1 | #!/usr/bin/env python3 |
---|
2 | ############################################################## |
---|
3 | ### Python script to visualize a variable in a NetCDF file ### |
---|
4 | ############################################################## |
---|
5 | |
---|
6 | """ |
---|
7 | This script can display any numeric variable from a NetCDF file. |
---|
8 | It supports the following cases: |
---|
9 | - 1D time series (Time) |
---|
10 | - 1D vertical profiles (e.g., subsurface_layers) |
---|
11 | - 2D latitude/longitude map |
---|
12 | - 2D (Time × another dimension) |
---|
13 | - Variables with dimension “physical_points” displayed on a 2D map if lat/lon are present |
---|
14 | - Optionally average over latitude and plot longitude vs. time heatmap |
---|
15 | - Scalar output (ndim == 0 after slicing) |
---|
16 | |
---|
17 | Usage: |
---|
18 | 1) Command-line mode: |
---|
19 | python display_netcdf.py /path/to/your_file.nc --variable VAR_NAME \ |
---|
20 | [--time-index 0] [--alt-index 0] [--cmap viridis] [--avg-lat] \ |
---|
21 | [--output out.png] [--extra-indices '{"nslope": 1}'] |
---|
22 | |
---|
23 | --variable : Name of the variable to visualize. |
---|
24 | --time-index : Index along the Time dimension (0-based, ignored for purely 1D time series). |
---|
25 | --alt-index : Index along the altitude dimension (0-based), if present. |
---|
26 | --cmap : Matplotlib colormap (default: "jet"). |
---|
27 | --avg-lat : Average over latitude and plot longitude vs. time heatmap. |
---|
28 | --output : If provided, save the figure to this filename instead of displaying. |
---|
29 | --extra-indices: JSON string to fix indices for any other dimensions. |
---|
30 | For any dimension whose name contains "slope", use 1-based numbering here. |
---|
31 | Example: '{"nslope": 1, "physical_points": 3}' |
---|
32 | |
---|
33 | 2) Interactive mode: |
---|
34 | python display_netcdf.py |
---|
35 | (The script will prompt for everything, including averaging option.) |
---|
36 | """ |
---|
37 | |
---|
38 | import os |
---|
39 | import sys |
---|
40 | import glob |
---|
41 | import readline |
---|
42 | import argparse |
---|
43 | import json |
---|
44 | import numpy as np |
---|
45 | import matplotlib.pyplot as plt |
---|
46 | import matplotlib.tri as mtri |
---|
47 | from netCDF4 import Dataset |
---|
48 | |
---|
49 | # Constants to recognize dimension names |
---|
50 | TIME_DIMS = ("Time", "time", "time_counter") |
---|
51 | ALT_DIMS = ("altitude",) |
---|
52 | LAT_DIMS = ("latitude", "lat") |
---|
53 | LON_DIMS = ("longitude", "lon") |
---|
54 | |
---|
55 | |
---|
56 | def complete_filename(text, state): |
---|
57 | """ |
---|
58 | Readline tab-completion function for filesystem paths. |
---|
59 | """ |
---|
60 | if "*" not in text: |
---|
61 | pattern = text + "*" |
---|
62 | else: |
---|
63 | pattern = text |
---|
64 | matches = glob.glob(os.path.expanduser(pattern)) |
---|
65 | matches = [m + "/" if os.path.isdir(m) else m for m in matches] |
---|
66 | try: |
---|
67 | return matches[state] |
---|
68 | except IndexError: |
---|
69 | return None |
---|
70 | |
---|
71 | |
---|
72 | def make_varname_completer(varnames): |
---|
73 | """ |
---|
74 | Returns a readline completer function for the given list of variable names. |
---|
75 | """ |
---|
76 | def completer(text, state): |
---|
77 | options = [name for name in varnames if name.startswith(text)] |
---|
78 | try: |
---|
79 | return options[state] |
---|
80 | except IndexError: |
---|
81 | return None |
---|
82 | return completer |
