        = 0.0
134  lkcoef(:,:)   = 0.0
[253]135
[716]136  do K=2,L_LEVELS
[1947]137 
138     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
139 
[716]140     DPR(k) = PLEV(K)-PLEV(K-1)
[253]141
[716]142     ! if we have continuum opacities, we need dz
[253]143
[1947]144      dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K))
145      U(k)  = Cmk(ilay)*DPR(k)     ! only Cmk line in optcv.F     
[1647]146
[1648]147     call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K))
[253]148
[716]149     do LK=1,4
150        LKCOEF(K,LK) = LCOEF(LK)
151     end do
[918]152  end do                    ! levels
[253]153
[1722]154  ! Rayleigh scattering
[918]155  do NW=1,L_NSPECTV
[2095]156     TRAY(1:4,NW)   = 1d-30
157     do K=5,L_LEVELS
[873]158        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
[918]159     end do                    ! levels
160  end do
[1722]161 
[716]162  !     we ignore K=1...
163  do K=2,L_LEVELS
[1648]164 
165     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
[873]166
[716]167     do NW=1,L_NSPECTV
[1897]168     
169        ! Optical coupling of YAMMS is plugged but inactivated (if false) for now
170        ! as long as the microphysics only isn't fully debugged -- JVO 01/18
171        IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN
[2050]172          m0as = pqmo(ilay,1)
173          m3as = pqmo(ilay,2)
174          m0af = pqmo(ilay,3)
175          m3af = pqmo(ilay,4)
[253]176
[1897]177          IF (.NOT.mmp_sph_optics_vis(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) &
178          CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_vis", 12)
179          IF (.NOT.mmp_fra_optics_vis(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) &
180          CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_vis", 12)
181          dhaze_T(k,nw) = ext_s+ext_f
182          SSA_T(k,nw)   = (sca_s+sca_f)/dhaze_T(k,nw)
183          ASF_T(k,nw)   = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f)
184          IF (callclouds.and.firstcall) &
185            WRITE(*,*) 'WARNING: In optcv, optical properties &
186                       &calculations are not implemented yet'
187        ELSE
188          ! Call fixed vertical haze profile of extinction - same for all columns
189          call disr_haze(dz(k),plev(k),wnov(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw))
[2046]190          if (seashaze) dhaze_T(k,nw) = dhaze_T(k,nw)*seashazefact(k)
[1897]191        ENDIF
[2095]192       
193        !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
194        !   but visible does not handle very well diffusion in first layer.
195        !   The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise)
196        !   in the 4 first semilayers in optcv, but not optci.
197        !   This solves random variations of the sw heating at the model top.
198        if (k<5)  dhaze_T(K,:) = 0.0
[1792]199         
[1722]200        DRAYAER = TRAY(K,NW)
201        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
202        DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol
203
[716]204        DCONT = 0.0 ! continuum absorption
[253]205
[873]206        if(continuum.and.(.not.graybody).and.callgasvis)then
[716]207           ! include continua if necessary
208           wn_cont = dble(wnov(nw))
209           T_cont  = dble(TMID(k))
210           do igas=1,ngasmx
[305]211
[1648]212              p_cont  = dble(PMID(k)*scalep*gfrac(igas,ilay))
[305]213
[716]214              dtemp=0.0
215              if(igas.eq.igas_N2)then
[253]216
[878]217                 interm = indv(nw,igas,igas)
218!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
219                 indv(nw,igas,igas) = interm
[716]220                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
[253]221
[716]222              elseif(igas.eq.igas_H2)then
[253]223
[716]224                 ! first do self-induced absorption
[878]225                 interm = indv(nw,igas,igas)
[873]226                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
[878]227                 indv(nw,igas,igas) = interm
[253]228
[716]229                 ! then cross-interactions with other gases
230                 do jgas=1,ngasmx
[1648]231                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
[873]232                    dtempc  = 0.0
233                    if(jgas.eq.igas_N2)then
[878]234                       interm = indv(nw,igas,jgas)
235                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
236                       indv(nw,igas,jgas) = interm
[716]237                       ! should be irrelevant in the visible
238                    endif
[873]239                    dtemp = dtemp + dtempc
[716]240                 enddo
[253]241
[1648]242               elseif(igas.eq.igas_CH4)then
243
244                 ! first do self-induced absorption
245                 interm = indv(nw,igas,igas)
246                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
247                 indv(nw,igas,igas) = interm
248
249                 ! then cross-interactions with other gases
250                 do jgas=1,ngasmx
251                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
252                    dtempc  = 0.0
253                    if(jgas.eq.igas_N2)then
254                       interm = indv(nw,igas,jgas)
255                       call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
256                       indv(nw,igas,jgas) = interm
257                    endif
258                    dtemp = dtemp + dtempc
259                 enddo
260
[716]261              endif
[253]262
[716]263              DCONT = DCONT + dtemp
[253]264
[716]265           enddo
[253]266
[873]267           DCONT = DCONT*dz(k)
268
[716]269        endif
[253]270
[873]271        do ng=1,L_NGAUSS-1
[305]272
[873]273           ! Now compute TAUGAS
[253]274
[1725]275           ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
276           ! the execution time of optci/v -> ~ factor 2 on the whole radiative
277           ! transfer on the tested simulations !
