[3783] | 1 | #!/usr/bin/env python3 |
---|
[3459] | 2 | ############################################################## |
---|
| 3 | ### Python script to visualize a variable in a NetCDF file ### |
---|
| 4 | ############################################################## |
---|
| 5 | |
---|
[3783] | 6 | """ |
---|
[3798] | 7 | This script can display any numeric variable from a NetCDF file. |
---|
| 8 | It supports the following cases: |
---|
[3818] | 9 | - Scalar output |
---|
| 10 | - 1D time series |
---|
| 11 | - 1D vertical profiles |
---|
[3798] | 12 | - 2D latitude/longitude map |
---|
[3818] | 13 | - 2D cross-sections |
---|
[3808] | 14 | - Optionally average over latitude and plot longitude vs. time heatmap |
---|
[3818] | 15 | - Optionally display polar stereographic view of 2D maps |
---|
| 16 | - Optionally display 3D globe view of 2D maps |
---|
[3459] | 17 | |
---|
[3818] | 18 | Automatic setup from the environment file found in the "LMDZ.MARS/util" folder: |
---|
| 19 | 1. Make sure Conda is installed. |
---|
| 20 | 2. In terminal, navigate to the folder containing this script. |
---|
| 21 | 4. Create the environment: |
---|
| 22 | conda env create -f display_netcdf.yml |
---|
| 23 | 5. Activate the environment: |
---|
| 24 | conda activate my_env |
---|
| 25 | 6. Run the script: |
---|
| 26 | python display_netcdf.py |
---|
| 27 | |
---|
[3783] | 28 | Usage: |
---|
| 29 | 1) Command-line mode: |
---|
[3818] | 30 | python display_netcdf.py /path/to/your_file.nc --variable VAR_NAME [options] |
---|
| 31 | Options: |
---|
[3810] | 32 | --variable : Name of the variable to visualize. |
---|
| 33 | --time-index : Index along the Time dimension (0-based, ignored for purely 1D time series). |
---|
| 34 | --alt-index : Index along the altitude dimension (0-based), if present. |
---|
| 35 | --cmap : Matplotlib colormap (default: "jet"). |
---|
| 36 | --avg-lat : Average over latitude and plot longitude vs. time heatmap. |
---|
| 37 | --slice-lon-index : Fixed longitude index for altitude×longitude cross-section. |
---|
| 38 | --slice-lat-index : Fixed latitude index for altitude×latitude cross-section. |
---|
| 39 | --show-topo : Overlay MOLA topography on lat/lon maps. |
---|
[3818] | 40 | --show-polar : |
---|
| 41 | --show-3d : |
---|
[3810] | 42 | --output : If provided, save the figure to this filename instead of displaying. |
---|
| 43 | --extra-indices : JSON string to fix indices for any other dimensions. |
---|
| 44 | For dimensions with "slope", use 1-based numbering here. |
---|
| 45 | Example: '{"nslope": 1, "physical_points": 3}' |
---|
[3798] | 46 | |
---|
| 47 | 2) Interactive mode: |
---|
[3783] | 48 | python display_netcdf.py |
---|
[3818] | 49 | The script will prompt for everything. |
---|
[3783] | 50 | """ |
---|
| 51 | |
---|
[3459] | 52 | import os |
---|
[3783] | 53 | import sys |
---|
| 54 | import glob |
---|
[3459] | 55 | import readline |
---|
[3783] | 56 | import argparse |
---|
[3798] | 57 | import json |
---|
[3783] | 58 | import numpy as np |
---|
| 59 | import matplotlib.pyplot as plt |
---|
[3810] | 60 | import matplotlib.path as mpath |
---|
[3818] | 61 | import matplotlib.colors as mcolors |
---|
[3810] | 62 | import cartopy.crs as ccrs |
---|
[3818] | 63 | import pandas as pd |
---|
[3459] | 64 | from netCDF4 import Dataset |
---|
| 65 | |
---|
[3818] | 66 | # Attempt vedo import early for global use |
---|
| 67 | try: |
---|
| 68 | import vedo |
---|
| 69 | from vedo import * |
---|
| 70 | from scipy.interpolate import RegularGridInterpolator |
---|
| 71 | vedo_available = True |
---|
| 72 | except ImportError: |
---|
| 73 | vedo_available = False |
---|
| 74 | |
---|
[3810] | 75 | # Constants for recognized dimension names |
---|
[3798] | 76 | TIME_DIMS = ("Time", "time", "time_counter") |
---|
| 77 | ALT_DIMS = ("altitude",) |
---|
| 78 | LAT_DIMS = ("latitude", "lat") |
---|
| 79 | LON_DIMS = ("longitude", "lon") |
---|
[3783] | 80 | |
---|
[3818] | 81 | # Paths for MOLA data |
---|
| 82 | MOLA_NPY = 'MOLA_1px_per_deg.npy' |
---|
| 83 | MOLA_CSV = 'molaTeam_contour_31rgb_steps.csv' |
---|
| 84 | |
---|
[3810] | 85 | # Attempt to load MOLA topography |
---|
| 86 | try: |
---|
[3839] | 87 | MOLA = np.load('MOLA_1px_per_deg.npy') # shape (nlat, nlon) at 1° per pixel: lat from -90 to 90, lon from 0 to 360 |
---|
[3810] | 88 | nlat, nlon = MOLA.shape |
---|
| 89 | topo_lats = np.linspace(90 - 0.5, -90 + 0.5, nlat) |
---|
| 90 | topo_lons = np.linspace(-180 + 0.5, 180 - 0.5, nlon) |
---|
| 91 | topo_lon2d, topo_lat2d = np.meshgrid(topo_lons, topo_lats) |
---|
| 92 | topo_loaded = True |
---|
| 93 | except Exception as e: |
---|
[3818] | 94 | print(f"Warning: '{MOLA_NPY}' not found: {e}") |
---|
[3810] | 95 | topo_loaded = False |
---|
[3798] | 96 | |
---|
[3810] | 97 | |
---|
[3818] | 98 | # Attempt to load contour color table |
---|
| 99 | if os.path.isfile(MOLA_CSV): |
---|
| 100 | color_table = pd.read_csv(MOLA_CSV) |
---|
| 101 | csv_loaded = True |
---|
| 102 | else: |
---|
| 103 | print(f"Warning: '{MOLA_CSV}' not found. 3D view colors disabled.") |
---|
| 104 | csv_loaded = False |
---|
| 105 | |
---|
| 106 | |
---|
[3783] | 107 | def complete_filename(text, state): |
---|
| 108 | """ |
---|
[3810] | 109 | Tab-completion for filesystem paths. |
---|
[3783] | 110 | """ |
---|
| 111 | if "*" not in text: |
---|
| 112 | pattern = text + "*" |
---|
| 113 | else: |
---|
| 114 | pattern = text |
---|
| 115 | matches = glob.glob(os.path.expanduser(pattern)) |
---|
| 116 | matches = [m + "/" if os.path.isdir(m) else m for m in matches] |
---|
[3459] | 117 | try: |
---|
| 118 | return matches[state] |
---|
| 119 | except IndexError: |
---|
| 120 | return None |
---|
| 121 | |
---|
[3783] | 122 | |
---|
| 123 | def make_varname_completer(varnames): |
---|
| 124 | """ |
---|
[3810] | 125 | Returns a readline completer for variable names. |
---|
[3783] | 126 | """ |
---|
[3459] | 127 | def completer(text, state): |
