source: trunk/LMDZ.TITAN/libf/phytitan/optcv.F90 @ 2046

Last change on this file since 2046 was 2046, checked in by jvatant, 6 years ago

Add a simple seasonal+latitudinal variation model (season_haze.F90) for the vertical mean profile
of haze. Based on Karkoscha,2016 . Activable through "seashaze" key (default=T).
--JVO

  • Property svn:executable set to *
File size: 13.3 KB
Line 
1SUBROUTINE OPTCV(PQO,NLAY,PLEV,TMID,PMID,  &
2     DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT)
3
4  use radinc_h
5  use radcommon_h, only: gasv,tlimit,Cmk,gzlat_ig,tgasref,pfgasref,wnov,scalep,indv,gweight
6  use gases_h
7  use comcstfi_mod, only: r
8  use callkeys_mod, only: continuum,graybody,callgasvis,callclouds,callmufi,seashaze,uncoupl_optic_haze
9  use tracer_h, only: nmicro,nice
10  use MMP_OPTICS
11
12  implicit none
13
14  !==================================================================
15  !     
16  !     Purpose
17  !     -------
18  !     Calculates shortwave optical constants at each level.
19  !     
20  !     Authors
21  !     -------
22  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
23  !     Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17)
24  !     
25  !==================================================================
26  !     
27  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
28  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
29  !     LAYER: WBAR, DTAU, COSBAR
30  !     LEVEL: TAU
31  !     
32  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
33  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
34  !     
35  !     TLEV(L) - Temperature at the layer boundary
36  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
37  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
38  !     
39  !-------------------------------------------------------------------
40
41
42  !==========================================================
43  ! Input/Output
44  !==========================================================
45  REAL*8, INTENT(IN)  :: PQO(nlay,nmicro) ! Tracers (X/m2).
46  INTEGER, INTENT(IN) :: NLAY             ! Number of pressure layers (for pqo)
47  REAL*8, INTENT(IN)  :: PLEV(L_LEVELS)
48  REAL*8, INTENT(IN)  :: TMID(L_LEVELS), PMID(L_LEVELS)
49  REAL*8, INTENT(IN)  :: TAURAY(L_NSPECTV)
50  REAL*8, INTENT(IN)  :: SEASHAZEFACT(L_LEVELS)
51 
52  REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
53  REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
54  REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
55  REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
56  REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
57  REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1)
58  ! ==========================================================
59 
60  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
61
62  ! Titan customisation
63  ! J. Vatant d'Ollone (2016)
64  real*8 DHAZE_T(L_LEVELS,L_NSPECTI)
65  real*8 DHAZES_T(L_LEVELS,L_NSPECTI)
66  real*8 SSA_T(L_LEVELS,L_NSPECTI)
67  real*8 ASF_T(L_LEVELS,L_NSPECTI)
68  real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI)
69  real*8 K_HAZE(L_NLAYRAD,L_NSPECTI)
70 
71  CHARACTER*2  str2
72  ! ==========================
73
74  integer L, NW, NG, K, LK, IAER
75  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
76  real*8  ANS, TAUGAS
77  real*8  TRAY(L_LEVELS,L_NSPECTV)
78  real*8  DPR(L_LEVELS), U(L_LEVELS)
79  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
80
81  real*8 DCONT
82  real*8 DRAYAER
83  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
84  double precision p_cross
85
86  real*8  KCOEF(4)
87 
88  ! temporary variable to reduce memory access time to gasv
89  real*8 tmpk(2,2)
90
91  ! temporary variables for multiple aerosol calculation
92  real*8 atemp(L_NLAYRAD,L_NSPECTV)
93  real*8 btemp(L_NLAYRAD,L_NSPECTV)
94  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
95
96  ! variables for k in units m^-1
97  real*8 dz(L_LEVELS)
98
99  integer igas, jgas, ilay
100
101  integer interm
102
103  real*8 m0as,m3as,m0af,m3af
104  real*8 ext_s,sca_s,ssa_s,asf_s
105  real*8 ext_f,sca_f,ssa_f,asf_f
106  logical,save :: firstcall=.true.
