source: trunk/LMDZ.TITAN/libf/phytitan/optcv.F90 @ 2133

Last change on this file since 2133 was 2133, checked in by jvatant, 6 years ago

Fic a bug in r2131 the writediagfi cannot be called
in RT routines because of the iradia it goes crazy with outputs freq ...
--JVO

  • Property svn:executable set to *
File size: 13.6 KB
Line 
1SUBROUTINE OPTCV(PQMO,NLAY,PLEV,TMID,PMID,  &
2     DTAUV,TAUV,TAUCUMV,WBARV,COSBV,TAURAY,TAUGSURF,SEASHAZEFACT)
3
4  use radinc_h
5  use radcommon_h, only: gasv,gasv_recomb,tlimit,Cmk,gzlat_ig, &
6                         tgasref,pfgasref,wnov,scalep,indv
7  use gases_h
8  use comcstfi_mod, only: r
9  use callkeys_mod, only: continuum,graybody,callgasvis,corrk_recombin,     &
10                          callclouds,callmufi,seashaze,uncoupl_optic_haze
11  use tracer_h, only: nmicro,nice
12  use MMP_OPTICS
13
14  implicit none
15
16  !==================================================================
17  !     
18  !     Purpose
19  !     -------
20  !     Calculates shortwave optical constants at each level.
21  !     
22  !     Authors
23  !     -------
24  !     Adapted from the NASA Ames code by R. Wordsworth (2009)
25  !     Clean and adaptation to Titan by J. Vatant d'Ollone (2016-17)
26  !     
27  !==================================================================
28  !     
29  !     THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL 
30  !     IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL
31  !     LAYER: WBAR, DTAU, COSBAR
32  !     LEVEL: TAU
33  !     
34  !     TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code
35  !     layer L. NW is spectral wavelength interval, ng the Gauss point index.
36  !     
37  !     TLEV(L) - Temperature at the layer boundary
38  !     PLEV(L) - Pressure at the layer boundary (i.e. level)
39  !     GASV(NT,NPS,NW,NG) - Visible k-coefficients
40  !     
41  !-------------------------------------------------------------------
42
43
44  !==========================================================
45  ! Input/Output
46  !==========================================================
47  REAL*8, INTENT(IN)  :: PQMO(nlay,nmicro)  ! Tracers for microphysics optics (X/m2).
48  INTEGER, INTENT(IN) :: NLAY               ! Number of pressure layers (for pqmo)
49  REAL*8, INTENT(IN)  :: PLEV(L_LEVELS)
50  REAL*8, INTENT(IN)  :: TMID(L_LEVELS), PMID(L_LEVELS)
51  REAL*8, INTENT(IN)  :: TAURAY(L_NSPECTV)
52  REAL*8, INTENT(IN)  :: SEASHAZEFACT(L_LEVELS)
53 
54  REAL*8, INTENT(OUT) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
55  REAL*8, INTENT(OUT) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
56  REAL*8, INTENT(OUT) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS)
57  REAL*8, INTENT(OUT) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
58  REAL*8, INTENT(OUT) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
59  REAL*8, INTENT(OUT) :: TAUGSURF(L_NSPECTV,L_NGAUSS-1)
60  ! ==========================================================
61 
62  real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS)
63
64  ! Titan customisation
65  ! J. Vatant d'Ollone (2016)
66  real*8 DHAZE_T(L_LEVELS,L_NSPECTI)
67  real*8 DHAZES_T(L_LEVELS,L_NSPECTI)
68  real*8 SSA_T(L_LEVELS,L_NSPECTI)
69  real*8 ASF_T(L_LEVELS,L_NSPECTI)
70  ! ==========================
71
72  integer L, NW, NG, K, LK, IAER
73  integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS)
74  real*8  ANS, TAUGAS
75  real*8  TRAY(L_LEVELS,L_NSPECTV)
76  real*8  DPR(L_LEVELS), U(L_LEVELS)
77  real*8  LCOEF(4), LKCOEF(L_LEVELS,4)
78
79  real*8 DCONT
80  real*8 DRAYAER
81  double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc
82  double precision p_cross
83
84  real*8  KCOEF(4)
85 
86  ! temporary variable to reduce memory access time to gasv
87  real*8 tmpk(2,2)
88
89  ! temporary variables for multiple aerosol calculation
90  real*8 atemp(L_NLAYRAD,L_NSPECTV)
91  real*8 btemp(L_NLAYRAD,L_NSPECTV)
92  real*8 ctemp(L_NLAYRAD,L_NSPECTV)
93
94  ! variables for k in units m^-1
95  real*8 dz(L_LEVELS)
96
97  integer igas, jgas, ilay
98
99  integer interm
100
101  real*8 m0as,m3as,m0af,m3af
102  real*8 ext_s,sca_s,ssa_s,asf_s
103  real*8 ext_f,sca_f,ssa_f,asf_f
104  logical,save :: firstcall=.true.