---|
83 | |
---|
84 | |
---|
85 | def find_dim_index(dims, candidates): |
---|
86 | """ |
---|
87 | Search through dims tuple for any name in candidates. |
---|
88 | Returns the index if found, else returns None. |
---|
89 | """ |
---|
90 | for idx, dim in enumerate(dims): |
---|
91 | for cand in candidates: |
---|
92 | if cand.lower() == dim.lower(): |
---|
93 | return idx |
---|
94 | return None |
---|
95 | |
---|
96 | |
---|
97 | def find_coord_var(dataset, candidates): |
---|
98 | """ |
---|
99 | Among dataset variables, return the first variable whose name matches any candidate. |
---|
100 | Returns None if none found. |
---|
101 | """ |
---|
102 | for name in dataset.variables: |
---|
103 | for cand in candidates: |
---|
104 | if cand.lower() == name.lower(): |
---|
105 | return name |
---|
106 | return None |
---|
107 | |
---|
108 | |
---|
109 | def plot_variable(dataset, varname, time_index=None, alt_index=None, |
---|
110 | colormap="jet", output_path=None, extra_indices=None, |
---|
111 | avg_lat=False): |
---|
112 | """ |
---|
113 | Core plotting logic: reads the variable, handles masks, |
---|
114 | determines dimensionality, and creates the appropriate plot: |
---|
115 | - 1D time series |
---|
116 | - 1D profiles or physical_points maps |
---|
117 | - 2D lat×lon or generic 2D |
---|
118 | - Time×lon heatmap if avg_lat=True |
---|
119 | - Scalar printing |
---|
120 | """ |
---|
121 | var = dataset.variables[varname] |
---|
122 | dims = var.dimensions |
---|
123 | |
---|
124 | # Read full data |
---|
125 | try: |
---|
126 | data_full = var[:] |
---|
127 | except Exception as e: |
---|
128 | print(f"Error: Cannot read data for '{varname}': {e}") |
---|
129 | return |
---|
130 | if hasattr(data_full, "mask"): |
---|
131 | data_full = np.where(data_full.mask, np.nan, data_full.data) |
---|
132 | |
---|
133 | # Pure 1D time series |
---|
134 | if len(dims) == 1 and find_dim_index(dims, TIME_DIMS) is not None: |
---|
135 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
136 | tvals = (dataset.variables[time_var][:] if time_var |
---|
137 | else np.arange(data_full.shape[0])) |
---|
138 | if hasattr(tvals, "mask"): |
---|
139 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
140 | plt.figure() |
---|
141 | plt.plot(tvals, data_full, marker="o") |
---|
142 | plt.xlabel(time_var or "Time Index") |
---|
143 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
144 | plt.title(f"{varname} vs {time_var or 'Index'}") |
---|
145 | if output_path: |
---|
146 | plt.savefig(output_path, bbox_inches="tight") |
---|
147 | print(f"Saved to {output_path}") |
---|
148 | else: |
---|
149 | plt.show() |
---|
150 | return |
---|
151 | |
---|
152 | # Identify dims |
---|
153 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
154 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
155 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
156 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
157 | |
---|
158 | # Average over latitude & plot time × lon heatmap |
---|
159 | if avg_lat and t_idx is not None and lat_idx is not None and lon_idx is not None: |
---|
160 | # mean over lat axis |
---|
161 | data_avg = np.nanmean(data_full, axis=lat_idx) |
---|
162 | # data_avg shape: (time, lon, ...) |
---|
163 | # we assume no other unfixed dims |
---|
164 | # get coordinates |
---|
165 | time_var = find_coord_var(dataset, TIME_DIMS) |
---|
166 | lon_var = find_coord_var(dataset, LON_DIMS) |
---|
167 | tvals = dataset.variables[time_var][:] |
---|