107  !$OMP THREADPRIVATE(firstcall)
108
109
110  !! AS: to save time in computing continuum (see bilinearbig)
111  IF (.not.ALLOCATED(indv)) THEN
112      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
113      indv = -9999 ! this initial value means "to be calculated"
114  ENDIF
115 
116  ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1)
117  ! I should check this - For now we set vars to zero : better than nans - JVO 2017
118 
119  dhaze_t(:,:) = 0.
120  ssa_t(:,:) = 0.
121  asf_t(:,:) = 0.
122
123
124  !=======================================================================
125  !     Determine the total gas opacity throughout the column, for each
126  !     spectral interval, NW, and each Gauss point, NG.
127  !     Calculate the continuum opacities, i.e., those that do not depend on
128  !     NG, the Gauss index.
129
130  taugsurf(:,:) = 0.0
131  dpr(:)        = 0.0
132  lkcoef(:,:)   = 0.0
133
134  do K=2,L_LEVELS
135 
136     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
137 
138     DPR(k) = PLEV(K)-PLEV(K-1)
139
140     ! if we have continuum opacities, we need dz
141
142      dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K))
143      U(k)  = Cmk(ilay)*DPR(k)     ! only Cmk line in optcv.F     
144
145     call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K))
146
147     do LK=1,4
148        LKCOEF(K,LK) = LCOEF(LK)
149     end do
150  end do                    ! levels
151
152  ! Rayleigh scattering
153  do NW=1,L_NSPECTV
154     do K=2,L_LEVELS
155        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
156     end do                    ! levels
157  end do
158 
159  !     we ignore K=1...
160  do K=2,L_LEVELS
161 
162     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
163
164     do NW=1,L_NSPECTV
165     
166        ! Optical coupling of YAMMS is plugged but inactivated (if false) for now
167        ! as long as the microphysics only isn't fully debugged -- JVO 01/18
168        IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN
169          m0as = pqo(ilay,1)
170          m3as = pqo(ilay,2)
171          m0af = pqo(ilay,3)
172          m3af = pqo(ilay,4)
173
174          IF (.NOT.mmp_sph_optics_vis(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) &
175          CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_vis", 12)
176          IF (.NOT.mmp_fra_optics_vis(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) &
177          CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_vis", 12)
178          dhaze_T(k,nw) = ext_s+ext_f
179          SSA_T(k,nw)   = (sca_s+sca_f)/dhaze_T(k,nw)
180          ASF_T(k,nw)   = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f)
181          IF (callclouds.and.firstcall) &
182            WRITE(*,*) 'WARNING: In optcv, optical properties &
183                       &calculations are not implemented yet'
184        ELSE
185          ! Call fixed vertical haze profile of extinction - same for all columns
186          call disr_haze(dz(k),plev(k),wnov(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw))
187          if (seashaze) dhaze_T(k,nw) = dhaze_T(k,nw)*seashazefact(k)
188        ENDIF
189         
190        DRAYAER = TRAY(K,NW)
191        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
192        DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol
193
194        DCONT = 0.0 ! continuum absorption
195
196        if(continuum.and.(.not.graybody).and.callgasvis)then
197           ! include continua if necessary
198           wn_cont = dble(wnov(nw))
199           T_cont  = dble(TMID(k))
200           do igas=1,ngasmx
201
202              p_cont  = dble(PMID(k)*scalep*gfrac(igas,ilay))
203
204              dtemp=0.0
205              if(igas.eq.igas_N2)then
206
207                 interm = indv(nw,igas,igas)
208!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
209                 indv(nw,igas,igas) = interm
210                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
211
212              elseif(igas.eq.igas_H2)then
213
214                 ! first do self-induced absorption
215                 interm = indv(nw,igas,igas)
216                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
217                 indv(nw,igas,igas) = interm
218
219                 ! then cross-interactions with other gases
220                 do jgas=1,ngasmx
221                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
222                    dtempc  = 0.0
223                    if(jgas.eq.igas_N2)then
224                       interm = indv(nw,igas,jgas)
225                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
226                       indv(nw,igas,jgas) = interm
227                       ! should be irrelevant in the visible
228                    endif
229                    dtemp = dtemp + dtempc
230                 enddo
231
232               elseif(igas.eq.igas_CH4)then
233
234                 ! first do self-induced absorption
235                 interm = indv(nw,igas,igas)
236                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
237                 indv(nw,igas,igas) = interm
238
239                 ! then cross-interactions with other gases
240                 do jgas=1,ngasmx
241                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
242                    dtempc  = 0.0
243                    if(jgas.eq.igas_N2)then
244                       interm = indv(nw,igas,jgas)
245                       call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
246                       indv(nw,igas,jgas) = interm
247                    endif
248                    dtemp = dtemp + dtempc
249                 enddo
250
251              endif
252
253              DCONT = DCONT + dtemp
254
255           enddo
256
257           DCONT = DCONT*dz(k)
258
259        endif
260
261        do ng=1,L_NGAUSS-1
262
263           ! Now compute TAUGAS
264
265           ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
266           ! the execution time of optci/v -> ~ factor 2 on the whole radiative
267           ! transfer on the tested simulations !