---|
[3783] | 128 | options = [name for name in varnames if name.startswith(text)] |
---|
| 129 | try: |
---|
[3459] | 130 | return options[state] |
---|
[3783] | 131 | except IndexError: |
---|
[3459] | 132 | return None |
---|
| 133 | return completer |
---|
| 134 | |
---|
[3783] | 135 | |
---|
| 136 | def find_dim_index(dims, candidates): |
---|
| 137 | """ |
---|
| 138 | Search through dims tuple for any name in candidates. |
---|
| 139 | Returns the index if found, else returns None. |
---|
| 140 | """ |
---|
| 141 | for idx, dim in enumerate(dims): |
---|
| 142 | for cand in candidates: |
---|
| 143 | if cand.lower() == dim.lower(): |
---|
| 144 | return idx |
---|
| 145 | return None |
---|
| 146 | |
---|
| 147 | |
---|
| 148 | def find_coord_var(dataset, candidates): |
---|
| 149 | """ |
---|
| 150 | Among dataset variables, return the first variable whose name matches any candidate. |
---|
| 151 | Returns None if none found. |
---|
| 152 | """ |
---|
| 153 | for name in dataset.variables: |
---|
| 154 | for cand in candidates: |
---|
| 155 | if cand.lower() == name.lower(): |
---|
| 156 | return name |
---|
| 157 | return None |
---|
| 158 | |
---|
| 159 | |
---|
[3810] | 160 | def overlay_topography(ax, transform, levels=10): |
---|
| 161 | """ |
---|
| 162 | Overlay MOLA topography contours onto a given GeoAxes. |
---|
| 163 | """ |
---|
| 164 | if not topo_loaded: |
---|
| 165 | return |
---|
| 166 | ax.contour( |
---|
| 167 | topo_lon2d, topo_lat2d, MOLA, |
---|
| 168 | levels=levels, |
---|
| 169 | linewidths=0.5, |
---|
| 170 | colors='black', |
---|
| 171 | transform=transform |
---|
| 172 | ) |
---|
| 173 | |
---|
| 174 | |
---|
[3839] | 175 | def attach_format_coord(ax, mat, x, y, is_pcolormesh=True): |
---|
| 176 | """ |
---|
| 177 | Attach a format_coord function to the axes to display x, y, and value at cursor. |
---|
| 178 | Works for both pcolormesh and imshow style grids. |
---|
| 179 | """ |
---|
| 180 | # Determine dimensions |
---|
| 181 | if mat.ndim == 2: |
---|
| 182 | ny, nx = mat.shape |
---|
| 183 | elif mat.ndim == 3 and mat.shape[2] in (3, 4): |
---|
| 184 | ny, nx, nc = mat.shape |
---|
| 185 | else: |
---|
| 186 | raise ValueError(f"Unsupported mat shape {mat.shape}") |
---|
| 187 | # Edges or extents |
---|
| 188 | if is_pcolormesh: |
---|
| 189 | xedges, yedges = x, y |
---|
| 190 | else: |
---|
| 191 | x0, x1 = x.min(), x.max() |
---|
| 192 | y0, y1 = y.min(), y.max() |
---|
| 193 | |
---|
| 194 | def format_coord(xp, yp): |
---|
| 195 | # Map to indices |
---|
| 196 | if is_pcolormesh: |
---|
| 197 | col = np.searchsorted(xedges, xp) - 1 |
---|
| 198 | row = np.searchsorted(yedges, yp) - 1 |
---|
| 199 | else: |
---|
| 200 | col = int((xp - x0) / (x1 - x0) * nx) |
---|
| 201 | row = int((yp - y0) / (y1 - y0) * ny) |
---|
| 202 | # Within bounds? |
---|
| 203 | if 0 <= row < ny and 0 <= col < nx: |
---|
| 204 | if mat.ndim == 2: |
---|
| 205 | v = mat[row, col] |
---|
| 206 | return f"x={xp:.3g}, y={yp:.3g}, val={v:.3g}" |
---|
| 207 | else: |
---|
| 208 | vals = mat[row, col] |
---|
| 209 | txt = ", ".join(f"{vv:.3g}" for vv in vals[:3]) |
---|
| 210 | return f"x={xp:.3g}, y={yp:.3g}, val=({txt})" |
---|
| 211 | return f"x={xp:.3g}, y={yp:.3g}" |
---|
| 212 | |
---|
| 213 | ax.format_coord = format_coord |
---|
| 214 | |
---|
| 215 | |
---|
[3810] | 216 | def plot_polar_views(lon2d, lat2d, data2d, colormap, varname, units=None, topo_overlay=True): |
---|
| 217 | """ |
---|
| 218 | Plot two polar‐stereographic views (north & south) of the same data. |
---|
| 219 | """ |
---|
| 220 | figs = [] # collect figure handles |
---|
| 221 | |
---|
| 222 | for pole in ("north", "south"): |
---|
| 223 | # Choose projection and extent for each pole |
---|
| 224 | if pole == "north": |
---|
| 225 | proj = ccrs.NorthPolarStereo(central_longitude=180) |
---|
| 226 | extent = [-180, 180, 60, 90] |
---|
| 227 | else: |
---|
| 228 | proj = ccrs.SouthPolarStereo(central_longitude=180) |
---|
| 229 | extent = [-180, 180, -90, -60] |
---|
| 230 | |
---|
| 231 | # Create figure and GeoAxes |
---|
| 232 | fig = plt.figure(figsize=(8, 6)) |
---|
| 233 | ax = fig.add_subplot(1, 1, 1, projection=proj, aspect=True) |
---|
| 234 | ax.set_global() |
---|
| 235 | ax.set_extent(extent, ccrs.PlateCarree()) |
---|
| 236 | |
---|
| 237 | # Draw circular boundary |
---|
| 238 | theta = np.linspace(0, 2 * np.pi, 100) |
---|
| 239 | center, radius = [0.5, 0.5], 0.5 |
---|
| 240 | verts = np.vstack([np.sin(theta), np.cos(theta)]).T |
---|
| 241 | circle = mpath.Path(verts * radius + center) |
---|
| 242 | ax.set_boundary(circle, transform=ax.transAxes) |
---|
| 243 | |
---|
| 244 | # Add meridians/parallels |
---|
| 245 | gl = ax.gridlines( |
---|
| 246 | draw_labels=True, |
---|
| 247 | color='k', |
---|
| 248 | xlocs=range(-180, 181, 30), |
---|
| 249 | ylocs=range(-90, 91, 10), |
---|
| 250 | linestyle='--', |
---|
| 251 | linewidth=0.5 |
---|
| 252 | ) |
---|
| 253 | |
---|
| 254 | # Plot data in PlateCarree projection |
---|
| 255 | cf = ax.contourf( |
---|
| 256 | lon2d, lat2d, data2d, |
---|
| 257 | levels=100, |
---|
| 258 | cmap=colormap, |
---|
| 259 | transform=ccrs.PlateCarree() |
---|
| 260 | ) |
---|
| 261 | |
---|
| 262 | # Optionally overlay MOLA topography |
---|
| 263 | if topo_overlay: |
---|
| 264 | overlay_topography(ax, transform=ccrs.PlateCarree(), levels=20) |
---|
| 265 | |
---|
| 266 | # Colorbar and title |
---|
| 267 | cbar = fig.colorbar(cf, ax=ax, pad=0.1) |
---|
| 268 | label = varname + (f" ({units})" if units else "") |
---|
| 269 | cbar.set_label(label) |
---|
[3824] | 270 | ax.set_title(f"{varname} — {pole.capitalize()} polar region", pad=20, y=1.05, fontsize=12, fontweight='bold') |
---|
[3810] | 271 | |
---|
| 272 | figs.append(fig) |
---|
| 273 | |
---|
| 274 | # Show both figures |
---|
| 275 | plt.show() |
---|
| 276 | |
---|
[3818] | 277 | |
---|
| 278 | def plot_3D_globe(lon2d, lat2d, data2d, colormap, varname, units=None): |
