[2050] | 1 | SUBROUTINE OPTCV(PQMO,NLAY,PLEV,TMID,PMID, & |
---|
[2046] | 2 | DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT) |
---|
[253] | 3 | |
---|
[716] | 4 | use radinc_h |
---|
[2050] | 5 | use radcommon_h, only: gasv,gasv_recomb,tlimit,Cmk,gzlat_ig, & |
---|
| 6 | tgasref,pfgasref,wnov,scalep,indv,gweight |
---|
[716] | 7 | use gases_h |
---|
[1947] | 8 | use comcstfi_mod, only: r |
---|
[2050] | 9 | use callkeys_mod, only: continuum,graybody,callgasvis,corrk_recombin, & |
---|
| 10 | callclouds,callmufi,seashaze,uncoupl_optic_haze |
---|
[1897] | 11 | use tracer_h, only: nmicro,nice |
---|
| 12 | use MMP_OPTICS |
---|
[253] | 13 | |
---|
[716] | 14 | implicit none |
---|
[253] | 15 | |
---|
[716] | 16 | !================================================================== |
---|
| 17 | ! |
---|
| 18 | ! Purpose |
---|
| 19 | ! ------- |
---|
| 20 | ! Calculates shortwave optical constants at each level. |
---|
| 21 | ! |
---|
| 22 | ! Authors |
---|
| 23 | ! ------- |
---|
| 24 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
[1822] | 25 | ! Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17) |
---|
[716] | 26 | ! |
---|
| 27 | !================================================================== |
---|
| 28 | ! |
---|
| 29 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
[1722] | 30 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
---|
[716] | 31 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 32 | ! LEVEL: TAU |
---|
| 33 | ! |
---|
| 34 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 35 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 36 | ! |
---|
| 37 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 38 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 39 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
| 40 | ! |
---|
| 41 | !------------------------------------------------------------------- |
---|
[253] | 42 | |
---|
| 43 | |
---|
[1822] | 44 | !========================================================== |
---|
| 45 | ! Input/Output |
---|
| 46 | !========================================================== |
---|
[2050] | 47 | REAL*8, INTENT(IN) :: PQMO(nlay,nmicro) ! Tracers for microphysics optics (X/m2). |
---|
| 48 | INTEGER, INTENT(IN) :: NLAY ! Number of pressure layers (for pqmo) |
---|
[1822] | 49 | REAL*8, INTENT(IN) :: PLEV(L_LEVELS) |
---|
| 50 | REAL*8, INTENT(IN) :: TMID(L_LEVELS), PMID(L_LEVELS) |
---|
[1826] | 51 | REAL*8, INTENT(IN) :: TAURAY(L_NSPECTV) |
---|
[2046] | 52 | REAL*8, INTENT(IN) :: SEASHAZEFACT(L_LEVELS) |
---|
[1822] | 53 | |
---|
| 54 | REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 55 | REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 56 | REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 57 | REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 58 | REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[1823] | 59 | REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1) |
---|
[1822] | 60 | ! ========================================================== |
---|
| 61 | |
---|
[1722] | 62 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
[253] | 63 | |
---|
[1648] | 64 | ! Titan customisation |
---|
| 65 | ! J. Vatant d'Ollone (2016) |
---|
[1722] | 66 | real*8 DHAZE_T(L_LEVELS,L_NSPECTI) |
---|
| 67 | real*8 DHAZES_T(L_LEVELS,L_NSPECTI) |
---|
| 68 | real*8 SSA_T(L_LEVELS,L_NSPECTI) |
---|
| 69 | real*8 ASF_T(L_LEVELS,L_NSPECTI) |
---|
[1648] | 70 | real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI) |
---|
| 71 | real*8 K_HAZE(L_NLAYRAD,L_NSPECTI) |
---|
| 72 | |
---|
| 73 | CHARACTER*2 str2 |
---|
| 74 | ! ========================== |
---|
| 75 | |
---|
[873] | 76 | integer L, NW, NG, K, LK, IAER |
---|
