1 | #!/usr/bin/env python3 |
---|
2 | ############################################################## |
---|
3 | ### Python script to visualize a variable in a NetCDF file ### |
---|
4 | ############################################################## |
---|
5 | |
---|
6 | """ |
---|
7 | This script can display any numeric variable from a NetCDF file. |
---|
8 | It supports the following cases: |
---|
9 | - 1D time series (Time) |
---|
10 | - 1D vertical profiles (e.g., subsurface_layers) |
---|
11 | - 2D latitude/longitude map |
---|
12 | - 2D (Time × another dimension) |
---|
13 | - Variables with dimension “physical_points” displayed on a 2D map if lat/lon are present |
---|
14 | - Optionally average over latitude and plot longitude vs. time heatmap |
---|
15 | - Scalar output (ndim == 0 after slicing) |
---|
16 | - 2D cross-sections (altitude × latitude or altitude × longitude) |
---|
17 | |
---|
18 | Usage: |
---|
19 | 1) Command-line mode: |
---|
20 | python display_netcdf.py /path/to/your_file.nc --variable VAR_NAME \ |
---|
21 | [--time-index 0] [--alt-index 0] [--cmap viridis] [--avg-lat] \ |
---|
22 | [--slice-lon-index 10] [--slice-lat-index 20] [--show-topo] \ |
---|
23 | [--output out.png] [--extra-indices '{"nslope": 1}'] |
---|
24 | |
---|
25 | --variable : Name of the variable to visualize. |
---|
26 | --time-index : Index along the Time dimension (0-based, ignored for purely 1D time series). |
---|
27 | --alt-index : Index along the altitude dimension (0-based), if present. |
---|
28 | --cmap : Matplotlib colormap (default: "jet"). |
---|
29 | --avg-lat : Average over latitude and plot longitude vs. time heatmap. |
---|
30 | --slice-lon-index : Fixed longitude index for altitude×longitude cross-section. |
---|
31 | --slice-lat-index : Fixed latitude index for altitude×latitude cross-section. |
---|
32 | --show-topo : Overlay MOLA topography on lat/lon maps. |
---|
33 | --output : If provided, save the figure to this filename instead of displaying. |
---|
34 | --extra-indices : JSON string to fix indices for any other dimensions. |
---|
35 | For dimensions with "slope", use 1-based numbering here. |
---|
36 | Example: '{"nslope": 1, "physical_points": 3}' |
---|
37 | |
---|
38 | 2) Interactive mode: |
---|
39 | python display_netcdf.py |
---|
40 | (The script will prompt for everything, including averaging or slicing options.) |
---|
41 | """ |
---|
42 | |
---|
43 | import os |
---|
44 | import sys |
---|
45 | import glob |
---|
46 | import readline |
---|
47 | import argparse |
---|
48 | import json |
---|
49 | import numpy as np |
---|
50 | import matplotlib.pyplot as plt |
---|
51 | import matplotlib.tri as mtri |
---|
52 | import matplotlib.path as mpath |
---|
53 | import cartopy.crs as ccrs |
---|
54 | from netCDF4 import Dataset |
---|
55 | |
---|
56 | # Constants for recognized dimension names |
---|
57 | TIME_DIMS = ("Time", "time", "time_counter") |
---|
58 | ALT_DIMS = ("altitude",) |
---|
59 | LAT_DIMS = ("latitude", "lat") |
---|
60 | LON_DIMS = ("longitude", "lon") |
---|
61 | |
---|
62 | # Attempt to load MOLA topography |
---|
63 | try: |
---|
64 | MOLA = np.load('MOLA_1px_per_deg.npy') # shape (nlat, nlon) at 1° per pixel: lat from -90 to 90, lon from 0 to 360 |
---|
65 | nlat, nlon = MOLA.shape |
---|
66 | topo_lats = np.linspace(90 - 0.5, -90 + 0.5, nlat) |
---|
67 | topo_lons = np.linspace(-180 + 0.5, 180 - 0.5, nlon) |
---|
68 | topo_lon2d, topo_lat2d = np.meshgrid(topo_lons, topo_lats) |
---|
69 | topo_loaded = True |
---|
70 | print("MOLA topography loaded successfully from 'MOLA_1px_per_deg.npy'.") |
---|
71 | except Exception as e: |
---|
72 | topo_loaded = False |
---|
73 | print(f"Warning: failed to load MOLA topography ('MOLA_1px_per_deg.npy'): {e}") |
---|
74 | |
---|
75 | |
---|
76 | def complete_filename(text, state): |
---|
77 | """ |
---|
78 | Tab-completion for filesystem paths. |
---|
79 | """ |
---|