[873]278
[2050]279           if (corrk_recombin) then
280             tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG)
281           else
282             tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
283           endif
[1725]284             
285           KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
286           KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
287           KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
288           KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
289
[873]290           ! Interpolate the gaseous k-coefficients to the requested T,P values
[253]291
[873]292           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
[716]293                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
[253]294
[1722]295
[873]296           TAUGAS  = U(k)*ANS
[253]297
[716]298           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
[873]299           DTAUKV(K,nw,ng) = TAUGAS &
[1722]300                             + DRAYAER & ! DRAYAER includes all scattering contributions
301                             + DCONT ! For parameterized continuum aborption
[253]302
[716]303        end do
[253]304
[873]305        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
306        ! which holds continuum opacity only
[253]307
[873]308        NG              = L_NGAUSS
[1722]309        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze
[253]310
[716]311     end do
312  end do
[253]313
314
[716]315  !=======================================================================
316  !     Now the full treatment for the layers, where besides the opacity
317  !     we need to calculate the scattering albedo and asymmetry factors
[2050]318  ! ======================================================================
[1722]319
[1648]320  ! Haze scattering
[2095]321            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
322            !   but not in the visible
323            !   The dhaze_s is thus set to 0 in the 4 first semilayers in optcv, but not optci.
324            !   This solves random variations of the sw heating at the model top.
[1648]325  DO NW=1,L_NSPECTV
[2095]326      DHAZES_T(1:4,NW) = 0.d0
327    DO K=5,L_LEVELS
[1722]328      DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze
[1648]329    ENDDO
330  ENDDO
[253]331
[1648]332
[716]333  DO NW=1,L_NSPECTV
[919]334     DO L=1,L_NLAYRAD-1
[918]335        K              = 2*L+1
[1788]336        atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW)
337        btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW)
[1722]338        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ?
[918]339        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
340        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
341     END DO ! L vertical loop
[919]342     
[1722]343     ! Last level
344     L           = L_NLAYRAD
345     K           = 2*L+1
[1788]346     atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW)
347     btemp(L,NW) = DHAZES_T(K,NW)
[1722]348     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
[919]349     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
350     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
351     
352     
[918]353  END DO                    ! NW spectral loop
354
355  DO NG=1,L_NGAUSS
356    DO NW=1,L_NSPECTV
[873]357     DO L=1,L_NLAYRAD-1
[253]358
[873]359        K              = 2*L+1
360        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
[918]361        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
[253]362
[873]363      END DO ! L vertical loop
[253]364
[1722]365        ! Last level
[253]366
[716]367        L              = L_NLAYRAD
368        K              = 2*L+1
[919]369        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
370
371        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
[1648]372
[918]373     END DO                 ! NW spectral loop
374  END DO                    ! NG Gauss loop
[716]375
376  ! Total extinction optical depths
377
[918]378  DO NG=1,L_NGAUSS       ! full gauss loop
379     DO NW=1,L_NSPECTV       
[716]380        TAUCUMV(1,NW,NG)=0.0D0
381        DO K=2,L_LEVELS
382           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
383        END DO
[2095]384
385        DO L=1,L_NLAYRAD
386           TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG)
387        END DO
388        TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG)
[918]389     END DO           
390  END DO                 ! end full gauss loop
[716]391
392
[1722]393!  Titan's outputs (JVO, 2016)===============================================
[1648]394!      do l=1,L_NLAYRAD
395!         do nw=1,L_NSPECTV
396!          INT_DTAU(L,NW) = 0.0d+0
397!            DO NG=1,L_NGAUSS
398!               INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtauv(L,nw,ng)*gweight(NG)
399!            enddo
400!         enddo
401!      enddo
402
403!       do nw=1,L_NSPECTV
404!          write(str2,'(i2.2)') nw
405!         call writediagfi(1,'kgv'//str2,'Gaz extinction coefficient VI band '//str2,'m-1',1,int_dtau(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1))
406!          call writediagfi(1,'khv'//str2,'Haze extinction coefficient VI band '//str2,'m-1',1,k_haze(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1))       
407!       enddo 
408
409! ============================================================================== 
410
[1897]411  if(firstcall) firstcall = .false.
[1648]412
[873]413  return
414
415
416end subroutine optcv
Note: See TracBrowser for help on using the repository browser.