---|
| 279 | """ |
---|
| 280 | Plot a 3D globe view of the data using vedo, with surface coloring based on data2d |
---|
| 281 | and overlaid contour lines from MOLA topography. |
---|
| 282 | """ |
---|
| 283 | if not vedo_available: |
---|
| 284 | print("3D view skipped: vedo missing.") |
---|
| 285 | return |
---|
| 286 | if not csv_loaded: |
---|
| 287 | print("3D view skipped: color table missing.") |
---|
| 288 | return |
---|
| 289 | |
---|
| 290 | # Prepare MOLA grid |
---|
| 291 | nlat, nlon = MOLA.shape |
---|
| 292 | lats = np.linspace(90, -90, nlat) |
---|
| 293 | lons = np.linspace(-180, 180, nlon) |
---|
| 294 | lon_grid, lat_grid = np.meshgrid(lons, lats) |
---|
| 295 | |
---|
| 296 | # Interpolate data2d onto MOLA grid |
---|
| 297 | lat_data = np.linspace(-90, 90, data2d.shape[0]) |
---|
| 298 | lon_data = np.linspace(-180, 180, data2d.shape[1]) |
---|
| 299 | interp2d = RegularGridInterpolator((lat_data, lon_data), data2d, |
---|
| 300 | bounds_error=False, fill_value=None) |
---|
| 301 | newdata2d = interp2d((lat_grid, lon_grid)) |
---|
| 302 | |
---|
| 303 | # Generate contour lines from MOLA |
---|
| 304 | cs = plt.contour(lon_grid, lat_grid, MOLA, levels=10, linewidths=0) |
---|
| 305 | plt.clf() |
---|
| 306 | contour_lines = [] |
---|
| 307 | radius = 3389500 # Mars average radius [m] |
---|
| 308 | for segs, level in zip(cs.allsegs, cs.levels): |
---|
| 309 | for verts in segs: |
---|
| 310 | lon_c = verts[:, 0] |
---|
| 311 | lat_c = verts[:, 1] |
---|
| 312 | phi_c = np.radians(90 - lat_c) |
---|
| 313 | theta_c = np.radians(lon_c) |
---|
| 314 | elev = RegularGridInterpolator((lats, lons), MOLA, |
---|
| 315 | bounds_error=False, |
---|
| 316 | fill_value=0.0)((lat_c, lon_c)) |
---|
| 317 | r_cont = radius + elev * 10 |
---|
| 318 | x_c = r_cont * np.sin(phi_c) * np.cos(theta_c) * 1.002 |
---|
| 319 | y_c = r_cont * np.sin(phi_c) * np.sin(theta_c) * 1.002 |
---|
| 320 | z_c = r_cont * np.cos(phi_c) * 1.002 |
---|
| 321 | pts = np.column_stack([x_c, y_c, z_c]) |
---|
| 322 | if pts.shape[0] > 1: |
---|
| 323 | contour_lines.append(Line(pts, c='k', lw=0.5)) |
---|
| 324 | |
---|
| 325 | # Create sphere surface mesh |
---|
| 326 | phi = np.deg2rad(90 - lat_grid) |
---|
| 327 | theta = np.deg2rad(lon_grid) |
---|
| 328 | r = radius + MOLA * 10 |
---|
| 329 | x = r * np.sin(phi) * np.cos(theta) |
---|
| 330 | y = r * np.sin(phi) * np.sin(theta) |
---|
| 331 | z = r * np.cos(phi) |
---|
| 332 | pts = np.stack([x.ravel(), y.ravel(), z.ravel()], axis=1) |
---|
| 333 | |
---|
| 334 | # Build mesh faces |
---|
| 335 | faces = [] |
---|
| 336 | for i in range(nlat - 1): |
---|
| 337 | for j in range(nlon - 1): |
---|
| 338 | p0 = i * nlon + j |
---|
| 339 | p1 = p0 + 1 |
---|
| 340 | p2 = p0 + nlon |
---|
| 341 | p3 = p2 + 1 |
---|
| 342 | faces.extend([(p0, p2, p1), (p1, p2, p3)]) |
---|
| 343 | |
---|
| 344 | mesh = Mesh([pts, faces]) |
---|
| 345 | mesh.cmap(colormap, newdata2d.ravel()) |
---|
| 346 | mesh.add_scalarbar(title=varname + (f' [{units}]' if units else ''), c='white') |
---|
| 347 | mesh.lighting('default') |
---|
| 348 | |
---|
| 349 | # Geographic grid lines |
---|
| 350 | meridians, parallels, labels = [], [], [] |
---|
| 351 | zero_lon_offset = radius * 0.03 |
---|
| 352 | for lon in range(-150, 181, 30): |
---|
| 353 | lat_line = np.linspace(-90, 90, nlat) |
---|
| 354 | lon_line = np.full_like(lat_line, lon) |
---|
| 355 | phi = np.deg2rad(90 - lat_line) |
---|
| 356 | theta = np.deg2rad(lon_line) |
---|
| 357 | elev = RegularGridInterpolator((lats, lons), MOLA)((lat_line, lon_line)) |
---|
| 358 | rr = radius + elev * 10 |
---|
| 359 | pts_line = np.column_stack([ |
---|
| 360 | rr * np.sin(phi) * np.cos(theta), |
---|
| 361 | rr * np.sin(phi) * np.sin(theta), |
---|
| 362 | rr * np.cos(phi) |
---|
| 363 | ]) * 1.005 |
---|
| 364 | label_pos = pts_line[len(pts_line)//2] |
---|
| 365 | norm = np.linalg.norm(label_pos) |
---|
| 366 | label_pos_out = label_pos / norm * (norm + radius * 0.02) |
---|
| 367 | if lon == 0: |
---|
| 368 | label_pos_out[1] += zero_lon_offset |
---|
| 369 | meridians.append(Line(pts_line, c='k', lw=1)#.flagpole( |
---|
| 370 | #f"{lon}°", |
---|
| 371 | #point=label_pos_out, |
---|
| 372 | #offset=[0, 0, radius * 0.05], |
---|
| 373 | #s=radius*0.01, |
---|
| 374 | #c='yellow' |
---|
| 375 | #).follow_camera() |
---|
| 376 | ) |
---|
| 377 | |
---|
| 378 | for lat in range(-60, 91, 30): |
---|
| 379 | lon_line = np.linspace(-180, 180, nlon) |
---|
| 380 | lat_line = np.full_like(lon_line, lat) |
---|
| 381 | phi = np.deg2rad(90 - lat_line) |
---|
| 382 | theta = np.deg2rad(lon_line) |
---|
| 383 | elev = RegularGridInterpolator((lats, lons), MOLA)((lat_line, lon_line)) |
---|
| 384 | rr = radius + elev * 10 |
---|
| 385 | pts_line = np.column_stack([ |
---|
| 386 | rr * np.sin(phi) * np.cos(theta), |
---|
| 387 | rr * np.sin(phi) * np.sin(theta), |
---|
| 388 | rr * np.cos(phi) |
---|
| 389 | ]) * 1.005 |
---|
| 390 | label_pos = pts_line[len(pts_line)//2] |
---|
| 391 | norm = np.linalg.norm(label_pos) |
---|
| 392 | label_pos_out = label_pos / norm * (norm + radius * 0.02) |
---|
| 393 | parallels.append(Line(pts_line, c='k', lw=1)#.flagpole( |
---|
| 394 | #f"{lat}°", |
---|
| 395 | #point=label_pos_out, |
---|
| 396 | #offset=[0, 0, radius * 0.05], |
---|
| 397 | #s=radius*0.01, |
---|
| 398 | #c='yellow' |
---|
| 399 | #).follow_camera() |
---|
| 400 | ) |
---|
| 401 | |
---|
| 402 | # Create plotter |
---|
[3824] | 403 | plotter = Plotter(title="3D globe view", bg="bb", axes=0) |
---|
[3818] | 404 | |
---|
| 405 | # Configure camera |
---|
| 406 | cam_dist = radius * 3 |
---|
| 407 | plotter.camera.SetPosition([cam_dist, 0, 0]) |
---|
| 408 | plotter.camera.SetFocalPoint([0, 0, 0]) |
---|
| 409 | plotter.camera.SetViewUp([0, 0, 1]) |
---|
| 410 | |
---|
| 411 | # Show the globe |
---|
| 412 | plotter.show(mesh, *contour_lines, *meridians, *parallels) |
---|
