source: trunk/LMDZ.TITAN/libf/phytitan/optcv.F90 @ 2131

Last change on this file since 2131 was 2131, checked in by jvatant, 6 years ago

+ Add diagnostics of optical thickness, in 1D, if 'diagdtau' key is activated, it

outputs dtaui/v(altitude) in diagfi.nc for every narrowband (could be done with one var
but would require to be able to have writediag in 5D

--JVO

  • Property svn:executable set to *
File size: 14.2 KB
Line 
1SUBROUTINE OPTCV(PQMO,NLAY,PLEV,TMID,PMID,  &
2     DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT)
3
4  use radinc_h
5  use radcommon_h, only: gasv,gasv_recomb,tlimit,Cmk,gzlat_ig, &
6                         tgasref,pfgasref,wnov,scalep,indv,gweight
7  use gases_h
8  use comcstfi_mod, only: r
9  use callkeys_mod, only: continuum,graybody,callgasvis,corrk_recombin,diagdtau,  &
10                          callclouds,callmufi,seashaze,uncoupl_optic_haze
11  use tracer_h, only: nmicro,nice
12  use MMP_OPTICS
13
14  implicit none
15
16  !==================================================================
17  !     
18  !     Purpose
19  !     -------
20  !     Calculates shortwave optical constants at each level.
21  !     
22  !     Authors
23  !     -------
24  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
25  !     Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17)
26  !     
27  !==================================================================
28  !     
29  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
30  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
31  !     LAYER: WBAR, DTAU, COSBAR
32  !     LEVEL: TAU
33  !     
34  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
35  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
36  !     
37  !     TLEV(L) - Temperature at the layer boundary
38  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
39  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
40  !     
41  !-------------------------------------------------------------------
42
43
44  !==========================================================
45  ! Input/Output
46  !==========================================================
47  REAL*8, INTENT(IN)  :: PQMO(nlay,nmicro)  ! Tracers for microphysics optics (X/m2).
48  INTEGER, INTENT(IN) :: NLAY               ! Number of pressure layers (for pqmo)
49  REAL*8, INTENT(IN)  :: PLEV(L_LEVELS)
50  REAL*8, INTENT(IN)  :: TMID(L_LEVELS), PMID(L_LEVELS)
51  REAL*8, INTENT(IN)  :: TAURAY(L_NSPECTV)
52  REAL*8, INTENT(IN)  :: SEASHAZEFACT(L_LEVELS)
53 
54  REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
55  REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
56  REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
57  REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
58  REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
59  REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1)
60  ! ==========================================================
61 
62  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
63
64  ! Titan customisation
65  ! J. Vatant d'Ollone (2016)
66  real*8 DHAZE_T(L_LEVELS,L_NSPECTI)
67  real*8 DHAZES_T(L_LEVELS,L_NSPECTI)
68  real*8 SSA_T(L_LEVELS,L_NSPECTI)
69  real*8 ASF_T(L_LEVELS,L_NSPECTI)
70  real*8 INT_DTAU(L_NLAYRAD,L_NSPECTI)
71 
72  CHARACTER*2  str2
73  ! ==========================
74
75  integer L, NW, NG, K, LK, IAER
76  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
77  real*8  ANS, TAUGAS
78  real*8  TRAY(L_LEVELS,L_NSPECTV)
79  real*8  DPR(L_LEVELS), U(L_LEVELS)
80  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
81
82  real*8 DCONT
83  real*8 DRAYAER
84  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
85  double precision p_cross
86
87  real*8  KCOEF(4)
88 
89  ! temporary variable to reduce memory access time to gasv
90  real*8 tmpk(2,2)
91
92  ! temporary variables for multiple aerosol calculation
93  real*8 atemp(L_NLAYRAD,L_NSPECTV)
94  real*8 btemp(L_NLAYRAD,L_NSPECTV)
95  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
96
97  ! variables for k in units m^-1
98  real*8 dz(L_LEVELS)
99
100  integer igas, jgas, ilay
101
102  integer interm
103
104  real*8 m0as,m3as,m0af,m3af
105  real*8 ext_s,sca_s,ssa_s,asf_s
106  real*8 ext_f,sca_f,ssa_f,asf_f
107  logical,save :: firstcall=.true.
108  !$OMP THREADPRIVATE(firstcall)
109
110
111  !! AS: to save time in computing continuum (see bilinearbig)
112  IF (.not.ALLOCATED(indv)) THEN
113      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
114      indv = -9999 ! this initial value means "to be calculated"
115  ENDIF
116 
117  ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1)
118  ! I should check this - For now we set vars to zero : better than nans - JVO 2017
119 
120  dhaze_t(:,:) = 0.
121  ssa_t(:,:) = 0.
122  asf_t(:,:) = 0.
123
124
125  !=======================================================================
126  !     Determine the total gas opacity throughout the column, for each
127  !     spectral interval, NW, and each Gauss point, NG.
128  !     Calculate the continuum opacities, i.e., those that do not depend on
129  !     NG, the Gauss index.
130
131  taugsurf(:,:) = 0.0
132  dpr(:)        = 0.0
133  lkcoef(:,:)   = 0.0
134
135  do K=2,L_LEVELS
136 
137     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