268
269           tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
270             
271           KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
272           KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
273           KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
274           KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
275
276           ! Interpolate the gaseous k-coefficients to the requested T,P values
277
278           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
279                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
280
281
282           TAUGAS  = U(k)*ANS
283
284           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
285           DTAUKV(K,nw,ng) = TAUGAS &
286                             + DRAYAER & ! DRAYAER includes all scattering contributions
287                             + DCONT ! For parameterized continuum aborption
288
289        end do
290
291        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
292        ! which holds continuum opacity only
293
294        NG              = L_NGAUSS
295        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze
296
297     end do
298  end do
299
300
301  !=======================================================================
302  !     Now the full treatment for the layers, where besides the opacity
303  !     we need to calculate the scattering albedo and asymmetry factors
304
305  ! Haze scattering
306  DO NW=1,L_NSPECTV
307    DO K=2,L_LEVELS
308      DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze
309    ENDDO
310  ENDDO
311
312
313  DO NW=1,L_NSPECTV
314     DO L=1,L_NLAYRAD-1
315        K              = 2*L+1
316        atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW)
317        btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW)
318        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ?
319        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
320        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
321     END DO ! L vertical loop
322     
323     ! Last level
324     L           = L_NLAYRAD
325     K           = 2*L+1
326     atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW)
327     btemp(L,NW) = DHAZES_T(K,NW)
328     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
329     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
330     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
331     
332     
333  END DO                    ! NW spectral loop
334
335  DO NG=1,L_NGAUSS
336    DO NW=1,L_NSPECTV
337     DO L=1,L_NLAYRAD-1
338
339        K              = 2*L+1
340        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
341        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
342
343      END DO ! L vertical loop
344
345        ! Last level
346
347        L              = L_NLAYRAD
348        K              = 2*L+1
349        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
350
351        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
352
353     END DO                 ! NW spectral loop
354  END DO                    ! NG Gauss loop
355
356  ! Total extinction optical depths
357
358  DO NG=1,L_NGAUSS       ! full gauss loop
359     DO NW=1,L_NSPECTV       
360        TAUV(1,NW,NG)=0.0D0
361        DO L=1,L_NLAYRAD
362           TAUV(L+1,NW,NG)=TAUV(L,NW,NG)+DTAUV(L,NW,NG)
363        END DO
364
365        TAUCUMV(1,NW,NG)=0.0D0
366        DO K=2,L_LEVELS
367           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
368        END DO
369     END DO           
370  END DO                 ! end full gauss loop
371
372
373!  Titan's outputs (JVO, 2016)===============================================
374!      do l=1,L_NLAYRAD
375!         do nw=1,L_NSPECTV
376!          INT_DTAU(L,NW) = 0.0d+0
377!            DO NG=1,L_NGAUSS
378!               INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtauv(L,nw,ng)*gweight(NG)
379!            enddo
380!         enddo
381!      enddo
382
383!       do nw=1,L_NSPECTV
384!          write(str2,'(i2.2)') nw
385!         call writediagfi(1,'kgv'//str2,'Gaz extinction coefficient VI band '//str2,'m-1',1,int_dtau(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1))
386!          call writediagfi(1,'khv'//str2,'Haze extinction coefficient VI band '//str2,'m-1',1,k_haze(L_NLAYRAD:1:-1,nw)/dz_lay(L_NLAYRAD:1:-1))       
387!       enddo 
388
389! ============================================================================== 
390
391  if(firstcall) firstcall = .false.
392
393  return
394
395
396end subroutine optcv
Note: See TracBrowser for help on using the repository browser.