168 | lons = dataset.variables[lon_var][:] |
---|
169 | if hasattr(tvals, "mask"): |
---|
170 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
171 | if hasattr(lons, "mask"): |
---|
172 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
173 | plt.figure(figsize=(10, 6)) |
---|
174 | plt.pcolormesh(lons, tvals, data_avg, shading="auto", cmap=colormap) |
---|
175 | plt.xlabel(f"Longitude ({getattr(dataset.variables[lon_var], 'units', 'deg')})") |
---|
176 | plt.ylabel(time_var) |
---|
177 | cbar = plt.colorbar() |
---|
178 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
179 | plt.title(f"{varname} averaged over latitude") |
---|
180 | if output_path: |
---|
181 | plt.savefig(output_path, bbox_inches="tight") |
---|
182 | print(f"Saved to {output_path}") |
---|
183 | else: |
---|
184 | plt.show() |
---|
185 | return |
---|
186 | |
---|
187 | # Build slicer for other cases |
---|
188 | slicer = [slice(None)] * len(dims) |
---|
189 | if t_idx is not None: |
---|
190 | if time_index is None: |
---|
191 | print("Error: please supply a time index.") |
---|
192 | return |
---|
193 | slicer[t_idx] = time_index |
---|
194 | if a_idx is not None: |
---|
195 | if alt_index is None: |
---|
196 | print("Error: please supply an altitude index.") |
---|
197 | return |
---|
198 | slicer[a_idx] = alt_index |
---|
199 | |
---|
200 | if extra_indices is None: |
---|
201 | extra_indices = {} |
---|
202 | for dn, idx_val in extra_indices.items(): |
---|
203 | if dn in dims: |
---|
204 | slicer[dims.index(dn)] = idx_val |
---|
205 | |
---|
206 | # Extract slice |
---|
207 | try: |
---|
208 | dslice = data_full[tuple(slicer)] |
---|
209 | except Exception as e: |
---|
210 | print(f"Error slicing '{varname}': {e}") |
---|
211 | return |
---|
212 | |
---|
213 | # Scalar |
---|
214 | if np.ndim(dslice) == 0: |
---|
215 | print(f"Scalar '{varname}': {float(dslice)}") |
---|
216 | return |
---|
217 | |
---|
218 | # 1D: vector, profile, or physical_points |
---|
219 | if dslice.ndim == 1: |
---|
220 | rem = [(i, name) for i, name in enumerate(dims) if slicer[i] == slice(None)] |
---|
221 | if rem: |
---|
222 | di, dname = rem[0] |
---|
223 | # physical_points → interpolated map |
---|
224 | if dname.lower() == "physical_points": |
---|
225 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
226 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
227 | if latv and lonv: |
---|
228 | lats = dataset.variables[latv][:] |
---|
229 | lons = dataset.variables[lonv][:] |
---|
230 | if hasattr(lats, "mask"): |
---|
231 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
232 | if hasattr(lons, "mask"): |
---|
233 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
234 | triang = mtri.Triangulation(lons, lats) |
---|
235 | plt.figure(figsize=(8, 6)) |
---|
236 | cf = plt.tricontourf(triang, dslice, cmap=colormap) |
---|
237 | cbar = plt.colorbar(cf) |
---|
238 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
239 | plt.xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
240 | plt.ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
241 | plt.title(f"{varname} (interpolated map over physical_points)") |
---|
242 | if output_path: |
---|
243 | plt.savefig(output_path, bbox_inches="tight") |
---|
244 | print(f"Saved to {output_path}") |
---|
245 | else: |
---|
246 | plt.show() |
---|
247 | return |
---|
248 | # vertical profile? |
---|
249 | coord = None |
---|
250 | if dname.lower() == "subsurface_layers" and "soildepth" in dataset.variables: |
---|
251 | coord = "soildepth" |
---|