138 
139     DPR(k) = PLEV(K)-PLEV(K-1)
140
141     ! if we have continuum opacities, we need dz
142
143      dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K))
144      U(k)  = Cmk(ilay)*DPR(k)     ! only Cmk line in optcv.F     
145
146     call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K))
147
148     do LK=1,4
149        LKCOEF(K,LK) = LCOEF(LK)
150     end do
151  end do                    ! levels
152
153  ! Rayleigh scattering
154  do NW=1,L_NSPECTV
155     TRAY(1:4,NW)   = 1d-30
156     do K=5,L_LEVELS
157        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
158     end do                    ! levels
159  end do
160 
161  !     we ignore K=1...
162  do K=2,L_LEVELS
163 
164     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
165
166     do NW=1,L_NSPECTV
167     
168        ! Optical coupling of YAMMS is plugged but inactivated (if false) for now
169        ! as long as the microphysics only isn't fully debugged -- JVO 01/18
170        IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN
171          m0as = pqmo(ilay,1)
172          m3as = pqmo(ilay,2)
173          m0af = pqmo(ilay,3)
174          m3af = pqmo(ilay,4)
175
176          IF (.NOT.mmp_sph_optics_vis(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) &
177          CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_vis", 12)
178          IF (.NOT.mmp_fra_optics_vis(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) &
179          CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_vis", 12)
180          dhaze_T(k,nw) = ext_s+ext_f
181          SSA_T(k,nw)   = (sca_s+sca_f)/dhaze_T(k,nw)
182          ASF_T(k,nw)   = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f)
183          IF (callclouds.and.firstcall) &
184            WRITE(*,*) 'WARNING: In optcv, optical properties &
185                       &calculations are not implemented yet'
186        ELSE
187          ! Call fixed vertical haze profile of extinction - same for all columns
188          call disr_haze(dz(k),plev(k),wnov(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw))
189          if (seashaze) dhaze_T(k,nw) = dhaze_T(k,nw)*seashazefact(k)
190        ENDIF
191       
192        !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
193        !   but visible does not handle very well diffusion in first layer.
194        !   The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise)
195        !   in the 4 first semilayers in optcv, but not optci.
196        !   This solves random variations of the sw heating at the model top.
197        if (k<5)  dhaze_T(K,:) = 0.0
198         
199        DRAYAER = TRAY(K,NW)
200        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
201        DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol
202
203        DCONT = 0.0 ! continuum absorption
204
205        if(continuum.and.(.not.graybody).and.callgasvis)then
206           ! include continua if necessary
207           wn_cont = dble(wnov(nw))
208           T_cont  = dble(TMID(k))
209           do igas=1,ngasmx
210
211              p_cont  = dble(PMID(k)*scalep*gfrac(igas,ilay))
212
213              dtemp=0.0
214              if(igas.eq.igas_N2)then
215
216                 interm = indv(nw,igas,igas)
217!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
218                 indv(nw,igas,igas) = interm
219                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
220
221              elseif(igas.eq.igas_H2)then
222
223                 ! first do self-induced absorption
224                 interm = indv(nw,igas,igas)
225                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
226                 indv(nw,igas,igas) = interm
227
228                 ! then cross-interactions with other gases
229                 do jgas=1,ngasmx
230                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
231                    dtempc  = 0.0
232                    if(jgas.eq.igas_N2)then
233                       interm = indv(nw,igas,jgas)
234                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
235                       indv(nw,igas,jgas) = interm
236                       ! should be irrelevant in the visible
237                    endif
238                    dtemp = dtemp + dtempc
239                 enddo
240
241               elseif(igas.eq.igas_CH4)then
242
243                 ! first do self-induced absorption
244                 interm = indv(nw,igas,igas)
245                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
246                 indv(nw,igas,igas) = interm
247
248                 ! then cross-interactions with other gases
249                 do jgas=1,ngasmx
250                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
251                    dtempc  = 0.0
252                    if(jgas.eq.igas_N2)then
253                       interm = indv(nw,igas,jgas)
254                       call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
255                       indv(nw,igas,jgas) = interm
256                    endif
257                    dtemp = dtemp + dtempc
258                 enddo
259
260              endif
261
262              DCONT = DCONT + dtemp
263
264           enddo
265
266           DCONT = DCONT*dz(k)
