source: trunk/LMDZ.TITAN/libf/phytitan/optcv.F90 @ 2050

Last change on this file since 2050 was 2050, checked in by jvatant, 6 years ago

Major radiative transfer contribution : Add the 'corrk_recombin' option that allows to use
correlated-k for single species instead of pre-mix and enables more flexiblity for variable species.
-> Algorithm inspired from Lacis and Oinas 1991 and Amundsen et al 2016

+ Added 'recombin_corrk.F90' - Important improvements in 'sugas_corrk.90' and 'callcork.F90'

  • Must have the desired variable species as tracers -> TBD : Enable to force composition even if no tracers
  • To have decent CPU time recombining is not done on all gridpoints and wavelenghts but we calculate a gasi/v_recomb variable on the reference corrk-k T,P grid (only for T,P values who match the atmospheric conditions ) which is then processed as a standard pre-mix in optci/v routines, but updated every time tracers on the ref P grid have varied > 1%.


READ CAREFULY :

  • In case of 'corrk_recombin', the variable L_NREFVAR doesn't have the same meaning as before and doesn't stand for the different mixing ratios but the different species.
  • Input corr-k should be found in corrkdir within 'corrk_gcm_IR/VI_XXX.dat' and can contain a 'fixed' specie ( compulsory if you include self-broadening ) that MUST have been created with correct mixing ratios, or a variable specie for which mixing ratio MUST have been set to 1 ( no self-broadening then, assume it's a trace sepecie ) -> You can't neither have CIA of variable species included upstream in the corr-k
  • Property svn:executable set to *
File size: 13.6 KB
Line 
1SUBROUTINE OPTCV(PQMO,NLAY,PLEV,TMID,PMID,  &
2     DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT)
3
4  use radinc_h
5  use radcommon_h, only: gasv,gasv_recomb,tlimit,Cmk,gzlat_ig, &
6                         tgasref,pfgasref,wnov,scalep,indv,gweight
7  use gases_h
8  use comcstfi_mod, only: r
9  use callkeys_mod, only: continuum,graybody,callgasvis,corrk_recombin,  &
10                          callclouds,callmufi,seashaze,uncoupl_optic_haze
11  use tracer_h, only: nmicro,nice
12  use MMP_OPTICS
13
14  implicit none
15
16  !==================================================================
17  !     
18  !     Purpose
19  !     -------
20  !     Calculates shortwave optical constants at each level.
21  !     
22  !     Authors
23  !     -------
24  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
25  !     Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17)
26  !     
27  !==================================================================
28  !     
29  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
30  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
31  !     LAYER: WBAR, DTAU, COSBAR
32  !     LEVEL: TAU
33  !     
34  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
35  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
36  !     
37  !     TLEV(L) - Temperature at the layer boundary
38  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
39  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
40  !     
41  !-------------------------------------------------------------------
42
43
44  !==========================================================
45  ! Input/Output
46  !==========================================================
47  REAL*8, INTENT(IN)  :: PQMO(nlay,nmicro)  ! Tracers for microphysics optics (X/m2).
48  INTEGER, INTENT(IN) :: NLAY               ! Number of pressure layers (for pqmo)
49  REAL*8, INTENT(IN)  :: PLEV(L_LEVELS)
50  REAL*8, INTENT(IN)  :: TMID(L_LEVELS), PMID(L_LEVELS)
51  REAL*8, INTENT(IN)  :: TAURAY(L_NSPECTV)
52  REAL*8, INTENT(IN)  :: SEASHAZEFACT(L_LEVELS)
53 
54  REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
55  REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
56  REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
57  REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
58  REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
59  REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1)
60  ! ==========================================================
61 
62  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
63
64  ! Titan customisation
65  ! J. Vatant d'Ollone (2016)
66  real*8 DHAZE_T(L_LEVELS,L_NSPECTI)
67  real*8 DHAZES_T(L_LEVELS,L_NSPECTI)
68  real*8 SSA_T(L_LEVELS,L_NSPECTI)
69  real*8 ASF_T(L_LEVELS,L_NSPECTI)
70  real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI)
71  real*8 K_HAZE(L_NLAYRAD,L_NSPECTI)
72 
73  CHARACTER*2  str2
74  ! ==========================
75
76  integer L, NW, NG, K, LK, IAER
77  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
78  real*8  ANS, TAUGAS
79  real*8  TRAY(L_LEVELS,L_NSPECTV)
80  real*8  DPR(L_LEVELS), U(L_LEVELS)
81  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
82
83  real*8 DCONT
84  real*8 DRAYAER
85  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
86  double precision p_cross
87
88  real*8  KCOEF(4)
89 
90  ! temporary variable to reduce memory access time to gasv
91  real*8 tmpk(2,2)
92
93  ! temporary variables for multiple aerosol calculation
94  real*8 atemp(L_NLAYRAD,L_NSPECTV)
95  real*8 btemp(L_NLAYRAD,L_NSPECTV)
96  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
97
98  ! variables for k in units m^-1
99  real*8 dz(L_LEVELS)
100
101  integer igas, jgas, ilay
102
103  integer interm
104
105  real*8 m0as,m3as,m0af,m3af
106  real*8 ext_s,sca_s,ssa_s,asf_s
107  real*8 ext_f,sca_f,ssa_f,asf_f
108  logical,save :: firstcall=.true.