80 | if "*" not in text: |
---|
81 | pattern = text + "*" |
---|
82 | else: |
---|
83 | pattern = text |
---|
84 | matches = glob.glob(os.path.expanduser(pattern)) |
---|
85 | matches = [m + "/" if os.path.isdir(m) else m for m in matches] |
---|
86 | try: |
---|
87 | return matches[state] |
---|
88 | except IndexError: |
---|
89 | return None |
---|
90 | |
---|
91 | |
---|
92 | def make_varname_completer(varnames): |
---|
93 | """ |
---|
94 | Returns a readline completer for variable names. |
---|
95 | """ |
---|
96 | def completer(text, state): |
---|
97 | options = [name for name in varnames if name.startswith(text)] |
---|
98 | try: |
---|
99 | return options[state] |
---|
100 | except IndexError: |
---|
101 | return None |
---|
102 | return completer |
---|
103 | |
---|
104 | |
---|
105 | def find_dim_index(dims, candidates): |
---|
106 | """ |
---|
107 | Search through dims tuple for any name in candidates. |
---|
108 | Returns the index if found, else returns None. |
---|
109 | """ |
---|
110 | for idx, dim in enumerate(dims): |
---|
111 | for cand in candidates: |
---|
112 | if cand.lower() == dim.lower(): |
---|
113 | return idx |
---|
114 | return None |
---|
115 | |
---|
116 | |
---|
117 | def find_coord_var(dataset, candidates): |
---|
118 | """ |
---|
119 | Among dataset variables, return the first variable whose name matches any candidate. |
---|
120 | Returns None if none found. |
---|
121 | """ |
---|
122 | for name in dataset.variables: |
---|
123 | for cand in candidates: |
---|
124 | if cand.lower() == name.lower(): |
---|
125 | return name |
---|
126 | return None |
---|
127 | |
---|
128 | |
---|
129 | def overlay_topography(ax, transform, levels=10): |
---|
130 | """ |
---|
131 | Overlay MOLA topography contours onto a given GeoAxes. |
---|
132 | """ |
---|
133 | if not topo_loaded: |
---|
134 | return |
---|
135 | ax.contour( |
---|
136 | topo_lon2d, topo_lat2d, MOLA, |
---|
137 | levels=levels, |
---|
138 | linewidths=0.5, |
---|
139 | colors='black', |
---|
140 | transform=transform |
---|
141 | ) |
---|
142 | |
---|
143 | |
---|
144 | def plot_polar_views(lon2d, lat2d, data2d, colormap, varname, units=None, topo_overlay=True): |
---|
145 | """ |
---|
146 | Plot two polar‐stereographic views (north & south) of the same data. |
---|
147 | """ |
---|
148 | figs = [] # collect figure handles |
---|
149 | |
---|
150 | for pole in ("north", "south"): |
---|
151 | # Choose projection and extent for each pole |
---|
152 | if pole == "north": |
---|
153 | proj = ccrs.NorthPolarStereo(central_longitude=180) |
---|
154 | extent = [-180, 180, 60, 90] |
---|
155 | else: |
---|
156 | proj = ccrs.SouthPolarStereo(central_longitude=180) |
---|
157 | extent = [-180, 180, -90, -60] |
---|
158 | |
---|
159 | # Create figure and GeoAxes |
---|
160 | fig = plt.figure(figsize=(8, 6)) |
---|
161 | ax = fig.add_subplot(1, 1, 1, projection=proj, aspect=True) |
---|
162 | ax.set_global() |
---|
163 | ax.set_extent(extent, ccrs.PlateCarree()) |
---|
164 | |
---|
165 | # Draw circular boundary |
---|
166 | theta = np.linspace(0, 2 * np.pi, 100) |
---|
167 | center, radius = [0.5, 0.5], 0.5 |
---|
168 | verts = np.vstack([np.sin(theta), np.cos(theta)]).T |
---|
169 | circle = mpath.Path(verts * radius + center) |
---|
170 | ax.set_boundary(circle, transform=ax.transAxes) |
---|
171 | |
---|
172 | # Add meridians/parallels |
---|
173 | gl = ax.gridlines( |
---|
174 | draw_labels=True, |
---|
175 | color='k', |
---|
176 | xlocs=range(-180, 181, 30), |
---|
177 | ylocs=range(-90, 91, 10), |
---|
178 | linestyle='--', |
---|
179 | linewidth=0.5 |
---|
180 | ) |
---|
181 | #gl.top_labels = False |
---|
182 | #gl.right_labels = False |
---|
183 | |
---|
184 | # Plot data in PlateCarree projection |
---|
185 | cf = ax.contourf( |
---|
186 | lon2d, lat2d, data2d, |
---|
187 | levels=100, |
---|
188 | cmap=colormap, |
---|
189 | transform=ccrs.PlateCarree() |