267
268        endif
269
270        do ng=1,L_NGAUSS-1
271
272           ! Now compute TAUGAS
273
274           ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
275           ! the execution time of optci/v -> ~ factor 2 on the whole radiative
276           ! transfer on the tested simulations !
277
278           if (corrk_recombin) then
279             tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG)
280           else
281             tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
282           endif
283             
284           KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
285           KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
286           KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
287           KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
288
289           ! Interpolate the gaseous k-coefficients to the requested T,P values
290
291           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
292                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
293
294
295           TAUGAS  = U(k)*ANS
296
297           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
298           DTAUKV(K,nw,ng) = TAUGAS &
299                             + DRAYAER & ! DRAYAER includes all scattering contributions
300                             + DCONT ! For parameterized continuum aborption
301
302        end do
303
304        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
305        ! which holds continuum opacity only
306
307        NG              = L_NGAUSS
308        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze
309
310     end do
311  end do
312
313
314  !=======================================================================
315  !     Now the full treatment for the layers, where besides the opacity
316  !     we need to calculate the scattering albedo and asymmetry factors
317  ! ======================================================================
318
319  ! Haze scattering
320            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
321            !   but not in the visible
322            !   The dhaze_s is thus set to 0 in the 4 first semilayers in optcv, but not optci.
323            !   This solves random variations of the sw heating at the model top.
324  DO NW=1,L_NSPECTV
325      DHAZES_T(1:4,NW) = 0.d0
326    DO K=5,L_LEVELS
327      DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze
328    ENDDO
329  ENDDO
330
331
332  DO NW=1,L_NSPECTV
333     DO L=1,L_NLAYRAD-1
334        K              = 2*L+1
335        atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW)
336        btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW)
337        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ?
338        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
339        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
340     END DO ! L vertical loop
341     
342     ! Last level
343     L           = L_NLAYRAD
344     K           = 2*L+1
345     atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW)
346     btemp(L,NW) = DHAZES_T(K,NW)
347     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
348     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
349     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
350     
351     
352  END DO                    ! NW spectral loop
353
354  DO NG=1,L_NGAUSS
355    DO NW=1,L_NSPECTV
356     DO L=1,L_NLAYRAD-1
357
358        K              = 2*L+1
359        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
360        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
361
362      END DO ! L vertical loop
363
364        ! Last level
365
366        L              = L_NLAYRAD
367        K              = 2*L+1
368        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
369
370        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
371
372     END DO                 ! NW spectral loop
373  END DO                    ! NG Gauss loop
374
375  ! Total extinction optical depths
376
377  DO NG=1,L_NGAUSS       ! full gauss loop
378     DO NW=1,L_NSPECTV       
379        TAUCUMV(1,NW,NG)=0.0D0
380        DO K=2,L_LEVELS
381           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
382        END DO
383
384        DO L=1,L_NLAYRAD
385           TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG)
386        END DO
387        TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG)
388     END DO           
389  END DO                 ! end full gauss loop
390
391
392  !  Optical thickness for 1D diagnostics (added by JVO)
393  if (diagdtau) then ! diagtau can be true only if 1D
394    do l=1,L_NLAYRAD
395       do nw=1,L_NSPECTV
396        INT_DTAU(L,NW) = 0.0d+0
397          DO NG=1,L_NGAUSS
398             INT_DTAU(L,NW)= INT_DTAU(L,NW) + dtauv(L,nw,ng)*gweight(NG)
399          enddo
400       enddo
401    enddo
402    do nw=1,L_NSPECTV
403      write(str2,'(i2.2)') nw
404      call writediagfi(1,'dtauv'//str2,'Layer optical thickness in VI band '//str2,'',1,int_dtau(L_NLAYRAD:1:-1,nw))
405    enddo
406  endif
407
408
409  if(firstcall) firstcall = .false.
410
411  return
412
413
414end subroutine optcv
Note: See TracBrowser for help on using the repository browser.