105  !$OMP THREADPRIVATE(firstcall)
106
107
108  !! AS: to save time in computing continuum (see bilinearbig)
109  IF (.not.ALLOCATED(indv)) THEN
110      ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx))
111      indv = -9999 ! this initial value means "to be calculated"
112  ENDIF
113 
114  ! Some initialisation beacause there's a pb with disr_haze at the limits (nw=1)
115  ! I should check this - For now we set vars to zero : better than nans - JVO 2017
116 
117  dhaze_t(:,:) = 0.
118  ssa_t(:,:) = 0.
119  asf_t(:,:) = 0.
120
121
122  !=======================================================================
123  !     Determine the total gas opacity throughout the column, for each
124  !     spectral interval, NW, and each Gauss point, NG.
125  !     Calculate the continuum opacities, i.e., those that do not depend on
126  !     NG, the Gauss index.
127
128  taugsurf(:,:) = 0.0
129  dpr(:)        = 0.0
130  lkcoef(:,:)   = 0.0
131
132  do K=2,L_LEVELS
133 
134     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
135 
136     DPR(k) = PLEV(K)-PLEV(K-1)
137
138     ! if we have continuum opacities, we need dz
139
140      dz(k) = dpr(k)*R*TMID(K)/(gzlat_ig(ilay)*PMID(K))
141      U(k)  = Cmk(ilay)*DPR(k)     ! only Cmk line in optcv.F     
142
143     call tpindex(PMID(K),TMID(K),pfgasref,tgasref,LCOEF,MT(K),MP(K))
144
145     do LK=1,4
146        LKCOEF(K,LK) = LCOEF(LK)
147     end do
148  end do                    ! levels
149
150  ! Rayleigh scattering
151  do NW=1,L_NSPECTV
152     TRAY(1:4,NW)   = 1d-30
153     do K=5,L_LEVELS
154        TRAY(K,NW)   = TAURAY(NW) * DPR(K)
155     end do                    ! levels
156  end do
157 
158  !     we ignore K=1...
159  do K=2,L_LEVELS
160 
161     ilay = k / 2 ! int. arithmetic => gives the gcm layer index
162
163     do NW=1,L_NSPECTV
164     
165        ! Optical coupling of YAMMS is plugged but inactivated (if false) for now
166        ! as long as the microphysics only isn't fully debugged -- JVO 01/18
167        IF (callmufi .AND. (.NOT. uncoupl_optic_haze)) THEN
168          m0as = pqmo(ilay,1)
169          m3as = pqmo(ilay,2)
170          m0af = pqmo(ilay,3)
171          m3af = pqmo(ilay,4)
172
173          IF (.NOT.mmp_sph_optics_vis(m0as,m3as,nw,ext_s,sca_s,ssa_s,asf_s)) &
174          CALL abort_gcm("optcv", "Fatal error in mmp_sph_optics_vis", 12)
175          IF (.NOT.mmp_fra_optics_vis(m0af,m3af,nw,ext_f,sca_f,ssa_f,asf_f)) &
176          CALL abort_gcm("optcv", "Fatal error in mmp_fra_optics_vis", 12)
177          dhaze_T(k,nw) = ext_s+ext_f
178          SSA_T(k,nw)   = (sca_s+sca_f)/dhaze_T(k,nw)
179          ASF_T(k,nw)   = (asf_s*sca_s + asf_f*sca_f) /(sca_s+sca_f)
180          IF (callclouds.and.firstcall) &
181            WRITE(*,*) 'WARNING: In optcv, optical properties &
182                       &calculations are not implemented yet'
183        ELSE
184          ! Call fixed vertical haze profile of extinction - same for all columns
185          call disr_haze(dz(k),plev(k),wnov(nw),dhaze_T(k,nw),SSA_T(k,nw),ASF_T(k,nw))
186          if (seashaze) dhaze_T(k,nw) = dhaze_T(k,nw)*seashazefact(k)
187        ENDIF
188       
189        !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
190        !   but visible does not handle very well diffusion in first layer.
191        !   The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise)
192        !   in the 4 first semilayers in optcv, but not optci.
193        !   This solves random variations of the sw heating at the model top.