---|
190 | ) |
---|
191 | |
---|
192 | # Optionally overlay MOLA topography |
---|
193 | if topo_overlay: |
---|
194 | overlay_topography(ax, transform=ccrs.PlateCarree(), levels=20) |
---|
195 | |
---|
196 | # Colorbar and title |
---|
197 | cbar = fig.colorbar(cf, ax=ax, pad=0.1) |
---|
198 | label = varname + (f" ({units})" if units else "") |
---|
199 | cbar.set_label(label) |
---|
200 | ax.set_title(f"{varname} — {pole.capitalize()} Pole", pad=50) |
---|
201 | |
---|
202 | figs.append(fig) |
---|
203 | |
---|
204 | # Show both figures |
---|
205 | plt.show() |
---|
206 | |
---|
207 | def plot_variable(dataset, varname, time_index=None, alt_index=None, |
---|
208 | colormap="jet", output_path=None, extra_indices=None, |
---|
209 | avg_lat=False): |
---|
210 | """ |
---|
211 | Core plotting logic: reads the variable, handles masks, |
---|
212 | determines dimensionality, and creates the appropriate plot: |
---|
213 | - 1D time series |
---|
214 | - 1D profiles or physical_points maps |
---|
215 | - 2D lat×lon or generic 2D |
---|
216 | - Time×lon heatmap if avg_lat=True |
---|
217 | - Scalar printing |
---|
218 | """ |
---|
219 | var = dataset.variables[varname] |
---|
220 | dims = var.dimensions |
---|
221 | |
---|
222 | # Read full data |
---|
223 | try: |
---|
224 | data_full = var[:] |
---|
225 | except Exception as e: |
---|
226 | print(f"Error: Cannot read data for '{varname}': {e}") |
---|
227 | return |
---|
228 | if hasattr(data_full, "mask"): |
---|
229 | data_full = np.where(data_full.mask, np.nan, data_full.data) |
---|
230 | |
---|
231 | # Pure 1D time series |
---|
232 | if len(dims) == 1 and find_dim_index(dims, TIME_DIMS) is not None: |
---|
233 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
234 | tvals = (dataset.variables[time_var][:] if time_var |
---|
235 | else np.arange(data_full.shape[0])) |
---|
236 | if hasattr(tvals, "mask"): |
---|
237 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
238 | plt.figure() |
---|
239 | plt.plot(tvals, data_full, marker="o") |
---|
240 | plt.xlabel(time_var or "Time Index") |
---|
241 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
242 | plt.title(f"{varname} vs {time_var or 'Index'}") |
---|
243 | if output_path: |
---|
244 | plt.savefig(output_path, bbox_inches="tight") |
---|
245 | print(f"Saved to {output_path}") |
---|
246 | else: |
---|
247 | plt.show() |
---|
248 | return |
---|
249 | |
---|
250 | # Identify dims |
---|
251 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
252 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
253 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
254 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
255 | |
---|
256 | # Average over latitude & plot time × lon heatmap |
---|
257 | if avg_lat and t_idx is not None and lat_idx is not None and lon_idx is not None: |
---|
258 | # compute mean over lat axis |
---|
259 | data_avg = np.nanmean(data_full, axis=lat_idx) |
---|
260 | # prepare coordinates |
---|
261 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
262 | lon_var = find_coord_var(dataset, LON_DIMS) |
---|
263 | tvals = dataset.variables[time_var][:] |
---|
264 | lons = dataset.variables[lon_var][:] |
---|
265 | if hasattr(tvals, "mask"): |
---|
266 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
267 | if hasattr(lons, "mask"): |
---|
268 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
269 | plt.figure(figsize=(10, 6)) |
---|
270 | plt.pcolormesh(lons, tvals, data_avg, shading="auto", cmap=colormap) |
---|
271 | plt.xlabel(f"Longitude ({getattr(dataset.variables[lon_var], 'units', 'deg')})") |
---|
272 | plt.ylabel(time_var) |
---|
273 | cbar = plt.colorbar() |
---|
274 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
275 | plt.title(f"{varname} averaged over latitude") |
---|
276 | if output_path: |
---|
277 | plt.savefig(output_path, bbox_inches="tight") |
---|
278 | print(f"Saved to {output_path}") |