109  !$OMP THREADPRIVATE(firstcall)
110
111
112  !! AS: to save time in computing continuum (see bilinearbig)
113  IF (.not.ALLOCATED(indv)) THEN
114      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
115      indv = -9999 ! this initial value means "to be calculated"
116  ENDIF
117 
118  ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1)
119  ! I should check this - For now we set vars to zero : better than nans - JVO 2017
120 
121  dhaze_t(:,:) = 0.
122  ssa_t(:,:) = 0.
123  asf_t(:,:) = 0.
124
125
126  !=======================================================================
127  !     Determine the total gas opacity throughout the column, for each
128  !     spectral interval, NW, and each Gauss point, NG.
129  !     Calculate the continuum opacities, i.e., those that do not depend on
130  !     NG, the Gauss index.
131
132  taugsurf(:,:) = 0.0
133  dpr(:)        = 0.0
134  lkcoef(:,:)   = 0.0
135
136  do K=2,L_LEVELS
137 
138     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
139 
140     DPR(k) = PLEV(K)-PLEV(K-1)
141
142     ! if we have continuum opacities, we need dz
143
144      dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K))
145      U(k)  = Cmk(ilay)*DPR(k)     ! only Cmk line in optcv.F     
146
147     call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K))
148
149     do LK=1,4
150        LKCOEF(K,LK) = LCOEF(LK)
151     end do
152  end do                    ! levels
153
154  ! Rayleigh scattering
155  do NW=1,L_NSPECTV
156     do K=2,L_LEVELS
157        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
158     end do                    ! levels
159  end do
160 
161  !     we ignore K=1...
162  do K=2,L_LEVELS
163 
164     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
165
166     do NW=1,L_NSPECTV
167     
168        ! Optical coupling of YAMMS is plugged but inactivated (if false) for now
169        ! as long as the microphysics only isn't fully debugged -- JVO 01/18
170        IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN
171          m0as = pqmo(ilay,1)
172          m3as = pqmo(ilay,2)
173          m0af = pqmo(ilay,3)
174          m3af = pqmo(ilay,4)
175
176          IF (.NOT.mmp_sph_optics_vis(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) &
177          CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_vis", 12)
178          IF (.NOT.mmp_fra_optics_vis(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) &
179          CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_vis", 12)
180          dhaze_T(k,nw) = ext_s+ext_f
181          SSA_T(k,nw)   = (sca_s+sca_f)/dhaze_T(k,nw)
182          ASF_T(k,nw)   = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f)
183          IF (callclouds.and.firstcall) &
184            WRITE(*,*) 'WARNING: In optcv, optical properties &
185                       &calculations are not implemented yet'
186        ELSE
187          ! Call fixed vertical haze profile of extinction - same for all columns
188          call disr_haze(dz(k),plev(k),wnov(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw))
189          if (seashaze) dhaze_T(k,nw) = dhaze_T(k,nw)*seashazefact(k)
190        ENDIF
191         
192        DRAYAER = TRAY(K,NW)
193        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
194        DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol
195
196        DCONT = 0.0 ! continuum absorption
197
198        if(continuum.and.(.not.graybody).and.callgasvis)then
199           ! include continua if necessary
200           wn_cont = dble(wnov(nw))
201           T_cont  = dble(TMID(k))
202           do igas=1,ngasmx
203
204              p_cont  = dble(PMID(k)*scalep*gfrac(igas,ilay))
205
206              dtemp=0.0
207              if(igas.eq.igas_N2)then
208
209                 interm = indv(nw,igas,igas)
210!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
211                 indv(nw,igas,igas) = interm
212                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
213
214              elseif(igas.eq.igas_H2)then
215
216                 ! first do self-induced absorption
217                 interm = indv(nw,igas,igas)
218                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
219                 indv(nw,igas,igas) = interm
220
221                 ! then cross-interactions with other gases
222                 do jgas=1,ngasmx
223                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
224                    dtempc  = 0.0
225                    if(jgas.eq.igas_N2)then
226                       interm = indv(nw,igas,jgas)
227                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
228                       indv(nw,igas,jgas) = interm
229                       ! should be irrelevant in the visible
230                    endif
231                    dtemp = dtemp + dtempc
232                 enddo
233
234               elseif(igas.eq.igas_CH4)then
235
236                 ! first do self-induced absorption
237                 interm = indv(nw,igas,igas)
238                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
239                 indv(nw,igas,igas) = interm
240
241                 ! then cross-interactions with other gases
242                 do jgas=1,ngasmx
243                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
244                    dtempc  = 0.0
245                    if(jgas.eq.igas_N2)then
246                       interm = indv(nw,igas,jgas)
247                       call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