[716] | 77 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 78 | real*8 ANS, TAUGAS |
---|
| 79 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 80 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 81 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[253] | 82 | |
---|
[1788] | 83 | real*8 DCONT |
---|
[1722] | 84 | real*8 DRAYAER |
---|
[873] | 85 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 86 | double precision p_cross |
---|
[253] | 87 | |
---|
[873] | 88 | real*8 KCOEF(4) |
---|
[1725] | 89 | |
---|
| 90 | ! temporary variable to reduce memory access time to gasv |
---|
| 91 | real*8 tmpk(2,2) |
---|
[253] | 92 | |
---|
[716] | 93 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 94 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
| 95 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
| 96 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
[253] | 97 | |
---|
[716] | 98 | ! variables for k in units m^-1 |
---|
[873] | 99 | real*8 dz(L_LEVELS) |
---|
[253] | 100 | |
---|
[1648] | 101 | integer igas, jgas, ilay |
---|
[253] | 102 | |
---|
[873] | 103 | integer interm |
---|
| 104 | |
---|
[1897] | 105 | real*8 m0as,m3as,m0af,m3af |
---|
| 106 | real*8 ext_s,sca_s,ssa_s,asf_s |
---|
| 107 | real*8 ext_f,sca_f,ssa_f,asf_f |
---|
| 108 | logical,save :: firstcall=.true. |
---|
| 109 | !$OMP THREADPRIVATE(firstcall) |
---|
| 110 | |
---|
| 111 | |
---|
[873] | 112 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 113 | IF (.not.ALLOCATED(indv)) THEN |
---|
[878] | 114 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
[873] | 115 | indv = -9999 ! this initial value means "to be calculated" |
---|
| 116 | ENDIF |
---|
[1792] | 117 | |
---|
| 118 | ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1) |
---|
| 119 | ! I should check this - For now we set vars to zero : better than nans - JVO 2017 |
---|
| 120 | |
---|
| 121 | dhaze_t(:,:) = 0. |
---|
| 122 | ssa_t(:,:) = 0. |
---|
| 123 | asf_t(:,:) = 0. |
---|
[873] | 124 | |
---|
[1792] | 125 | |
---|
[716] | 126 | !======================================================================= |
---|
| 127 | ! Determine the total gas opacity throughout the column, for each |
---|
| 128 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 129 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 130 | ! NG, the Gauss index. |
---|
[253] | 131 | |
---|
[716] | 132 | taugsurf(:,:) = 0.0 |
---|
| 133 | dpr(:) = 0.0 |
---|
| 134 | lkcoef(:,:) = 0.0 |
---|
[253] | 135 | |
---|
[716] | 136 | do K=2,L_LEVELS |
---|
[1947] | 137 | |
---|
| 138 | ilay = k / 2 ! int. arithmetic => gives the gcm layer index |
---|
| 139 | |
---|
[716] | 140 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[253] | 141 | |
---|
[716] | 142 | ! if we have continuum opacities, we need dz |
---|
[253] | 143 | |
---|
[1947] | 144 | dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K)) |
---|
| 145 | U(k) = Cmk(ilay)*DPR(k) ! only Cmk line in optcv.F |
---|
[1647] | 146 | |
---|
[1648] | 147 | call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K)) |
---|
[253] | 148 | |
---|
[716] | 149 | do LK=1,4 |
---|
| 150 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 151 | end do |
---|
[918] | 152 | end do ! levels |
---|
[253] | 153 | |
---|
[1722] | 154 | ! Rayleigh scattering |
---|
[918] | 155 | do NW=1,L_NSPECTV |
---|
[2095] | 156 | TRAY(1:4,NW) = 1d-30 |
---|
| 157 | do K=5,L_LEVELS |
---|
[873] | 158 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
[918] | 159 | end do ! levels |
---|
| 160 | end do |
---|
[1722] | 161 | |
---|
[716] | 162 | ! we ignore K=1... |
---|
| 163 | do K=2,L_LEVELS |
---|
[1648] | 164 | |
---|
| 165 | ilay = k / 2 ! int. arithmetic => gives the gcm layer index |
