Changeset 1746 for trunk/LMDZ.GENERIC/DOC/main.aux
- Timestamp:
- Jul 24, 2017, 5:06:29 PM (7 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/LMDZ.GENERIC/DOC/main.aux
r987 r1746 28 28 \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Physical/dynamical interface}}{5}} 29 29 \newlabel{fg:fidyn}{{2.1}{5}} 30 \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Dynamical and physical grids for a 6 $\times $ 7 horizontal resolution. In the dynamics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical variables are on the dynamical ``scalar'' grid. The physics uses the same ``scalar'' grid for all the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-1)$\times $IM points when counting from the north pole. N.B.: In the Fortran program, the following variables are used: {\tt iim=IM , iip1=IM+1, jjm=JM , jjp1=JM+1}.}}{5}} 31 \newlabel{fg:grid}{{2.2}{5}} 30 32 \@writefile{toc}{\contentsline {section}{\numberline {2.3}Grid boxes:}{5}} 31 33 \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Horizontal grids}{5}} 32 \@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Dynamical and physical grids for a 6 $\times $ 7 horizontal resolution. In the dynamics (but not in the physics) winds u and v are on specific staggered grids. Other dynamical variables are on the dynamical ``scalar'' grid. The physics uses the same ``scalar'' grid for all the variables, except that nodes are indexed in a single vector containing NGRID=2+(JM-1)$\times $IM points when counting from the north pole. N.B.: In the Fortran program, the following variables are used: {\tt iim=IM , iip1=IM+1, jjm=JM , jjp1=JM+1}.}}{6}} 33 \newlabel{fg:grid}{{2.2}{6}} 34 \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Vertical grids}{7}} 35 \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces hybrides}}{7}} 36 \newlabel{fg:hybrid}{{2.3}{7}} 37 \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Vertical grid description of the {\tt llm (or nlayer)} atmospheric layers in the programming code ({\tt llm} is the variable used in the dynamical part, and {\tt nlayer} is used in the physical part). Variables {\tt ap, bp} and {\tt aps, bps} indicate the hybrid levels at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer is $Plev(l)=ap(l)+bp(l) \times Ps$ and pressure in the middle of the layer is defined by $Play(l)=aps(l)+bps(l) \times Ps$, (where $Ps$ is surface pressure). Sigma coordinates are merely a specific case of hybrid coordinates such that $aps=0$ and $bps=P/Ps$. Note that for the hybrid coordinates, $bps=0$ above $\sim 50$~km, leading to purely pressure levels. The user can choose whether to run the model using hybrid coordinates or not by setting variable {\tt hybrid} in run.def to True or False.}}{8}} 38 \newlabel{fg:sigma}{{2.4}{8}} 39 \@writefile{toc}{\contentsline {section}{\numberline {2.4}Variables used in the model}{9}} 40 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Dynamical variables}{9}} 41 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Physical variables}{9}} 42 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Tracers}{10}} 34 \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Vertical grids}{6}} 35 \@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces hybrides}}{6}} 36 \newlabel{fg:hybrid}{{2.3}{6}} 37 \@writefile{toc}{\contentsline {section}{\numberline {2.4}Variables used in the model}{6}} 38 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Dynamical variables}{6}} 39 \@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Vertical grid description of the {\tt llm (or nlayer)} atmospheric layers in the programming code ({\tt llm} is the variable used in