194        if (k<5)  dhaze_T(K,:) = 0.0
195         
196        DRAYAER = TRAY(K,NW)
197        !     DRAYAER is Tau RAYleigh scattering, plus AERosol opacity
198        DRAYAER = DRAYAER + DHAZE_T(K,NW) ! Titan's aerosol
199
200        DCONT = 0.0 ! continuum absorption
201
202        if(continuum.and.(.not.graybody).and.callgasvis)then
203           ! include continua if necessary
204           wn_cont = dble(wnov(nw))
205           T_cont  = dble(TMID(k))
206           do igas=1,ngasmx
207
208              p_cont  = dble(PMID(k)*scalep*gfrac(igas,ilay))
209
210              dtemp=0.0
211              if(igas.eq.igas_N2)then
212
213                 interm = indv(nw,igas,igas)
214!                 call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
215                 indv(nw,igas,igas) = interm
216                 ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible
217
218              elseif(igas.eq.igas_H2)then
219
220                 ! first do self-induced absorption
221                 interm = indv(nw,igas,igas)
222                 call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
223                 indv(nw,igas,igas) = interm
224
225                 ! then cross-interactions with other gases
226                 do jgas=1,ngasmx
227                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
228                    dtempc  = 0.0
229                    if(jgas.eq.igas_N2)then
230                       interm = indv(nw,igas,jgas)
231                       call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
232                       indv(nw,igas,jgas) = interm
233                       ! should be irrelevant in the visible
234                    endif
235                    dtemp = dtemp + dtempc
236                 enddo
237
238               elseif(igas.eq.igas_CH4)then
239
240                 ! first do self-induced absorption
241                 interm = indv(nw,igas,igas)
242                 call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm)
243                 indv(nw,igas,igas) = interm
244
245                 ! then cross-interactions with other gases
246                 do jgas=1,ngasmx
247                    p_cross = dble(PMID(k)*scalep*gfrac(jgas,ilay))
248                    dtempc  = 0.0
249                    if(jgas.eq.igas_N2)then
250                       interm = indv(nw,igas,jgas)
251                       call interpolateN2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm)
252                       indv(nw,igas,jgas) = interm
253                    endif
254                    dtemp = dtemp + dtempc
255                 enddo
256
257              endif
258
259              DCONT = DCONT + dtemp
260
261           enddo
262
263           DCONT = DCONT*dz(k)
264
265        endif
266
267        do ng=1,L_NGAUSS-1
268
269           ! Now compute TAUGAS
270
271           ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically
272           ! the execution time of optci/v -> ~ factor 2 on the whole radiative
273           ! transfer on the tested simulations !
274
275           if (corrk_recombin) then
276             tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NW,NG)
277           else
278             tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG)
279           endif
280             
281           KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG)
282           KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG)
283           KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG)
284           KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG)
285
286           ! Interpolate the gaseous k-coefficients to the requested T,P values
287
288           ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) +            &
289                LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4)
290
291
292           TAUGAS  = U(k)*ANS
293
294           TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT
295           DTAUKV(K,nw,ng) = TAUGAS &
296                             + DRAYAER & ! DRAYAER includes all scattering contributions
297                             + DCONT ! For parameterized continuum aborption
298
299        end do
300
301        ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS),
302        ! which holds continuum opacity only
303
304        NG              = L_NGAUSS
305        DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption, including Titan's haze
306
307     end do
308  end do
309
310
311  !=======================================================================
312  !     Now the full treatment for the layers, where besides the opacity
313  !     we need to calculate the scattering albedo and asymmetry factors
314  ! ======================================================================
315
316  ! Haze scattering
317            !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR
318            !   but not in the visible
319            !   The dhaze_s is thus set to 0 in the 4 first semilayers in optcv, but not optci.
320            !   This solves random variations of the sw heating at the model top.
321  DO NW=1,L_NSPECTV
322      DHAZES_T(1:4,NW) = 0.d0
323    DO K=5,L_LEVELS
324      DHAZES_T(K,NW) = DHAZE_T(K,NW) * SSA_T(K,NW) ! effect of scattering albedo on haze
325    ENDDO
326  ENDDO
327
328
329  DO NW=1,L_NSPECTV
330     DO L=1,L_NLAYRAD-1
331        K              = 2*L+1
332        atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW) + ASF_T(K+1,NW)*DHAZES_T(K+1,NW)
333        btemp(L,NW) = DHAZES_T(K,NW) + DHAZES_T(K+1,NW)
334        ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ?
335        btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW)
336        COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
337     END DO ! L vertical loop
338     
339     ! Last level
340     L           = L_NLAYRAD
341     K           = 2*L+1
342     atemp(L,NW) = ASF_T(K,NW)*DHAZES_T(K,NW)
343     btemp(L,NW) = DHAZES_T(K,NW)
344     ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ?
345     btemp(L,NW) = btemp(L,NW) + TRAY(K,NW)
346     COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW)
347     
348     
349  END DO                    ! NW spectral loop
350
351  DO NG=1,L_NGAUSS
352    DO NW=1,L_NSPECTV
353     DO L=1,L_NLAYRAD-1
354
355        K              = 2*L+1
356        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG)
357        WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng)
358
359      END DO ! L vertical loop
360
361        ! Last level
362
363        L              = L_NLAYRAD
364        K              = 2*L+1
365        DTAUV(L,nw,ng) = DTAUKV(K,NW,NG)
366
367        WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG)
368
369     END DO                 ! NW spectral loop
370  END DO                    ! NG Gauss loop
371
372  ! Total extinction optical depths
373
374  DO NG=1,L_NGAUSS       ! full gauss loop
375     DO NW=1,L_NSPECTV       
376        TAUCUMV(1,NW,NG)=0.0D0
377        DO K=2,L_LEVELS
378           TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG)
379        END DO
380
381        DO L=1,L_NLAYRAD
382           TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG)
383        END DO
384        TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG)
385     END DO           
386  END DO                 ! end full gauss loop
387
388
389  if(firstcall) firstcall = .false.
390
391  return
392
393
394end subroutine optcv
Note: See TracBrowser for help on using the repository browser.