---|
[873] | 166 | |
---|
[716] | 167 | do NW=1,L_NSPECTV |
---|
[1897] | 168 | |
---|
| 169 | ! Optical coupling of YAMMS is plugged but inactivated (if false) for now |
---|
| 170 | ! as long as the microphysics only isn't fully debugged -- JVO 01/18 |
---|
| 171 | IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN |
---|
[2050] | 172 | m0as = pqmo(ilay,1) |
---|
| 173 | m3as = pqmo(ilay,2) |
---|
| 174 | m0af = pqmo(ilay,3) |
---|
| 175 | m3af = pqmo(ilay,4) |
---|
[253] | 176 | |
---|
[1897] | 177 | IF (.NOT.mmp_sph_optics_vis(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) & |
---|
| 178 | CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_vis", 12) |
---|
| 179 | IF (.NOT.mmp_fra_optics_vis(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) & |
---|
| 180 | CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_vis", 12) |
---|
| 181 | dhaze_T(k,nw) = ext_s+ext_f |
---|
| 182 | SSA_T(k,nw) = (sca_s+sca_f)/dhaze_T(k,nw) |
---|
| 183 | ASF_T(k,nw) = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f) |
---|
| 184 | IF (callclouds.and.firstcall) & |
---|
| 185 | WRITE(*,*) 'WARNING: In optcv, optical properties & |
---|
| 186 | &calculations are not implemented yet' |
---|
| 187 | ELSE |
---|
| 188 | ! Call fixed vertical haze profile of extinction - same for all columns |
---|
| 189 | call disr_haze(dz(k),plev(k),wnov(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw)) |
---|
[2046] | 190 | if (seashaze) dhaze_T(k,nw) = dhaze_T(k,nw)*seashazefact(k) |
---|
[1897] | 191 | ENDIF |
---|
[2095] | 192 | |
---|
| 193 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 194 | ! but visible does not handle very well diffusion in first layer. |
---|
| 195 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
---|
| 196 | ! in the 4 first semilayers in optcv, but not optci. |
---|
| 197 | ! This solves random variations of the sw heating at the model top. |
---|
| 198 | if (k<5) dhaze_T(K,:) = 0.0 |
---|
[1792] | 199 | |
---|
[1722] | 200 | DRAYAER = TRAY(K,NW) |
---|
| 201 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
| 202 | DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol |
---|
| 203 | |
---|
[716] | 204 | DCONT = 0.0 ! continuum absorption |
---|
[253] | 205 | |
---|
[873] | 206 | if(continuum.and.(.not.graybody).and.callgasvis)then |
---|
[716] | 207 | ! include continua if necessary |
---|
| 208 | wn_cont = dble(wnov(nw)) |
---|
| 209 | T_cont = dble(TMID(k)) |
---|
| 210 | do igas=1,ngasmx |
---|
[305] | 211 | |
---|
[1648] | 212 | p_cont = dble(PMID(k)*scalep*gfrac(igas,ilay)) |
---|
[305] | 213 | |
---|
[716] | 214 | dtemp=0.0 |
---|
| 215 | if(igas.eq.igas_N2)then |
---|
[253] | 216 | |
---|
[878] | 217 | interm = indv(nw,igas,igas) |
---|
| 218 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 219 | indv(nw,igas,igas) = interm |
---|
[716] | 220 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
---|
[253] | 221 | |
---|
[716] | 222 | elseif(igas.eq.igas_H2)then |
---|
[253] | 223 | |
---|
[716] | 224 | ! first do self-induced absorption |
---|
[878] | 225 | interm = indv(nw,igas,igas) |
---|
[873] | 226 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 227 | indv(nw,igas,igas) = interm |
---|
[253] | 228 | |
---|
[716] | 229 | ! then cross-interactions with other gases |
---|
| 230 | do jgas=1,ngasmx |
---|
[1648] | 231 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
---|
[873] | 232 | dtempc = 0.0 |
---|
| 233 | if(jgas.eq.igas_N2)then |
---|
[878] | 234 | interm = indv(nw,igas,jgas) |
---|
| 235 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 236 | indv(nw,igas,jgas) = interm |
---|
[716] | 237 | ! should be irrelevant in the visible |
---|
| 238 | endif |
---|