252 | elif dname in dataset.variables: |
---|
253 | coord = dname |
---|
254 | if coord: |
---|
255 | coords = dataset.variables[coord][:] |
---|
256 | if hasattr(coords, "mask"): |
---|
257 | coords = np.where(coords.mask, np.nan, coords.data) |
---|
258 | plt.figure() |
---|
259 | plt.plot(dslice, coords, marker="o") |
---|
260 | if dname.lower() == "subsurface_layers": |
---|
261 | plt.gca().invert_yaxis() |
---|
262 | plt.xlabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
263 | plt.ylabel(coord + (f" ({dataset.variables[coord].units})" if hasattr(dataset.variables[coord], "units") else "")) |
---|
264 | plt.title(f"{varname} vs {coord}") |
---|
265 | if output_path: |
---|
266 | plt.savefig(output_path, bbox_inches="tight") |
---|
267 | print(f"Saved to {output_path}") |
---|
268 | else: |
---|
269 | plt.show() |
---|
270 | return |
---|
271 | # generic 1D |
---|
272 | plt.figure() |
---|
273 | plt.plot(dslice, marker="o") |
---|
274 | plt.xlabel("Index") |
---|
275 | plt.ylabel(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
276 | plt.title(f"{varname} (1D)") |
---|
277 | if output_path: |
---|
278 | plt.savefig(output_path, bbox_inches="tight") |
---|
279 | print(f"Saved to {output_path}") |
---|
280 | else: |
---|
281 | plt.show() |
---|
282 | return |
---|
283 | |
---|
284 | # 2D: map or generic |
---|
285 | if dslice.ndim == 2: |
---|
286 | lat_idx2 = find_dim_index(dims, LAT_DIMS) |
---|
287 | lon_idx2 = find_dim_index(dims, LON_DIMS) |
---|
288 | if lat_idx2 is not None and lon_idx2 is not None: |
---|
289 | latv = find_coord_var(dataset, LAT_DIMS) |
---|
290 | lonv = find_coord_var(dataset, LON_DIMS) |
---|
291 | lats = dataset.variables[latv][:] |
---|
292 | lons = dataset.variables[lonv][:] |
---|
293 | if hasattr(lats, "mask"): |
---|
294 | lats = np.where(lats.mask, np.nan, lats.data) |
---|
295 | if hasattr(lons, "mask"): |
---|
296 | lons = np.where(lons.mask, np.nan, lons.data) |
---|
297 | if lats.ndim == 1 and lons.ndim == 1: |
---|
298 | lon2d, lat2d = np.meshgrid(lons, lats) |
---|
299 | else: |
---|
300 | lat2d, lon2d = lats, lons |
---|
301 | plt.figure(figsize=(10, 6)) |
---|
302 | cf = plt.contourf(lon2d, lat2d, dslice, cmap=colormap) |
---|
303 | cbar = plt.colorbar(cf) |
---|
304 | cbar.set_label(varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
305 | plt.xlabel(f"Longitude ({getattr(dataset.variables[lonv], 'units', 'deg')})") |
---|
306 | plt.ylabel(f"Latitude ({getattr(dataset.variables[latv], 'units', 'deg')})") |
---|
307 | plt.title(f"{varname} (lat × lon)") |
---|
308 | if output_path: |
---|
309 | plt.savefig(output_path, bbox_inches="tight") |
---|
310 | print(f"Saved to {output_path}") |
---|
311 | else: |
---|
312 | plt.show() |
---|
313 | return |
---|
314 | # generic 2D |
---|
315 | plt.figure(figsize=(8, 6)) |
---|
316 | plt.imshow(dslice, aspect="auto") |
---|
317 | plt.colorbar(label=varname + (f" ({var.units})" if hasattr(var, "units") else "")) |
---|
318 | plt.xlabel("Dim 2 index") |
---|
319 | plt.ylabel("Dim 1 index") |
---|
320 | plt.title(f"{varname} (2D)") |
---|
321 | if output_path: |
---|
322 | plt.savefig(output_path, bbox_inches="tight") |
---|
323 | print(f"Saved to {output_path}") |
---|
324 | else: |
---|
325 | plt.show() |
---|
326 | return |
---|
327 | |
---|
328 | print(f"Error: ndim={dslice.ndim} not supported.") |
---|
329 | |
---|
330 | |
---|
331 | def visualize_variable_interactive(nc_path=None): |
---|
332 | """ |
---|
333 | Interactive mode: prompts for file, variable, displays dims, |
---|