---|
279 | else: |
---|
280 | plt.show() |
---|
281 | return |
---|
282 | |
---|
283 | # Build slicer for other cases |
---|
284 | slicer = [slice(None)] * len(dims) |
---|
285 | if t_idx is not None: |
---|
286 | if time_index is None: |
---|
287 | print("Error: please supply a time index.") |
---|
288 | return |
---|
289 | slicer[t_idx] = time_index |
---|
290 | if a_idx is not None: |
---|
291 | if alt_index is None: |
---|
292 | print("Error: please supply an altitude index.") |
---|
293 | return |
---|
294 | slicer[a_idx] = alt_index |
---|
295 | |
---|
296 | if extra_indices is None: |
---|
297 | extra_indices = {} |
---|
298 | for dn, idx_val in extra_indices.items(): |
---|
299 | if dn in dims: |
---|
300 | slicer[dims.index(dn)] = idx_val |
---|
301 | |
---|
302 | # Extract slice |
---|
303 | try: |
---|
304 | dslice = data_full[tuple(slicer)] |
---|
305 | except Exception as e: |
---|
306 | print(f"Error slicing '{varname}': {e}") |
---|
307 | return |
---|
308 | |
---|
309 | # Scalar |
---|
310 | if np.ndim(dslice) == 0: |
---|
311 | print(f"Scalar '{varname}': {float(dslice)}") |
---|
312 | return |
---|
313 | |
---|
314 | # 1D: vector, profile, or physical_points |
---|
315 | if dslice.ndim == 1: |
---|
316 | rem = [(i, name) for i, name in enumerate(dims) if slicer[i] == slice(None)] |
---|
317 | if rem: |
---|
318 | di, dname = rem[0] |
---|
319 | # physical_points → interpolated map |
---|
320 | if dname.lower() == "physical_points": |
---|
321 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
322 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
323 | if latv and lonv: |
---|
324 | lats = dataset.variables[latv][:] |
---|
325 | lons = dataset.variables[lonv][:] |
---|
326 | |
---|
327 | # Unmask |
---|
328 | if hasattr(lats, "mask"): |
---|
329 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
330 | if hasattr(lons, "mask"): |
---|
331 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
332 | |
---|
333 | # Convert radians to degrees if needed |
---|
334 | lats_deg = np.round(np.degrees(lats), 6) |
---|
335 | lons_deg = np.round(np.degrees(lons), 6) |
---|
336 | |
---|
337 | # Build regular grid |
---|
338 | uniq_lats = np.unique(lats_deg) |
---|
339 | uniq_lons = np.unique(lons_deg) |
---|
340 | nlon = len(uniq_lons) |
---|
341 | |
---|
342 | data2d = [] |
---|
343 | for lat_val in uniq_lats: |
---|
344 | mask = lats_deg == lat_val |
---|
345 | slice_vals = dslice[mask] |
---|
346 | lons_at_lat = lons_deg[mask] |
---|
347 | if len(slice_vals) == 1: |
---|
348 | row = np.full(nlon, slice_vals[0]) |
---|
349 | else: |
---|
350 | order = np.argsort(lons_at_lat) |
---|
351 | row = np.full(nlon, np.nan) |
---|
352 | row[: len(slice_vals)] = slice_vals[order] |
---|
353 | data2d.append(row) |
---|
354 | data2d = np.array(data2d) |
---|
355 | |
---|
356 | # Wrap longitude if needed |
---|
357 | if -180.0 in uniq_lons: |
---|
358 | idx = np.where(np.isclose(uniq_lons, -180.0))[0][0] |
---|
359 | data2d = np.hstack([data2d, data2d[:, [idx]]]) |
---|
360 | uniq_lons = np.append(uniq_lons, 180.0) |
---|
361 | |
---|
362 | # Plot interpolated map |
---|
363 | proj = ccrs.PlateCarree() |
---|
364 | fig, ax = plt.subplots(subplot_kw=dict(projection=proj), figsize=(8, 6)) |
---|
365 | lon2d, lat2d = np.meshgrid(uniq_lons, uniq_lats) |
---|
366 | lon_ticks = np.arange(-180, 181, 30) |
---|
367 | lat_ticks = np.arange(-90, 91, 30) |
---|
368 | ax.set_xticks(lon_ticks, crs=ccrs.PlateCarree()) |
---|
369 | ax.set_yticks(lat_ticks, crs=ccrs.PlateCarree()) |
---|
370 | ax.tick_params( |
---|
371 | axis='x', which='major', |
---|
372 | length=4, |
---|
373 | direction='out', |
---|
374 | pad=2, |
---|
375 | labelsize=8 |
---|
376 | ) |
---|
377 | ax.tick_params( |
---|
378 | axis='y', which='major', |
---|
379 | length=4, |
---|
380 | direction='out', |
---|
381 | pad=2, |
---|
382 | labelsize=8 |
---|
383 | ) |
---|