[873] | 239 | dtemp = dtemp + dtempc |
---|
[716] | 240 | enddo |
---|
[253] | 241 | |
---|
[1648] | 242 | elseif(igas.eq.igas_CH4)then |
---|
| 243 | |
---|
| 244 | ! first do self-induced absorption |
---|
| 245 | interm = indv(nw,igas,igas) |
---|
| 246 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 247 | indv(nw,igas,igas) = interm |
---|
| 248 | |
---|
| 249 | ! then cross-interactions with other gases |
---|
| 250 | do jgas=1,ngasmx |
---|
| 251 | p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay)) |
---|
| 252 | dtempc = 0.0 |
---|
| 253 | if(jgas.eq.igas_N2)then |
---|
| 254 | interm = indv(nw,igas,jgas) |
---|
| 255 | call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 256 | indv(nw,igas,jgas) = interm |
---|
| 257 | endif |
---|
| 258 | dtemp = dtemp + dtempc |
---|
| 259 | enddo |
---|
| 260 | |
---|
[716] | 261 | endif |
---|
[253] | 262 | |
---|
[716] | 263 | DCONT = DCONT + dtemp |
---|
[253] | 264 | |
---|
[716] | 265 | enddo |
---|
[253] | 266 | |
---|
[873] | 267 | DCONT = DCONT*dz(k) |
---|
| 268 | |
---|
[716] | 269 | endif |
---|
[253] | 270 | |
---|
[873] | 271 | do ng=1,L_NGAUSS-1 |
---|
[305] | 272 | |
---|
[873] | 273 | ! Now compute TAUGAS |
---|
[253] | 274 | |
---|
[1725] | 275 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 276 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 277 | ! transfer on the tested simulations ! |
---|
[873] | 278 | |
---|
[2050] | 279 | if (corrk_recombin) then |
---|
| 280 | tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG) |
---|
| 281 | else |
---|
| 282 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 283 | endif |
---|
[1725] | 284 | |
---|
| 285 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 286 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 287 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 288 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 289 | |
---|
[873] | 290 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[253] | 291 | |
---|
[873] | 292 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
[716] | 293 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[253] | 294 | |
---|
[1722] | 295 | |
---|
[873] | 296 | TAUGAS = U(k)*ANS |
---|
[253] | 297 | |
---|
[716] | 298 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[873] | 299 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
[1722] | 300 | + DRAYAER & ! DRAYAER includes all scattering contributions |
---|
| 301 | + DCONT ! For parameterized continuum aborption |
---|
[253] | 302 | |
---|
[716] | 303 | end do |
---|
[253] | 304 | |
---|
[873] | 305 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 306 | ! which holds continuum opacity only |
---|
[253] | 307 | |
---|
[873] | 308 | NG = L_NGAUSS |
---|
[1722] | 309 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze |
---|
[253] | 310 | |
---|
[716] | 311 | end do |
---|
| 312 | end do |
---|
[253] | 313 | |
---|
| 314 | |
---|
[716] | 315 | !======================================================================= |
---|
| 316 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 317 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[2050] | 318 | ! ====================================================================== |
---|
[1722] | 319 | |
---|
[1648] | 320 | ! Haze scattering |
---|
[2095] | 321 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 322 | ! but not in the visible |
---|
| 323 | ! The dhaze_s is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
---|
| 324 | ! This solves random variations of the sw heating at the model top. |
---|
[1648] | 325 | DO NW=1,L_NSPECTV |
---|
[2095] | 326 | DHAZES_T(1:4,NW) = 0.d0 |
---|
| 327 | DO K=5,L_LEVELS |
---|
[1722] | 328 | DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze |
---|
[1648] | 329 | ENDDO |
---|
| 330 | ENDDO |
---|
[253] | 331 | |
---|
[1648] | 332 | |
---|
[716] | 333 | DO NW=1,L_NSPECTV |
---|
[919] | 334 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 335 | K = 2*L+1 |
---|
[1788] | 336 | atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW) |
---|
| 337 | btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW) |
---|
[1722] | 338 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[918] | 339 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 340 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 341 | END DO ! L vertical loop |
---|
[919] | 342 | |
---|
[1722] | 343 | ! Last level |
---|
| 344 | L = L_NLAYRAD |
---|
| 345 | K = 2*L+1 |
---|
[1788] | 346 | atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) |
---|
| 347 | btemp(L,NW) = DHAZES_T(K,NW) |
---|
[1722] | 348 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[919] | 349 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
| 350 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 351 | |
---|
| 352 | |
---|
[918] | 353 | END DO ! NW spectral loop |
---|
| 354 | |
---|
| 355 | DO NG=1,L_NGAUSS |
---|
| 356 | DO NW=1,L_NSPECTV |
---|
[873] | 357 | DO L=1,L_NLAYRAD-1 |
---|
[253] | 358 | |
---|
[873] | 359 | K = 2*L+1 |
---|
| 360 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
[918] | 361 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
[253] | 362 | |
---|
[873] | 363 | END DO ! L vertical loop |
---|
[253] | 364 | |
---|
[1722] | 365 | ! Last level |
---|
[253] | 366 | |
---|
[716] | 367 | L = L_NLAYRAD |
---|
| 368 | K = 2*L+1 |
---|
[919] | 369 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 370 | |
---|
| 371 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
[1648] | 372 | |
---|
[918] | 373 | END DO ! NW spectral loop |
---|
| 374 | END DO ! NG Gauss loop |
---|
[716] | 375 | |
---|
| 376 | ! Total extinction optical depths |
---|
| 377 | |
---|
[918] | 378 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 379 | DO NW=1,L_NSPECTV |
---|
[716] | 380 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 381 | DO K=2,L_LEVELS |
---|
| 382 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 383 | END DO |
---|
[2095] | 384 | |
---|
| 385 | DO L=1,L_NLAYRAD |
---|
| 386 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
---|
| 387 | END DO |
---|
| 388 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
---|
[918] | 389 | END DO |
---|
| 390 | END DO ! end full gauss loop |
---|
[716] | 391 | |
---|
| 392 | |
---|
[1722] | 393 | ! Titan's outputs (JVO, 2016)=============================================== |
---|
[1648] | 394 | ! do l=1,L_NLAYRAD |
---|
| 395 | ! do nw=1,L_NSPECTV |
---|
| 396 | ! INT_DTAU(L,NW) = 0.0d+0 |
---|
| 397 | ! DO NG=1,L_NGAUSS |
---|
| 398 | ! INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtauv(L,nw,ng)*gweight(NG) |
---|
| 399 | ! enddo |
---|
| 400 | ! enddo |
---|
| 401 | ! enddo |
---|
| 402 | |
---|
| 403 | ! do nw=1,L_NSPECTV |
---|
| 404 | ! write(str2,'(i2.2)') nw |
---|
| 405 | ! call writediagfi(1,'kgv'//str2,'Gaz extinction coefficient VI band '//str2,'m-1',1,int_dtau(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1)) |
---|
| 406 | ! call writediagfi(1,'khv'//str2,'Haze extinction coefficient VI band '//str2,'m-1',1,k_haze(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1)) |
---|
| 407 | ! enddo |
---|
| 408 | |
---|
| 409 | ! ============================================================================== |
---|
| 410 | |
---|
[1897] | 411 | if(firstcall) firstcall = .false. |
---|
[1648] | 412 | |
---|
[873] | 413 | return |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | end subroutine optcv |
---|