334 | handles special case of pure time series, then guides user |
---|
335 | through any needed index selections. |
---|
336 | """ |
---|
337 | # File selection |
---|
338 | if nc_path: |
---|
339 | path = nc_path |
---|
340 | else: |
---|
341 | readline.set_completer(complete_filename) |
---|
342 | readline.parse_and_bind("tab: complete") |
---|
343 | path = input("Enter path to NetCDF file: ").strip() |
---|
344 | if not os.path.isfile(path): |
---|
345 | print(f"Error: '{path}' not found."); return |
---|
346 | ds = Dataset(path, "r") |
---|
347 | |
---|
348 | # Variable selection with autocomplete |
---|
349 | vars_ = list(ds.variables.keys()) |
---|
350 | if not vars_: |
---|
351 | print("No variables found."); ds.close(); return |
---|
352 | if len(vars_) == 1: |
---|
353 | var = vars_[0]; print(f"Selected '{var}'") |
---|
354 | else: |
---|
355 | print("Available variables:") |
---|
356 | for v in vars_: |
---|
357 | print(f" - {v}") |
---|
358 | readline.set_completer(make_varname_completer(vars_)) |
---|
359 | readline.parse_and_bind("tab: complete") |
---|
360 | var = input("Variable name: ").strip() |
---|
361 | if var not in ds.variables: |
---|
362 | print("Unknown variable."); ds.close(); return |
---|
363 | |
---|
364 | # DISPLAY DIMENSIONS AND SIZES |
---|
365 | dims = ds.variables[var].dimensions |
---|
366 | shape = ds.variables[var].shape |
---|
367 | print(f"\nVariable '{var}' has {len(dims)} dimensions:") |
---|
368 | for name, size in zip(dims, shape): |
---|
369 | print(f" - {name}: size {size}") |
---|
370 | print() |
---|
371 | |
---|
372 | # Identify dimension indices |
---|
373 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
374 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
375 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
376 | a_idx = find_dim_index(dims, ALT_DIMS) |
---|
377 | |
---|
378 | # SPECIAL CASE: time-only series (all others singleton) → plot directly |
---|
379 | if ( |
---|
380 | t_idx is not None and shape[t_idx] > 1 and |
---|
381 | all(shape[i] == 1 for i in range(len(dims)) if i != t_idx) |
---|
382 | ): |
---|
383 | print("Detected single-point spatial dims; plotting time series…") |
---|
384 | # récupérer les valeurs |
---|
385 | var_obj = ds.variables[var] |
---|
386 | data = var_obj[:].squeeze() # shape (time,) |
---|
387 | # temps |
---|
388 | time_var = find_coord_var(ds, TIME_DIMS) |
---|
389 | if time_var: |
---|
390 | tvals = ds.variables[time_var][:] |
---|
391 | else: |
---|
392 | tvals = np.arange(data.shape[0]) |
---|
393 | # masque éventuel |
---|
394 | if hasattr(data, "mask"): |
---|
395 | data = np.where(data.mask, np.nan, data.data) |
---|
396 | if hasattr(tvals, "mask"): |
---|
397 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
398 | # tracé |
---|
399 | plt.figure() |
---|
400 | plt.plot(tvals, data, marker="o") |
---|
401 | plt.xlabel(time_var or "Time Index") |
---|
402 | plt.ylabel(var + (f" ({var_obj.units})" if hasattr(var_obj, "units") else "")) |
---|
403 | plt.title(f"{var} vs {time_var or 'Index'}") |
---|
404 | plt.show() |
---|
405 | ds.close() |
---|
406 | return |
---|
407 | |
---|
408 | # Ask average over latitude only if Time, lat AND lon each >1 |
---|
409 | avg_lat = False |
---|
410 | if ( |
---|
411 | t_idx is not None and shape[t_idx] > 1 and |
---|
412 | lat_idx is not None and shape[lat_idx] > 1 and |
---|
413 | lon_idx is not None and shape[lon_idx] > 1 |
---|
414 | ): |
---|
415 | u = input("Average over latitude & plot lon vs time? [y/n]: ").strip().lower() |