248                       indv(nw,igas,jgas) = interm
249                    endif
250                    dtemp = dtemp + dtempc
251                 enddo
252
253              endif
254
255              DCONT = DCONT + dtemp
256
257           enddo
258
259           DCONT = DCONT*dz(k)
260
261        endif
262
263        do ng=1,L_NGAUSS-1
264
265           ! Now compute TAUGAS
266
267           ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
268           ! the execution time of optci/v -> ~ factor 2 on the whole radiative
269           ! transfer on the tested simulations !
270
271           if (corrk_recombin) then
272             tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG)
273           else
274             tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
275           endif
276             
277           KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
278           KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
279           KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
280           KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
281
282           ! Interpolate the gaseous k-coefficients to the requested T,P values
283
284           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
285                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
286
287
288           TAUGAS  = U(k)*ANS
289
290           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
291           DTAUKV(K,nw,ng) = TAUGAS &
292                             + DRAYAER & ! DRAYAER includes all scattering contributions
293                             + DCONT ! For parameterized continuum aborption
294
295        end do
296
297        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
298        ! which holds continuum opacity only
299
300        NG              = L_NGAUSS
301        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze
302
303     end do
304  end do
305
306
307  !=======================================================================
308  !     Now the full treatment for the layers, where besides the opacity
309  !     we need to calculate the scattering albedo and asymmetry factors
310  ! ======================================================================
311
312  ! Haze scattering
313  DO NW=1,L_NSPECTV
314    DO K=2,L_LEVELS
315      DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze
316    ENDDO
317  ENDDO
318
319
320  DO NW=1,L_NSPECTV
321     DO L=1,L_NLAYRAD-1
322        K              = 2*L+1
323        atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW)
324        btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW)
325        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ?
326        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
327        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
328     END DO ! L vertical loop
329     
330     ! Last level
331     L           = L_NLAYRAD
332     K           = 2*L+1
333     atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW)
334     btemp(L,NW) = DHAZES_T(K,NW)
335     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
336     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
337     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
338     
339     
340  END DO                    ! NW spectral loop
341
342  DO NG=1,L_NGAUSS
343    DO NW=1,L_NSPECTV
344     DO L=1,L_NLAYRAD-1
345
346        K              = 2*L+1
347        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
348        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
349
350      END DO ! L vertical loop
351
352        ! Last level
353
354        L              = L_NLAYRAD
355        K              = 2*L+1
356        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
357
358        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
359
360     END DO                 ! NW spectral loop
361  END DO                    ! NG Gauss loop
362
363  ! Total extinction optical depths
364
365  DO NG=1,L_NGAUSS       ! full gauss loop
366     DO NW=1,L_NSPECTV       
367        TAUV(1,NW,NG)=0.0D0
368        DO L=1,L_NLAYRAD
369           TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG)
370        END DO
371
372        TAUCUMV(1,NW,NG)=0.0D0
373        DO K=2,L_LEVELS
374           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
375        END DO
376     END DO           
377  END DO                 ! end full gauss loop
378
379
380!  Titan's outputs (JVO, 2016)===============================================
381!      do l=1,L_NLAYRAD
382!         do nw=1,L_NSPECTV
383!          INT_DTAU(L,NW) = 0.0d+0
384!            DO NG=1,L_NGAUSS
385!               INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtauv(L,nw,ng)*gweight(NG)
386!            enddo
387!         enddo
388!      enddo
389
390!       do nw=1,L_NSPECTV
391!          write(str2,'(i2.2)') nw
392!         call writediagfi(1,'kgv'//str2,'Gaz extinction coefficient VI band '//str2,'m-1',1,int_dtau(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1))
393!          call writediagfi(1,'khv'//str2,'Haze extinction coefficient VI band '//str2,'m-1',1,k_haze(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1))       
394!       enddo 
395
396! ============================================================================== 
397
398  if(firstcall) firstcall = .false.
399
400  return
401
402
403end subroutine optcv
Note: See TracBrowser for help on using the repository browser.