384 | cf = ax.contourf( |
---|
385 | lon2d, lat2d, data2d, |
---|
386 | levels=100, |
---|
387 | cmap=colormap, |
---|
388 | transform=proj |
---|
389 | ) |
---|
390 | |
---|
391 | # Overlay MOLA topography |
---|
392 | overlay_topography(ax, transform=proj, levels=10) |
---|
393 | |
---|
394 | # Colorbar & labels |
---|
395 | cbar = fig.colorbar(cf, ax=ax, pad=0.02) |
---|
396 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
397 | ax.set_title(f"{varname} (interpolated map over physical_points)") |
---|
398 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
399 | ax.set_ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
400 | |
---|
401 | # Prompt for polar-stereo views if interactive |
---|
402 | if sys.stdin.isatty() and input("Display polar-stereo views? [y/n]: ").strip().lower() == "y": |
---|
403 | units = getattr(dataset.variables[varname], "units", None) |
---|
404 | plot_polar_views(lon2d, lat2d, data2d, colormap, varname, units) |
---|
405 | |
---|
406 | if output_path: |
---|
407 | plt.savefig(output_path, bbox_inches="tight") |
---|
408 | print(f"Saved to {output_path}") |
---|
409 | else: |
---|
410 | plt.show() |
---|
411 | return |
---|
412 | # vertical profile? |
---|
413 | coord = None |
---|
414 | if dname.lower() == "subsurface_layers" and "soildepth" in dataset.variables: |
---|
415 | coord = "soildepth" |
---|
416 | elif dname in dataset.variables: |
---|
417 | coord = dname |
---|
418 | if coord: |
---|
419 | coords = dataset.variables[coord][:] |
---|
420 | if hasattr(coords, "mask"): |
---|
421 | coords = np.where(coords.mask, np.nan, coords.data) |
---|
422 | plt.figure() |
---|
423 | plt.plot(dslice, coords, marker="o") |
---|
424 | if dname.lower() == "subsurface_layers": |
---|
425 | plt.gca().invert_yaxis() |
---|
426 | plt.xlabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
427 | plt.ylabel(coord + (f" ({dataset.variables[coord].units})" if hasattr(dataset.variables[coord], "units") else "")) |
---|
428 | plt.title(f"{varname} vs {coord}") |
---|
429 | if output_path: |
---|
430 | plt.savefig(output_path, bbox_inches="tight") |
---|
431 | print(f"Saved to {output_path}") |
---|
432 | else: |
---|
433 | plt.show() |
---|
434 | return |
---|
435 | # generic 1D |
---|
436 | plt.figure() |
---|
437 | plt.plot(dslice, marker="o") |
---|
438 | plt.xlabel("Index") |
---|
439 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
440 | plt.title(f"{varname} (1D)") |
---|
441 | if output_path: |
---|
442 | plt.savefig(output_path, bbox_inches="tight") |
---|
443 | print(f"Saved to {output_path}") |
---|
444 | else: |
---|
445 | plt.show() |
---|
446 | return |
---|
447 | |
---|
448 | # if dslice.ndim == 2: |
---|
449 | lat_idx2 = find_dim_index(dims, LAT_DIMS) |
---|
450 | lon_idx2 = find_dim_index(dims, LON_DIMS) |
---|
451 | |
---|
452 | # Geographic lat×lon slice |
---|
453 | if lat_idx2 is not None and lon_idx2 is not None: |
---|
454 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
455 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
456 | lats = dataset.variables[latv][:] |
---|
457 | lons = dataset.variables[lonv][:] |
---|
458 | |
---|
459 | # Handle masked arrays |
---|
460 | if hasattr(lats, "mask"): |
---|
461 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
462 | if hasattr(lons, "mask"): |
---|
463 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
464 | |
---|
465 | # Create map projection |
---|
466 | proj = ccrs.PlateCarree() |
---|
467 | fig, ax = plt.subplots(figsize=(10, 6), subplot_kw=dict(projection=proj)) |
---|
468 | |
---|
469 | # Make meshgrid and plot |
---|
470 | lon2d, lat2d = np.meshgrid(lons, lats) |
---|
471 | cf = ax.contourf( |
---|
472 | lon2d, lat2d, dslice, |
---|
473 | levels=100, |
---|
474 | cmap=colormap, |
---|
475 | transform=proj |
---|
476 | ) |
---|
477 | |
---|
478 | # Overlay topography |
---|
479 | overlay_topography(ax, transform=proj, levels=10) |