---|
416 | avg_lat = (u == "y") |
---|
417 | |
---|
418 | # Time index prompt |
---|
419 | ti = None |
---|
420 | if t_idx is not None: |
---|
421 | L = shape[t_idx] |
---|
422 | if L > 1: |
---|
423 | while True: |
---|
424 | u = input(f"Enter time index [0..{L-1}]: ").strip() |
---|
425 | try: |
---|
426 | ti = int(u) |
---|
427 | if 0 <= ti < L: |
---|
428 | break |
---|
429 | except: |
---|
430 | pass |
---|
431 | print("Invalid.") |
---|
432 | else: |
---|
433 | ti = 0; print("Only one time; using 0.") |
---|
434 | |
---|
435 | # Altitude index prompt |
---|
436 | ai = None |
---|
437 | if a_idx is not None: |
---|
438 | L = shape[a_idx] |
---|
439 | if L > 1: |
---|
440 | while True: |
---|
441 | u = input(f"Enter altitude index [0..{L-1}]: ").strip() |
---|
442 | try: |
---|
443 | ai = int(u) |
---|
444 | if 0 <= ai < L: |
---|
445 | break |
---|
446 | except: |
---|
447 | pass |
---|
448 | print("Invalid.") |
---|
449 | else: |
---|
450 | ai = 0; print("Only one altitude; using 0.") |
---|
451 | |
---|
452 | # Other dims |
---|
453 | extra = {} |
---|
454 | for idx, dname in enumerate(dims): |
---|
455 | if idx in (t_idx, a_idx): |
---|
456 | continue |
---|
457 | if dname.lower() in LAT_DIMS + LON_DIMS and shape[idx] == 1: |
---|
458 | extra[dname] = 0 |
---|
459 | continue |
---|
460 | L = shape[idx] |
---|
461 | if L == 1: |
---|
462 | extra[dname] = 0 |
---|
463 | continue |
---|
464 | if "slope" in dname.lower(): |
---|
465 | prompt = f"Enter slope number [1..{L}] for '{dname}': " |
---|
466 | else: |
---|
467 | prompt = f"Enter index [0..{L-1}] or 'f' to plot '{dname}': " |
---|
468 | while True: |
---|
469 | u = input(prompt).strip().lower() |
---|
470 | if u == "f" and "slope" not in dname.lower(): |
---|
471 | break |
---|
472 | try: |
---|
473 | iv = int(u) |
---|
474 | if "slope" in dname.lower(): |
---|
475 | if 1 <= iv <= L: |
---|
476 | extra[dname] = iv - 1 |
---|
477 | break |
---|
478 | else: |
---|
479 | if 0 <= iv < L: |
---|
480 | extra[dname] = iv |
---|
481 | break |
---|
482 | except: |
---|
483 | pass |
---|
484 | print("Invalid.") |
---|
485 | |
---|
486 | plot_variable(ds, var, time_index=ti, alt_index=ai, |
---|
487 | colormap="jet", output_path=None, |
---|
488 | extra_indices=extra, avg_lat=avg_lat) |
---|
489 | ds.close() |
---|
490 | |
---|
491 | |
---|
492 | def visualize_variable_cli(nc_file, varname, time_index, alt_index, |
---|
493 | colormap, output_path, extra_json, avg_lat): |
---|
494 | """ |
---|
495 | Command-line mode: visualize directly, parsing the --extra-indices argument (JSON string). |
---|
496 | """ |
---|
497 | if not os.path.isfile(nc_file): |
---|
498 | print(f"Error: '{nc_file}' not found."); return |
---|
499 | ds = Dataset(nc_file, "r") |
---|
500 | if varname not in ds.variables: |
---|
501 | print(f"Variable '{varname}' not in file."); ds.close(); return |
---|
502 | |
---|
503 | # DISPLAY DIMENSIONS AND SIZES |
---|
504 | dims = ds.variables[varname].dimensions |
---|
505 | shape = ds.variables[varname].shape |
---|
506 | print(f"\nVariable '{varname}' has {len(dims)} dimensions:") |
---|
507 | for name, size in zip(dims, shape): |
---|
508 | print(f" - {name}: size {size}") |
---|
509 | print() |
---|
510 | |
---|
511 | # SPECIAL CASE: time-only → plot directly |
---|
512 | t_idx = find_dim_index(dims, TIME_DIMS) |
---|
513 | if ( |
---|
514 | t_idx is not None and shape[t_idx] > 1 and |
---|
515 | all(shape[i] == 1 for i in range(len(dims)) if i != t_idx) |
---|
516 | ): |
---|