| 413 | |
---|
| 414 | |
---|
[3808] | 415 | def plot_variable(dataset, varname, time_index=None, alt_index=None, |
---|
| 416 | colormap="jet", output_path=None, extra_indices=None, |
---|
| 417 | avg_lat=False): |
---|
[3783] | 418 | """ |
---|
[3808] | 419 | Core plotting logic: reads the variable, handles masks, |
---|
| 420 | determines dimensionality, and creates the appropriate plot: |
---|
| 421 | - 1D time series |
---|
| 422 | - 1D profiles or physical_points maps |
---|
| 423 | - 2D lat×lon or generic 2D |
---|
| 424 | - Time×lon heatmap if avg_lat=True |
---|
| 425 | - Scalar printing |
---|
[3783] | 426 | """ |
---|
| 427 | var = dataset.variables[varname] |
---|
[3808] | 428 | dims = var.dimensions |
---|
[3783] | 429 | |
---|
[3808] | 430 | # Read full data |
---|
[3459] | 431 | try: |
---|
[3783] | 432 | data_full = var[:] |
---|
| 433 | except Exception as e: |
---|
[3808] | 434 | print(f"Error: Cannot read data for '{varname}': {e}") |
---|
[3459] | 435 | return |
---|
[3783] | 436 | if hasattr(data_full, "mask"): |
---|
| 437 | data_full = np.where(data_full.mask, np.nan, data_full.data) |
---|
| 438 | |
---|
[3839] | 439 | # If Time and altitude are both present and neither indexed, |
---|
| 440 | # and every other dim has size 1: |
---|
| 441 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
| 442 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
| 443 | shape = var.shape |
---|
| 444 | if (t_idx is not None and a_idx is not None |
---|
| 445 | and time_index is None and alt_index is None |
---|
| 446 | and all(size == 1 for i, size in enumerate(shape) if i not in (t_idx, a_idx))): |
---|
| 447 | |
---|
| 448 | # Build a slicer that keeps Time & altitude, drops other singletons |
---|
| 449 | slicer = [0] * len(dims) |
---|
| 450 | slicer[t_idx] = slice(None) |
---|
| 451 | slicer[a_idx] = slice(None) |
---|
| 452 | data2d = data_full[tuple(slicer)] # shape (ntime, nalt) |
---|
| 453 | |
---|
| 454 | # Coordinate arrays |
---|
| 455 | tvar = find_coord_var(dataset, TIME_DIMS) |
---|
| 456 | avar = find_coord_var(dataset, ALT_DIMS) |
---|
| 457 | tvals = dataset.variables[tvar][:] |
---|
| 458 | avals = dataset.variables[avar][:] |
---|
| 459 | |
---|
| 460 | # Unmask if necessary |
---|
| 461 | if hasattr(tvals, "mask"): |
---|
| 462 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
| 463 | if hasattr(avals, "mask"): |
---|
| 464 | avals = np.where(avals.mask, np.nan, avals.data) |
---|
| 465 | |
---|
| 466 | # Plot heatmap with x=time, y=altitude |
---|
| 467 | fig, ax = plt.subplots(figsize=(10, 6)) |
---|
| 468 | T, A = np.meshgrid(tvals, avals) |
---|
| 469 | im = ax.pcolormesh( |
---|
| 470 | T, A, data2d.T, |
---|
| 471 | shading="auto", cmap=colormap |
---|
| 472 | ) |
---|
| 473 | dt = tvals[1] - tvals[0] |
---|
| 474 | da = avals[1] - avals[0] |
---|
| 475 | x_edges = np.concatenate([tvals - dt/2, [tvals[-1] + dt/2]]) |
---|
| 476 | y_edges = np.concatenate([avals - da/2, [avals[-1] + da/2]]) |
---|
| 477 | attach_format_coord(ax, data2d.T, x_edges, y_edges, is_pcolormesh=True) |
---|
| 478 | ax.set_xlabel(tvar) |
---|
| 479 | ax.set_ylabel(avar) |
---|
| 480 | cbar = fig.colorbar(im, ax=ax) |
---|
| 481 | cbar.set_label(varname + (f" ({getattr(var, 'units','')})")) |
---|
| 482 | ax.set_title(f"{varname} — {avar} vs {tvar}", fontweight="bold") |
---|
| 483 | |
---|
| 484 | if output_path: |
---|
| 485 | fig.savefig(output_path, bbox_inches="tight") |
---|
| 486 | print(f"Saved to {output_path}") |
---|
| 487 | else: |
---|
| 488 | plt.show() |
---|
| 489 | return |
---|
| 490 | |
---|
[3808] | 491 | # Pure 1D time series |
---|
[3798] | 492 | if len(dims) == 1 and find_dim_index(dims, TIME_DIMS) is not None: |
---|
[3808] | 493 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
| 494 | tvals = (dataset.variables[time_var][:] if time_var |
---|
| 495 | else np.arange(data_full.shape[0])) |
---|
| 496 | if hasattr(tvals, "mask"): |
---|
| 497 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
[3798] | 498 | plt.figure() |
---|
[3808] | 499 | plt.plot(tvals, data_full, marker="o") |
---|
| 500 | plt.xlabel(time_var or "Time Index") |
---|
| 501 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
[3824] | 502 | plt.title(f"{varname} vs {time_var or 'Index'}", fontweight='bold') |
---|
[3798] | 503 | if output_path: |
---|
[3808] | 504 | plt.savefig(output_path, bbox_inches="tight") |
---|
| 505 | print(f"Saved to {output_path}") |
---|
[3798] | 506 | else: |
---|
| 507 | plt.show() |
---|
| 508 | return |
---|
| 509 | |
---|
[3808] | 510 | # Identify dims |
---|
[3783] | 511 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
| 512 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
| 513 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
[3808] | 514 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
[3783] | 515 | |
---|
[3808] | 516 | # Average over latitude & plot time × lon heatmap |
---|
| 517 | if avg_lat and t_idx is not None and lat_idx is not None and lon_idx is not None: |
---|
[3810] | 518 | # compute mean over lat axis |
---|
[3808] | 519 | data_avg = np.nanmean(data_full, axis=lat_idx) |
---|
[3810] | 520 | # prepare coordinates |
---|
[3808] | 521 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
| 522 | lon_var = find_coord_var(dataset, LON_DIMS) |
---|
| 523 | tvals = dataset.variables[time_var][:] |
---|
| 524 | lons = dataset.variables[lon_var][:] |
---|
| 525 | if hasattr(tvals, "mask"): |
---|
| 526 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
| 527 | if hasattr(lons, "mask"): |
---|
| 528 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
[3839] | 529 | fig, ax = ax.subplots(figsize=(10, 6)) |
---|
| 530 | im = plt.pcolormesh(lons, tvals, data_avg, shading="auto", cmap=colormap) |
---|
| 531 | dx = lons[1] - lons[0] |
---|
| 532 | dy = tvals[1] - tvals[0] |
---|
| 533 | x_edges = np.concatenate([lons - dx/2, [lons[-1] + dx/2]]) |
---|