---|
480 | |
---|
481 | # Colorbar and labels |
---|
482 | lon_ticks = np.arange(-180, 181, 30) |
---|
483 | lat_ticks = np.arange(-90, 91, 30) |
---|
484 | ax.set_xticks(lon_ticks, crs=ccrs.PlateCarree()) |
---|
485 | ax.set_yticks(lat_ticks, crs=ccrs.PlateCarree()) |
---|
486 | ax.tick_params( |
---|
487 | axis='x', which='major', |
---|
488 | length=4, |
---|
489 | direction='out', |
---|
490 | pad=2, |
---|
491 | labelsize=8 |
---|
492 | ) |
---|
493 | ax.tick_params( |
---|
494 | axis='y', which='major', |
---|
495 | length=4, |
---|
496 | direction='out', |
---|
497 | pad=2, |
---|
498 | labelsize=8 |
---|
499 | ) |
---|
500 | cbar = fig.colorbar(cf, ax=ax, orientation="vertical", pad=0.02) |
---|
501 | cbar.set_label(varname + (f" ({dataset.variables[varname].units})" |
---|
502 | if hasattr(dataset.variables[varname], "units") else "")) |
---|
503 | ax.set_title(f"{varname} (lat × lon)") |
---|
504 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
505 | ax.set_ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
506 | |
---|
507 | # Prompt for polar-stereo views if interactive |
---|
508 | if sys.stdin.isatty() and input("Display polar-stereo views? [y/n]: ").strip().lower() == "y": |
---|
509 | units = getattr(dataset.variables[varname], "units", None) |
---|
510 | plot_polar_views(lon2d, lat2d, dslice, colormap, varname, units) |
---|
511 | |
---|
512 | if output_path: |
---|
513 | plt.savefig(output_path, bbox_inches="tight") |
---|
514 | print(f"Saved to {output_path}") |
---|
515 | else: |
---|
516 | plt.show() |
---|
517 | return |
---|
518 | |
---|
519 | # Generic 2D |
---|
520 | plt.figure(figsize=(8, 6)) |
---|
521 | plt.imshow(dslice, aspect="auto") |
---|
522 | plt.colorbar(label=varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
523 | plt.xlabel("Dim 2 index") |
---|
524 | plt.ylabel("Dim 1 index") |
---|
525 | plt.title(f"{varname} (2D)") |
---|
526 | if output_path: |
---|
527 | plt.savefig(output_path, bbox_inches="tight") |
---|
528 | print(f"Saved to {output_path}") |
---|
529 | else: |
---|
530 | plt.show() |
---|
531 | return |
---|
532 | |
---|
533 | print(f"Error: ndim={dslice.ndim} not supported.") |
---|
534 | |
---|
535 | |
---|
536 | def visualize_variable_interactive(nc_path=None): |
---|
537 | """ |
---|
538 | Interactive loop: keep prompting for variables to plot until user quits. |
---|
539 | """ |
---|
540 | # Open dataset |
---|
541 | if nc_path: |
---|
542 | path = nc_path |
---|
543 | else: |
---|
544 | readline.set_completer(complete_filename) |
---|
545 | readline.parse_and_bind("tab: complete") |
---|
546 | path = input("Enter path to NetCDF file: ").strip() |
---|
547 | |
---|
548 | if not os.path.isfile(path): |
---|
549 | print(f"Error: '{path}' not found.") |
---|
550 | return |
---|
551 | |
---|
552 | ds = Dataset(path, "r") |
---|
553 | var_list = list(ds.variables.keys()) |
---|
554 | if not var_list: |
---|
555 | print("No variables found in file.") |
---|
556 | ds.close() |
---|
557 | return |
---|
558 | |
---|
559 | # Enable interactive mode |
---|
560 | plt.ion() |
---|
561 | |
---|
562 | while True: |
---|
563 | # Enable tab-completion for variable names |
---|
564 | readline.set_completer(make_varname_completer(var_list)) |
---|
565 | readline.parse_and_bind("tab: complete") |
---|
566 | |
---|
567 | print("\nAvailable variables:") |
---|
568 | for name in var_list: |
---|
569 | print(f" - {name}") |
---|
570 | varname = input("\nEnter variable name to plot (or 'q' to quit): ").strip() |
---|
571 | if varname.lower() in ("q", "quit", "exit"): |
---|
572 | print("Exiting.") |
---|
573 | break |
---|
574 | if varname not in ds.variables: |
---|
575 | print(f"Variable '{varname}' not found. Try again.") |
---|
576 | continue |
---|
577 | |
---|
578 | # Display dimensions and size |
---|
579 | var = ds.variables[varname] |
---|
580 | dims, shape = var.dimensions, var.shape |
---|