517 | print("Detected single-point spatial dims; plotting time series…") |
---|
518 | # même logique que ci‑dessus |
---|
519 | var_obj = ds.variables[varname] |
---|
520 | data = var_obj[:].squeeze() |
---|
521 | time_var = find_coord_var(ds, TIME_DIMS) |
---|
522 | if time_var: |
---|
523 | tvals = ds.variables[time_var][:] |
---|
524 | else: |
---|
525 | tvals = np.arange(data.shape[0]) |
---|
526 | if hasattr(data, "mask"): |
---|
527 | data = np.where(data.mask, np.nan, data.data) |
---|
528 | if hasattr(tvals, "mask"): |
---|
529 | tvals = np.where(tvals.mask, np.nan, tvals.data) |
---|
530 | plt.figure() |
---|
531 | plt.plot(tvals, data, marker="o") |
---|
532 | plt.xlabel(time_var or "Time Index") |
---|
533 | plt.ylabel(varname + (f" ({var_obj.units})" if hasattr(var_obj, "units") else "")) |
---|
534 | plt.title(f"{varname} vs {time_var or 'Index'}") |
---|
535 | if output_path: |
---|
536 | plt.savefig(output_path, bbox_inches="tight") |
---|
537 | print(f"Saved to {output_path}") |
---|
538 | else: |
---|
539 | plt.show() |
---|
540 | ds.close() |
---|
541 | return |
---|
542 | |
---|
543 | # Si --avg-lat mais lat/lon/Time non compatibles → désactive |
---|
544 | lat_idx = find_dim_index(dims, LAT_DIMS) |
---|
545 | lon_idx = find_dim_index(dims, LON_DIMS) |
---|
546 | if avg_lat and not ( |
---|
547 | t_idx is not None and shape[t_idx] > 1 and |
---|
548 | lat_idx is not None and shape[lat_idx] > 1 and |
---|
549 | lon_idx is not None and shape[lon_idx] > 1 |
---|
550 | ): |
---|
551 | print("Note: disabling --avg-lat (requires Time, lat & lon each >1).") |
---|
552 | avg_lat = False |
---|
553 | |
---|
554 | # Parse extra indices JSON |
---|
555 | extra = {} |
---|
556 | if extra_json: |
---|
557 | try: |
---|
558 | parsed = json.loads(extra_json) |
---|
559 | for k, v in parsed.items(): |
---|
560 | if isinstance(v, int): |
---|
561 | if "slope" in k.lower(): |
---|
562 | extra[k] = v - 1 |
---|
563 | else: |
---|
564 | extra[k] = v |
---|
565 | except: |
---|
566 | print("Warning: bad extra-indices.") |
---|
567 | |
---|
568 | plot_variable(ds, varname, time_index, alt_index, |
---|
569 | colormap, output_path, extra, avg_lat) |
---|
570 | ds.close() |
---|
571 | |
---|
572 | |
---|
573 | def main(): |
---|
574 | parser = argparse.ArgumentParser() |
---|
575 | parser.add_argument("nc_file", nargs="?", help="NetCDF file (omit for interactive)") |
---|
576 | parser.add_argument("-v", "--variable", help="Variable name") |
---|
577 | parser.add_argument("-t", "--time-index", type=int, help="Time index (0-based)") |
---|
578 | parser.add_argument("-a", "--alt-index", type=int, help="Altitude index (0-based)") |
---|
579 | parser.add_argument("-c", "--cmap", default="jet", help="Colormap") |
---|
580 | parser.add_argument("--avg-lat", action="store_true", |
---|
581 | help="Average over latitude (time × lon heatmap)") |
---|
582 | parser.add_argument("-o", "--output", help="Save figure path") |
---|
583 | parser.add_argument("-e", "--extra-indices", help="JSON for other dims") |
---|
584 | args = parser.parse_args() |
---|
585 | |
---|
586 | if args.nc_file and args.variable: |
---|
587 | visualize_variable_cli( |
---|
588 | args.nc_file, args.variable, |
---|
589 | args.time_index, args.alt_index, |
---|
590 | args.cmap, args.output, |
---|
591 | args.extra_indices, args.avg_lat |
---|
592 | ) |
---|
593 | else: |
---|
594 | visualize_variable_interactive(args.nc_file) |
---|
595 | |
---|
596 | |
---|
597 | if __name__ == "__main__": |
---|
598 | main() |
---|