| 534 | y_edges = np.concatenate([tvals - dy/2, [tvals[-1] + dy/2]]) |
---|
| 535 | attach_format_coord(ax, data_avg.T, x_edges, y_edges, is_pcolormesh=True) |
---|
| 536 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lon_var], 'units', 'deg')})") |
---|
| 537 | ax.set_ylabel(time_var) |
---|
| 538 | cbar = fig.colorbar(im, ax=ax) |
---|
[3808] | 539 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
[3839] | 540 | ax.set_title(f"{varname} averaged over latitude", fontweight='bold') |
---|
[3808] | 541 | if output_path: |
---|
[3839] | 542 | fig.savefig(output_path, bbox_inches="tight") |
---|
[3808] | 543 | print(f"Saved to {output_path}") |
---|
| 544 | else: |
---|
| 545 | plt.show() |
---|
| 546 | return |
---|
| 547 | |
---|
| 548 | # Build slicer for other cases |
---|
[3798] | 549 | slicer = [slice(None)] * len(dims) |
---|
[3783] | 550 | if t_idx is not None: |
---|
| 551 | if time_index is None: |
---|
[3808] | 552 | print("Error: please supply a time index.") |
---|
[3783] | 553 | return |
---|
| 554 | slicer[t_idx] = time_index |
---|
| 555 | if a_idx is not None: |
---|
| 556 | if alt_index is None: |
---|
[3808] | 557 | print("Error: please supply an altitude index.") |
---|
[3783] | 558 | return |
---|
| 559 | slicer[a_idx] = alt_index |
---|
| 560 | |
---|
[3798] | 561 | if extra_indices is None: |
---|
| 562 | extra_indices = {} |
---|
[3808] | 563 | for dn, idx_val in extra_indices.items(): |
---|
| 564 | if dn in dims: |
---|
| 565 | slicer[dims.index(dn)] = idx_val |
---|
[3798] | 566 | |
---|
[3808] | 567 | # Extract slice |
---|
[3783] | 568 | try: |
---|
[3808] | 569 | dslice = data_full[tuple(slicer)] |
---|
[3783] | 570 | except Exception as e: |
---|
[3808] | 571 | print(f"Error slicing '{varname}': {e}") |
---|
[3783] | 572 | return |
---|
| 573 | |
---|
[3808] | 574 | # Scalar |
---|
| 575 | if np.ndim(dslice) == 0: |
---|
| 576 | print(f"Scalar '{varname}': {float(dslice)}") |
---|
[3783] | 577 | return |
---|
| 578 | |
---|
[3808] | 579 | # 1D: vector, profile, or physical_points |
---|
| 580 | if dslice.ndim == 1: |
---|
| 581 | rem = [(i, name) for i, name in enumerate(dims) if slicer[i] == slice(None)] |
---|
| 582 | if rem: |
---|
| 583 | di, dname = rem[0] |
---|
| 584 | # physical_points → interpolated map |
---|
| 585 | if dname.lower() == "physical_points": |
---|
| 586 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
| 587 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
| 588 | if latv and lonv: |
---|
| 589 | lats = dataset.variables[latv][:] |
---|
| 590 | lons = dataset.variables[lonv][:] |
---|
[3810] | 591 | |
---|
| 592 | # Unmask |
---|
[3808] | 593 | if hasattr(lats, "mask"): |
---|
| 594 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
| 595 | if hasattr(lons, "mask"): |
---|
| 596 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
[3810] | 597 | |
---|
| 598 | # Convert radians to degrees if needed |
---|
| 599 | lats_deg = np.round(np.degrees(lats), 6) |
---|
| 600 | lons_deg = np.round(np.degrees(lons), 6) |
---|
| 601 | |
---|
| 602 | # Build regular grid |
---|
| 603 | uniq_lats = np.unique(lats_deg) |
---|
| 604 | uniq_lons = np.unique(lons_deg) |
---|
| 605 | nlon = len(uniq_lons) |
---|
| 606 | |
---|
| 607 | data2d = [] |
---|
| 608 | for lat_val in uniq_lats: |
---|
| 609 | mask = lats_deg == lat_val |
---|
| 610 | slice_vals = dslice[mask] |
---|
| 611 | lons_at_lat = lons_deg[mask] |
---|
| 612 | if len(slice_vals) == 1: |
---|
| 613 | row = np.full(nlon, slice_vals[0]) |
---|
| 614 | else: |
---|
| 615 | order = np.argsort(lons_at_lat) |
---|
| 616 | row = np.full(nlon, np.nan) |
---|
| 617 | row[: len(slice_vals)] = slice_vals[order] |
---|
| 618 | data2d.append(row) |
---|
| 619 | data2d = np.array(data2d) |
---|
| 620 | |
---|
| 621 | # Wrap longitude if needed |
---|
| 622 | if -180.0 in uniq_lons: |
---|
| 623 | idx = np.where(np.isclose(uniq_lons, -180.0))[0][0] |
---|
| 624 | data2d = np.hstack([data2d, data2d[:, [idx]]]) |
---|
| 625 | uniq_lons = np.append(uniq_lons, 180.0) |
---|
| 626 | |
---|
| 627 | # Plot interpolated map |
---|
| 628 | proj = ccrs.PlateCarree() |
---|
| 629 | fig, ax = plt.subplots(subplot_kw=dict(projection=proj), figsize=(8, 6)) |
---|
| 630 | lon2d, lat2d = np.meshgrid(uniq_lons, uniq_lats) |
---|
| 631 | lon_ticks = np.arange(-180, 181, 30) |
---|
| 632 | lat_ticks = np.arange(-90, 91, 30) |
---|
| 633 | ax.set_xticks(lon_ticks, crs=ccrs.PlateCarree()) |
---|
| 634 | ax.set_yticks(lat_ticks, crs=ccrs.PlateCarree()) |
---|
| 635 | ax.tick_params( |
---|
| 636 | axis='x', which='major', |
---|
| 637 | length=4, |
---|
| 638 | direction='out', |
---|
| 639 | pad=2, |
---|
| 640 | labelsize=8 |
---|
| 641 | ) |
---|
| 642 | ax.tick_params( |
---|
| 643 | axis='y', which='major', |
---|
| 644 | length=4, |
---|
| 645 | direction='out', |
---|
| 646 | pad=2, |
---|
| 647 | labelsize=8 |
---|
| 648 | ) |
---|
| 649 | cf = ax.contourf( |
---|
| 650 | lon2d, lat2d, data2d, |
---|
| 651 | levels=100, |
---|
| 652 | cmap=colormap, |
---|
| 653 | transform=proj |
---|
| 654 | ) |
---|
| 655 | |
---|
| 656 | # Overlay MOLA topography |
---|
| 657 | overlay_topography(ax, transform=proj, levels=10) |
---|
| 658 | |
---|
| 659 | # Colorbar & labels |
---|
| 660 | cbar = fig.colorbar(cf, ax=ax, pad=0.02) |
---|
[3808] | 661 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
[3824] | 662 | ax.set_title(f"{varname} (interpolated map over physical_points)", fontweight='bold') |
---|
[3810] | 663 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
| 664 | ax.set_ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
| 665 | |
---|
| 666 | # Prompt for polar-stereo views if interactive |
---|
[3818] | 667 | if input("Display polar-stereo views? [y/n]: ").strip().lower() == "y": |
---|
[3810] | 668 | units = getattr(dataset.variables[varname], "units", None) |
---|
| 669 | plot_polar_views(lon2d, lat2d, data2d, colormap, varname, units) |
---|
| 670 | |
---|