581 | print(f"\nVariable '{varname}' has dimensions:") |
---|
582 | for dim, size in zip(dims, shape): |
---|
583 | print(f" - {dim}: size {size}") |
---|
584 | print() |
---|
585 | |
---|
586 | # Prepare slicing parameters |
---|
587 | time_index = None |
---|
588 | alt_index = None |
---|
589 | avg = False |
---|
590 | extra_indices = {} |
---|
591 | |
---|
592 | # Time index |
---|
593 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
594 | if t_idx is not None: |
---|
595 | if shape[t_idx] > 1: |
---|
596 | while True: |
---|
597 | idx = input(f"Enter time index [1–{shape[t_idx]}] (press Enter for all): ").strip() |
---|
598 | if idx == '': |
---|
599 | time_index = None |
---|
600 | break |
---|
601 | if idx.isdigit(): |
---|
602 | i = int(idx) |
---|
603 | if 1 <= i <= shape[t_idx]: |
---|
604 | time_index = i - 1 |
---|
605 | break |
---|
606 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
607 | else: |
---|
608 | time_index = 0 |
---|
609 | |
---|
610 | # Altitude index |
---|
611 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
612 | if a_idx is not None: |
---|
613 | if shape[a_idx] > 1: |
---|
614 | while True: |
---|
615 | idx = input(f"Enter altitude index [1–{shape[a_idx]}] (press Enter for all): ").strip() |
---|
616 | if idx == '': |
---|
617 | alt_index = None |
---|
618 | break |
---|
619 | if idx.isdigit(): |
---|
620 | i = int(idx) |
---|
621 | if 1 <= i <= shape[a_idx]: |
---|
622 | alt_index = i - 1 |
---|
623 | break |
---|
624 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
625 | else: |
---|
626 | alt_index = 0 |
---|
627 | |
---|
628 | # Average over latitude? |
---|
629 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
630 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
631 | if (t_idx is not None and lat_idx is not None and lon_idx is not None and |
---|
632 | shape[t_idx] > 1 and shape[lat_idx] > 1 and shape[lon_idx] > 1): |
---|
633 | resp = input("Average over latitude and plot lon vs time? [y/n]: ").strip().lower() |
---|
634 | avg = (resp == 'y') |
---|
635 | |
---|
636 | # Other dimensions |
---|
637 | for i, dname in enumerate(dims): |
---|
638 | if i in (t_idx, a_idx): |
---|
639 | continue |
---|
640 | size = shape[i] |
---|
641 | if size == 1: |
---|
642 | extra_indices[dname] = 0 |
---|
643 | continue |
---|
644 | while True: |
---|
645 | idx = input(f"Enter index [1–{size}] for '{dname}' (press Enter for all): ").strip() |
---|
646 | if idx == '': |
---|
647 | # keep all values |
---|
648 | break |
---|
649 | if idx.isdigit(): |
---|
650 | j = int(idx) |
---|
651 | if 1 <= j <= size: |
---|
652 | extra_indices[dname] = j - 1 |
---|
653 | break |
---|
654 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
655 | |
---|
656 | # Plot the variable |
---|
657 | plot_variable( |
---|
658 | ds, varname, |
---|
659 | time_index = time_index, |
---|
660 | alt_index = alt_index, |
---|
661 | colormap = 'jet', |
---|
662 | output_path = None, |
---|
663 | extra_indices = extra_indices, |
---|
664 | avg_lat = avg |
---|
665 | ) |
---|
666 | |
---|
667 | ds.close() |
---|
668 | |
---|
669 | |
---|
670 | def visualize_variable_cli(nc_file, varname, time_index, alt_index, |
---|
671 | colormap, output_path, extra_json, avg_lat): |
---|
672 | """ |
---|
673 | Command-line mode: visualize directly, parsing the --extra-indices argument (JSON string). |
---|
674 | """ |
---|
675 | if not os.path.isfile(nc_file): |
---|
676 | print(f"Error: '{nc_file}' not found.") |
---|
677 | return |
---|
678 | ds = Dataset(nc_file, "r") |
---|
679 | if varname not in ds.variables: |
---|
680 | print(f"Variable '{varname}' not in file.") |
---|
681 | ds.close() |
---|
682 | return |
---|
683 | |
---|
684 | # Display dimensions and size |
---|
685 | dims = ds.variables[varname].dimensions |
---|
686 | shape = ds.variables[varname].shape |
---|
687 | print(f"\nVariable '{varname}' has {len(dims)} dimensions:") |