[3818] | 671 | # Prompt for 3D globe view if interactive |
---|
| 672 | if input("Display 3D globe view? [y/n]: ").strip().lower() == "y": |
---|
| 673 | units = getattr(dataset.variables[varname], "units", None) |
---|
| 674 | plot_3D_globe(lon2d, lat2d, data2d, colormap, varname, units) |
---|
| 675 | |
---|
[3808] | 676 | if output_path: |
---|
| 677 | plt.savefig(output_path, bbox_inches="tight") |
---|
| 678 | print(f"Saved to {output_path}") |
---|
| 679 | else: |
---|
| 680 | plt.show() |
---|
| 681 | return |
---|
| 682 | # vertical profile? |
---|
| 683 | coord = None |
---|
[3798] | 684 | if dname.lower() == "subsurface_layers" and "soildepth" in dataset.variables: |
---|
[3808] | 685 | coord = "soildepth" |
---|
[3798] | 686 | elif dname in dataset.variables: |
---|
[3808] | 687 | coord = dname |
---|
| 688 | if coord: |
---|
| 689 | coords = dataset.variables[coord][:] |
---|
| 690 | if hasattr(coords, "mask"): |
---|
| 691 | coords = np.where(coords.mask, np.nan, coords.data) |
---|
[3783] | 692 | plt.figure() |
---|
[3808] | 693 | plt.plot(dslice, coords, marker="o") |
---|
[3798] | 694 | if dname.lower() == "subsurface_layers": |
---|
| 695 | plt.gca().invert_yaxis() |
---|
[3808] | 696 | plt.xlabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
| 697 | plt.ylabel(coord + (f" ({dataset.variables[coord].units})" if hasattr(dataset.variables[coord], "units") else "")) |
---|
[3824] | 698 | plt.title(f"{varname} vs {coord}", fontweight='bold') |
---|
[3798] | 699 | if output_path: |
---|
[3808] | 700 | plt.savefig(output_path, bbox_inches="tight") |
---|
| 701 | print(f"Saved to {output_path}") |
---|
[3798] | 702 | else: |
---|
| 703 | plt.show() |
---|
| 704 | return |
---|
[3808] | 705 | # generic 1D |
---|
| 706 | plt.figure() |
---|
| 707 | plt.plot(dslice, marker="o") |
---|
| 708 | plt.xlabel("Index") |
---|
| 709 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
[3824] | 710 | plt.title(f"{varname} (1D)", fontweight='bold') |
---|
[3808] | 711 | if output_path: |
---|
| 712 | plt.savefig(output_path, bbox_inches="tight") |
---|
| 713 | print(f"Saved to {output_path}") |
---|
[3798] | 714 | else: |
---|
[3808] | 715 | plt.show() |
---|
| 716 | return |
---|
[3798] | 717 | |
---|
[3824] | 718 | if dslice.ndim == 2: |
---|
[3798] | 719 | lat_idx2 = find_dim_index(dims, LAT_DIMS) |
---|
| 720 | lon_idx2 = find_dim_index(dims, LON_DIMS) |
---|
[3810] | 721 | |
---|
| 722 | # Geographic lat×lon slice |
---|
[3798] | 723 | if lat_idx2 is not None and lon_idx2 is not None: |
---|
[3808] | 724 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
| 725 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
| 726 | lats = dataset.variables[latv][:] |
---|
| 727 | lons = dataset.variables[lonv][:] |
---|
[3810] | 728 | |
---|
[3824] | 729 | # Correct latitudes order |
---|
| 730 | if lats[0] > lats[-1]: |
---|
| 731 | lats = lats[::-1] |
---|
| 732 | dslice = np.flipud(dslice) |
---|
| 733 | |
---|
[3810] | 734 | # Handle masked arrays |
---|
[3808] | 735 | if hasattr(lats, "mask"): |
---|
| 736 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
| 737 | if hasattr(lons, "mask"): |
---|
| 738 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
[3810] | 739 | |
---|
| 740 | # Create map projection |
---|
| 741 | proj = ccrs.PlateCarree() |
---|
| 742 | fig, ax = plt.subplots(figsize=(10, 6), subplot_kw=dict(projection=proj)) |
---|
| 743 | |
---|
| 744 | # Make meshgrid and plot |
---|
| 745 | lon2d, lat2d = np.meshgrid(lons, lats) |
---|
| 746 | cf = ax.contourf( |
---|
| 747 | lon2d, lat2d, dslice, |
---|
| 748 | levels=100, |
---|
| 749 | cmap=colormap, |
---|
| 750 | transform=proj |
---|
| 751 | ) |
---|
| 752 | |
---|
| 753 | # Overlay topography |
---|
| 754 | overlay_topography(ax, transform=proj, levels=10) |
---|
| 755 | |
---|
| 756 | # Colorbar and labels |
---|
| 757 | lon_ticks = np.arange(-180, 181, 30) |
---|
| 758 | lat_ticks = np.arange(-90, 91, 30) |
---|
| 759 | ax.set_xticks(lon_ticks, crs=ccrs.PlateCarree()) |
---|
| 760 | ax.set_yticks(lat_ticks, crs=ccrs.PlateCarree()) |
---|
| 761 | ax.tick_params( |
---|
| 762 | axis='x', which='major', |
---|
| 763 | length=4, |
---|
| 764 | direction='out', |
---|
| 765 | pad=2, |
---|
| 766 | labelsize=8 |
---|
| 767 | ) |
---|
| 768 | ax.tick_params( |
---|
| 769 | axis='y', which='major', |
---|
| 770 | length=4, |
---|
| 771 | direction='out', |
---|
| 772 | pad=2, |
---|
| 773 | labelsize=8 |
---|
| 774 | ) |
---|
| 775 | cbar = fig.colorbar(cf, ax=ax, orientation="vertical", pad=0.02) |
---|
| 776 | cbar.set_label(varname + (f" ({dataset.variables[varname].units})" |
---|
| 777 | if hasattr(dataset.variables[varname], "units") else "")) |
---|
[3824] | 778 | ax.set_title(f"{varname} (lat × lon)", fontweight='bold') |
---|
[3810] | 779 | ax.set_xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
| 780 | ax.set_ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
| 781 | |
---|
| 782 | # Prompt for polar-stereo views if interactive |
---|
| 783 | if sys.stdin.isatty() and input("Display polar-stereo views? [y/n]: ").strip().lower() == "y": |
---|
| 784 | units = getattr(dataset.variables[varname], "units", None) |
---|
| 785 | plot_polar_views(lon2d, lat2d, dslice, colormap, varname, units) |
---|
| 786 | |
---|
[3818] | 787 | # Prompt for 3D globe view if interactive |
---|
| 788 | if sys.stdin.isatty() and input("Display 3D globe view? [y/n]: ").strip().lower() == "y": |
---|
| 789 | units = getattr(dataset.variables[varname], "units", None) |
---|
| 790 | plot_3D_globe(lon2d, lat2d, dslice, colormap, varname, units) |
---|
| 791 | |
---|
[3783] | 792 | if output_path: |
---|
[3808] | 793 | plt.savefig(output_path, bbox_inches="tight") |
---|
| 794 | print(f"Saved to {output_path}") |
---|
[3783] | 795 | else: |
---|
| 796 | plt.show() |
---|
| 797 | return |
---|
[3810] | 798 | |
---|
| 799 | # Generic 2D |
---|
[3839] | 800 | fig, ax = plt.subplots(figsize=(8, 6)) |
---|
| 801 | im = ax.imshow( |
---|
| 802 | dslice, |
---|
| 803 | aspect="auto", |
---|
| 804 | interpolation='nearest' |
---|
| 805 | ) |
---|
| 806 | x0, x1 = 0, dslice.shape[1] - 1 |
---|
| 807 | y0, y1 = 0, dslice.shape[0] - 1 |
---|
| 808 | x_centers = np.linspace(x0, x1, dslice.shape[1]) |
---|
| 809 | y_centers = np.linspace(y0, y1, dslice.shape[0]) |
---|
| 810 | attach_format_coord(ax, dslice, x_centers, y_centers, is_pcolormesh=False) |
---|
| 811 | cbar = fig.colorbar(im, ax=ax, orientation='vertical') |
---|
| 812 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
| 813 | ax.set_xlabel("Dim 2 index") |
---|
| 814 | ax.set_ylabel("Dim 1 index") |
---|
| 815 | ax.set_title(f"{varname} (2D)") |
---|
| 816 | |
---|
[3808] | 817 | if output_path: |
---|
[3839] | 818 | fig.savefig(output_path, bbox_inches="tight") |
---|
[3808] | 819 | print(f"Saved to {output_path}") |
---|
[3798] | 820 | else: |
---|
[3808] | 821 | plt.show() |
---|
| 822 | return |
---|
[3783] | 823 | |
---|
[3808] | 824 | print(f"Error: ndim={dslice.ndim} not supported.") |
---|
[3783] | 825 | |
---|
| 826 | |
---|
| 827 | def visualize_variable_interactive(nc_path=None): |
---|
| 828 | """ |
---|
[3810] | 829 | Interactive loop: keep prompting for variables to plot until user quits. |
---|
[3783] | 830 | """ |
---|
[3810] | 831 | # Open dataset |
---|
[3783] | 832 | if nc_path: |
---|
[3808] | 833 | path = nc_path |
---|
[3783] | 834 | else: |
---|
| 835 | readline.set_completer(complete_filename) |
---|
| 836 | readline.parse_and_bind("tab: complete") |
---|
[3808] | 837 | path = input("Enter path to NetCDF file: ").strip() |
---|
[3810] | 838 | |
---|
[3808] | 839 | if not os.path.isfile(path): |
---|
[3810] | 840 | print(f"Error: '{path}' not found.") |
---|
| 841 | return |
---|
| 842 | |
---|
[3808] | 843 | ds = Dataset(path, "r") |
---|
[3810] | 844 | var_list = list(ds.variables.keys()) |
---|
| 845 | if not var_list: |
---|
| 846 | print("No variables found in file.") |
---|
| 847 | ds.close() |
---|
| 848 | return |
---|
[3783] | 849 | |
---|
[3810] | 850 | # Enable interactive mode |
---|
| 851 | plt.ion() |
---|
| 852 | |
---|
| 853 | while True: |
---|
| 854 | # Enable tab-completion for variable names |
---|
| 855 | readline.set_completer(make_varname_completer(var_list)) |
---|
[3808] | 856 | readline.parse_and_bind("tab: complete") |
---|
[3783] | 857 | |
---|
[3810] | 858 | print("\nAvailable variables:") |
---|
| 859 | for name in var_list: |
---|
| 860 | print(f" - {name}") |
---|
| 861 | varname = input("\nEnter variable name to plot (or 'q' to quit): ").strip() |
---|
| 862 | if varname.lower() in ("q", "quit", "exit"): |
---|
| 863 | print("Exiting.") |
---|
| 864 | break |
---|
| 865 | if varname not in ds.variables: |
---|
| 866 | print(f"Variable '{varname}' not found. Try again.") |
---|
| 867 | continue |
---|
[3783] | 868 | |
---|
[3810] | 869 | # Display dimensions and size |
---|
| 870 | var = ds.variables[varname] |
---|
| 871 | dims, shape = var.dimensions, var.shape |
---|
| 872 | print(f"\nVariable '{varname}' has dimensions:") |
---|
| 873 | for dim, size in zip(dims, shape): |
---|
| 874 | print(f" - {dim}: size {size}") |
---|
| 875 | print() |
---|
[3783] | 876 | |
---|
[3810] | 877 | # Prepare slicing parameters |
---|
| 878 | time_index = None |
---|
| 879 | alt_index = None |
---|
| 880 | avg = False |
---|
| 881 | extra_indices = {} |
---|
[3798] | 882 | |
---|
[3810] | 883 | # Time index |
---|
| 884 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
| 885 | if t_idx is not None: |
---|
| 886 | if shape[t_idx] > 1: |
---|
| 887 | while True: |
---|
| 888 | idx = input(f"Enter time index [1–{shape[t_idx]}] (press Enter for all): ").strip() |
---|
| 889 | if idx == '': |
---|
| 890 | time_index = None |
---|
| 891 | break |
---|
| 892 | if idx.isdigit(): |
---|
| 893 | i = int(idx) |
---|
| 894 | if 1 <= i <= shape[t_idx]: |
---|
| 895 | time_index = i - 1 |
---|
| 896 | break |
---|
| 897 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
| 898 | else: |
---|
| 899 | time_index = 0 |
---|
[3783] | 900 | |
---|
[3810] | 901 | # Altitude index |
---|
| 902 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
| 903 | if a_idx is not None: |
---|
| 904 | if shape[a_idx] > 1: |
---|
| 905 | while True: |
---|
| 906 | idx = input(f"Enter altitude index [1–{shape[a_idx]}] (press Enter for all): ").strip() |
---|
| 907 | if idx == '': |
---|
| 908 | alt_index = None |
---|
[3783] | 909 | break |
---|
[3810] | 910 | if idx.isdigit(): |
---|
| 911 | i = int(idx) |
---|
| 912 | if 1 <= i <= shape[a_idx]: |
---|
| 913 | alt_index = i - 1 |
---|
| 914 | break |
---|
| 915 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
| 916 | else: |
---|
| 917 | alt_index = 0 |
---|
[3783] | 918 | |
---|
[3810] | 919 | # Average over latitude? |
---|
| 920 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
| 921 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
| 922 | if (t_idx is not None and lat_idx is not None and lon_idx is not None and |
---|
| 923 | shape[t_idx] > 1 and shape[lat_idx] > 1 and shape[lon_idx] > 1): |
---|
| 924 | resp = input("Average over latitude and plot lon vs time? [y/n]: ").strip().lower() |
---|
| 925 | avg = (resp == 'y') |
---|
| 926 | |
---|
| 927 | # Other dimensions |
---|
| 928 | for i, dname in enumerate(dims): |
---|
| 929 | if i in (t_idx, a_idx): |
---|
| 930 | continue |
---|
| 931 | size = shape[i] |
---|
| 932 | if size == 1: |
---|
| 933 | extra_indices[dname] = 0 |
---|
| 934 | continue |
---|
[3783] | 935 | while True: |
---|
[3810] | 936 | idx = input(f"Enter index [1–{size}] for '{dname}' (press Enter for all): ").strip() |
---|
| 937 | if idx == '': |
---|
| 938 | # keep all values |
---|
| 939 | break |
---|
| 940 | if idx.isdigit(): |
---|
| 941 | j = int(idx) |
---|
| 942 | if 1 <= j <= size: |
---|
| 943 | extra_indices[dname] = j - 1 |
---|
[3783] | 944 | break |
---|