---|
688 | for name, size in zip(dims, shape): |
---|
689 | print(f" - {name}: size {size}") |
---|
690 | print() |
---|
691 | |
---|
692 | # Special case: time-only → plot directly |
---|
693 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
694 | if ( |
---|
695 | t_idx is not None and shape[t_idx] > 1 and |
---|
696 | all(shape[i] == 1 for i in range(len(dims)) if i != t_idx) |
---|
697 | ): |
---|
698 | print("Detected single-point spatial dims; plotting time series…") |
---|
699 | var_obj = ds.variables[varname] |
---|
700 | data = var_obj[:].squeeze() |
---|
701 | time_var = find_coord_var(ds, TIME_DIMS) |
---|
702 | if time_var: |
---|
703 | tvals = ds.variables[time_var][:] |
---|
704 | else: |
---|
705 | tvals = np.arange(data.shape[0]) |
---|
706 | if hasattr(data, "mask"): |
---|
707 | data = np.where(data.mask, np.nan, data.data) |
---|
708 | if hasattr(tvals, "mask"): |
---|
709 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
710 | plt.figure() |
---|
711 | plt.plot(tvals, data, marker="o") |
---|
712 | plt.xlabel(time_var or "Time Index") |
---|
713 | plt.ylabel(varname + (f" ({var_obj.units})" if hasattr(var_obj, "units") else "")) |
---|
714 | plt.title(f"{varname} vs {time_var or 'Index'}") |
---|
715 | if output_path: |
---|
716 | plt.savefig(output_path, bbox_inches="tight") |
---|
717 | print(f"Saved to {output_path}") |
---|
718 | else: |
---|
719 | plt.show() |
---|
720 | ds.close() |
---|
721 | return |
---|
722 | |
---|
723 | # if --avg-lat but lat/lon/Time not compatible → disable |
---|
724 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
725 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
726 | if avg_lat and not ( |
---|
727 | t_idx is not None and shape[t_idx] > 1 and |
---|
728 | lat_idx is not None and shape[lat_idx] > 1 and |
---|
729 | lon_idx is not None and shape[lon_idx] > 1 |
---|
730 | ): |
---|
731 | print("Note: disabling --avg-lat (requires Time, lat & lon each >1).") |
---|
732 | avg_lat = False |
---|
733 | |
---|
734 | # Parse extra indices JSON |
---|
735 | extra = {} |
---|
736 | if extra_json: |
---|
737 | try: |
---|
738 | parsed = json.loads(extra_json) |
---|
739 | for k, v in parsed.items(): |
---|
740 | if isinstance(v, int): |
---|
741 | if "slope" in k.lower(): |
---|
742 | extra[k] = v - 1 |
---|
743 | else: |
---|
744 | extra[k] = v |
---|
745 | except: |
---|
746 | print("Warning: bad extra-indices.") |
---|
747 | |
---|
748 | plot_variable(ds, varname, time_index, alt_index, |
---|
749 | colormap, output_path, extra, avg_lat) |
---|
750 | ds.close() |
---|
751 | |
---|
752 | |
---|
753 | def main(): |
---|
754 | parser = argparse.ArgumentParser() |
---|
755 | parser.add_argument("nc_file", nargs="?", help="NetCDF file (omit for interactive)") |
---|
756 | parser.add_argument("-v", "--variable", help="Variable name") |
---|
757 | parser.add_argument("-t", "--time-index", type=int, help="Time index (0-based)") |
---|
758 | parser.add_argument("-a", "--alt-index", type=int, help="Altitude index (0-based)") |
---|
759 | parser.add_argument("-c", "--cmap", default="jet", help="Colormap") |
---|
760 | parser.add_argument("--avg-lat", action="store_true", |
---|
761 | help="Average over latitude (time × lon heatmap)") |
---|
762 | parser.add_argument("-o", "--output", help="Save figure path") |
---|
763 | parser.add_argument("-e", "--extra-indices", help="JSON for other dims") |
---|
764 | args = parser.parse_args() |
---|
765 | |
---|
766 | if args.nc_file and args.variable: |
---|
767 | visualize_variable_cli( |
---|
768 | args.nc_file, args.variable, |
---|
769 | args.time_index, args.alt_index, |
---|
770 | args.cmap, args.output, |
---|
771 | args.extra_indices, args.avg_lat |
---|
772 | ) |
---|
773 | else: |
---|
774 | visualize_variable_interactive(args.nc_file) |
---|
775 | |
---|
776 | |
---|
777 | if __name__ == "__main__": |
---|
778 | main() |
---|
779 | |
---|