[3810] | 945 | print("Invalid entry. Please enter a valid number or press Enter.") |
---|
[3783] | 946 | |
---|
[3810] | 947 | # Plot the variable |
---|
| 948 | plot_variable( |
---|
| 949 | ds, varname, |
---|
| 950 | time_index = time_index, |
---|
| 951 | alt_index = alt_index, |
---|
| 952 | colormap = 'jet', |
---|
| 953 | output_path = None, |
---|
| 954 | extra_indices = extra_indices, |
---|
| 955 | avg_lat = avg |
---|
| 956 | ) |
---|
[3798] | 957 | |
---|
[3783] | 958 | ds.close() |
---|
| 959 | |
---|
| 960 | |
---|
[3808] | 961 | def visualize_variable_cli(nc_file, varname, time_index, alt_index, |
---|
| 962 | colormap, output_path, extra_json, avg_lat): |
---|
[3783] | 963 | """ |
---|
[3798] | 964 | Command-line mode: visualize directly, parsing the --extra-indices argument (JSON string). |
---|
[3783] | 965 | """ |
---|
[3808] | 966 | if not os.path.isfile(nc_file): |
---|
[3810] | 967 | print(f"Error: '{nc_file}' not found.") |
---|
| 968 | return |
---|
[3808] | 969 | ds = Dataset(nc_file, "r") |
---|
| 970 | if varname not in ds.variables: |
---|
[3810] | 971 | print(f"Variable '{varname}' not in file.") |
---|
| 972 | ds.close() |
---|
| 973 | return |
---|
[3798] | 974 | |
---|
[3810] | 975 | # Display dimensions and size |
---|
[3808] | 976 | dims = ds.variables[varname].dimensions |
---|
| 977 | shape = ds.variables[varname].shape |
---|
| 978 | print(f"\nVariable '{varname}' has {len(dims)} dimensions:") |
---|
| 979 | for name, size in zip(dims, shape): |
---|
| 980 | print(f" - {name}: size {size}") |
---|
| 981 | print() |
---|
[3783] | 982 | |
---|
[3810] | 983 | # Special case: time-only → plot directly |
---|
[3808] | 984 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
| 985 | if ( |
---|
| 986 | t_idx is not None and shape[t_idx] > 1 and |
---|
| 987 | all(shape[i] == 1 for i in range(len(dims)) if i != t_idx) |
---|
| 988 | ): |
---|
| 989 | print("Detected single-point spatial dims; plotting time series…") |
---|
| 990 | var_obj = ds.variables[varname] |
---|
| 991 | data = var_obj[:].squeeze() |
---|
| 992 | time_var = find_coord_var(ds, TIME_DIMS) |
---|
| 993 | if time_var: |
---|
| 994 | tvals = ds.variables[time_var][:] |
---|
| 995 | else: |
---|
| 996 | tvals = np.arange(data.shape[0]) |
---|
| 997 | if hasattr(data, "mask"): |
---|
| 998 | data = np.where(data.mask, np.nan, data.data) |
---|
| 999 | if hasattr(tvals, "mask"): |
---|
| 1000 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
| 1001 | plt.figure() |
---|
| 1002 | plt.plot(tvals, data, marker="o") |
---|
| 1003 | plt.xlabel(time_var or "Time Index") |
---|
| 1004 | plt.ylabel(varname + (f" ({var_obj.units})" if hasattr(var_obj, "units") else "")) |
---|
[3824] | 1005 | plt.title(f"{varname} vs {time_var or 'Index'}", fontweight='bold') |
---|
[3808] | 1006 | if output_path: |
---|
| 1007 | plt.savefig(output_path, bbox_inches="tight") |
---|
| 1008 | print(f"Saved to {output_path}") |
---|
| 1009 | else: |
---|
| 1010 | plt.show() |
---|
[3783] | 1011 | ds.close() |
---|
| 1012 | return |
---|
| 1013 | |
---|
[3810] | 1014 | # if --avg-lat but lat/lon/Time not compatible → disable |
---|
[3808] | 1015 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
| 1016 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
| 1017 | if avg_lat and not ( |
---|
| 1018 | t_idx is not None and shape[t_idx] > 1 and |
---|
| 1019 | lat_idx is not None and shape[lat_idx] > 1 and |
---|
| 1020 | lon_idx is not None and shape[lon_idx] > 1 |
---|
| 1021 | ): |
---|
| 1022 | print("Note: disabling --avg-lat (requires Time, lat & lon each >1).") |
---|
| 1023 | avg_lat = False |
---|
| 1024 | |
---|
| 1025 | # Parse extra indices JSON |
---|
| 1026 | extra = {} |
---|
[3798] | 1027 | if extra_json: |
---|
| 1028 | try: |
---|
| 1029 | parsed = json.loads(extra_json) |
---|
[3808] | 1030 | for k, v in parsed.items(): |
---|
| 1031 | if isinstance(v, int): |
---|
| 1032 | if "slope" in k.lower(): |
---|
| 1033 | extra[k] = v - 1 |
---|
| 1034 | else: |
---|
| 1035 | extra[k] = v |
---|
| 1036 | except: |
---|
| 1037 | print("Warning: bad extra-indices.") |
---|
[3798] | 1038 | |
---|
[3808] | 1039 | plot_variable(ds, varname, time_index, alt_index, |
---|
| 1040 | colormap, output_path, extra, avg_lat) |
---|
[3783] | 1041 | ds.close() |
---|
| 1042 | |
---|
| 1043 | |
---|
| 1044 | def main(): |
---|
[3808] | 1045 | parser = argparse.ArgumentParser() |
---|
[3818] | 1046 | parser.add_argument('nc_file', nargs='?', help='NetCDF file (omit for interactive)') |
---|
| 1047 | parser.add_argument('-v','--variable', help='Variable name') |
---|
| 1048 | parser.add_argument('-t','--time-index', type=int, help='Time index (0-based)') |
---|
| 1049 | parser.add_argument('-a','--alt-index', type=int, help='Altitude index (0-based)') |
---|
| 1050 | parser.add_argument('-c','--cmap', default='jet', help='Colormap') |
---|
| 1051 | parser.add_argument('--avg-lat', action='store_true', help='Average over latitude') |
---|
| 1052 | parser.add_argument('--show-polar', action='store_true', help='Enable polar-stereo views') |
---|
| 1053 | parser.add_argument('--show-3d', action='store_true', help='Enable 3D globe view') |
---|
| 1054 | parser.add_argument('-o','--output', help='Save figure path') |
---|
| 1055 | parser.add_argument('-e','--extra-indices', help='JSON string for other dims') |
---|
[3783] | 1056 | args = parser.parse_args() |
---|
| 1057 | |
---|
[3798] | 1058 | if args.nc_file and args.variable: |
---|
[3783] | 1059 | visualize_variable_cli( |
---|
[3808] | 1060 | args.nc_file, args.variable, |
---|
| 1061 | args.time_index, args.alt_index, |
---|
| 1062 | args.cmap, args.output, |
---|
| 1063 | args.extra_indices, args.avg_lat |
---|
[3783] | 1064 | ) |
---|
[3798] | 1065 | else: |
---|
[3808] | 1066 | visualize_variable_interactive(args.nc_file) |
---|
[3783] | 1067 | |
---|
| 1068 | |
---|
| 1069 | if __name__ == "__main__": |
---|
| 1070 | main() |
---|
[3810] | 1071 | |
---|