the dynamical part, and {\tt nlayer} is used in the physical part). Variables {\tt ap, bp} and {\tt aps, bps} indicate the hybrid levels at the interlayer levels and at middle of the layers respectively. Pressure at the interlayer is $Plev(l)=ap(l)+bp(l) \times Ps$ and pressure in the middle of the layer is defined by $Play(l)=aps(l)+bps(l) \times Ps$, (where $Ps$ is surface pressure). Sigma coordinates are merely a specific case of hybrid coordinates such that $aps=0$ and $bps=P/Ps$. Note that for the hybrid coordinates, $bps=0$ above $\sim 50$~km, leading to purely pressure levels. The user can choose whether to run the model using hybrid coordinates or not by setting variable {\tt hybrid} in run.def to True or False.}}{7}} 40 \newlabel{fg:sigma}{{2.4}{7}} 41 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}Physical variables}{8}} 42 \@writefile{toc}{\contentsline {subsection}{\numberline {2.4.3}Tracers}{8}} 43 43 \citation{Holt:79} 44 44 \citation{LeVa:89} 45 45 \citation{Arak:77} 46 \@writefile{toc}{\contentsline {chapter}{\numberline {3}3D Dynamical Code}{ 11}}46 \@writefile{toc}{\contentsline {chapter}{\numberline {3}3D Dynamical Code}{9}} 47 47 \@writefile{lof}{\addvspace {10\p@ }} 48 48 \@writefile{lot}{\addvspace {10\p@ }} 49 \newlabel{sc:dynamic}{{3}{ 11}}50 \@writefile{toc}{\contentsline {section}{\numberline {3.1}Discretisation of the dynamical equations}{ 11}}51 \@writefile{ toc}{\contentsline {paragraph}{la pression extensive:}{11}}52 \ @writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Grille obtenue avec 96 points en longitude et 73 en latitude et un zoom d'un facteur 3 centr\'e sur la m\'edit\'erann\'ee (grille utilis\'ee au laboratoire par Ali Harzallah)}}{12}}53 \ newlabel{fg:zoom}{{3.1}{12}}54 \ @writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Disposition des variables dans la grille du LMD}}{13}}55 \ newlabel{fg:grille}{{3.2}{13}}56 \@writefile{toc}{\contentsline {paragraph}{les trois composantes du flux de masse:}{1 3}}57 \@writefile{toc}{\contentsline {paragraph}{le facteur de Coriolis multipli\'e par l'aire de la maille:}{1 3}}58 \@writefile{toc}{\contentsline {paragraph}{la vorticit\'e potentielle absolue:}{1 3}}59 \@writefile{toc}{\contentsline {paragraph}{l'\'energie cin\'etique}{1 3}}60 \@writefile{toc}{\contentsline {paragraph}{\'equations du mouvement:}{1 3}}61 \newlabel{eq:u1}{{3.5}{1 3}}62 \newlabel{eq:v1}{{3.6}{1 3}}63 \@writefile{toc}{\contentsline {paragraph}{\'equation thermodynamique:}{1 4}}64 \newlabel{eq:thermo}{{3.7}{1 4}}65 \@writefile{toc}{\contentsline {paragraph}{\'equation hydrostatique:}{1 4}}66 \@writefile{toc}{\contentsline {paragraph}{\'equations de continuit\'e:}{1 4}}67 \newlabel{eq:cont1}{{3.9}{1 4}}68 \newlabel{eq:cont2}{{3.10}{1 4}}69 \@writefile{toc}{\contentsline {section}{\numberline {3.2}High latitude filters}{1 4}}70 \@writefile{toc}{\contentsline {section}{\numberline {3.3}Dissipation}{1 4}}71 \@writefile{toc}{\contentsline {section}{\numberline {3.4}Sponge layer}{1 5}}49 \newlabel{sc:dynamic}{{3}{9}} 50 \@writefile{toc}{\contentsline {section}{\numberline {3.1}Discretisation of the dynamical equations}{9}} 51 \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Grille obtenue avec 96 points en longitude et 73 en latitude et un zoom d'un facteur 3 centr\'e sur la m\'edit\'erann\'ee (grille utilis\'ee au laboratoire par Ali Harzallah)}}{9}} 52 \newlabel{fg:zoom}{{3.1}{9}} 53 \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Disposition des variables dans la grille du LMD}}{10}} 54 \newlabel{fg:grille}{{3.2}{10}} 55 \@writefile{toc}{\contentsline {paragraph}{la pression extensive:}{10}} 56 \@writefile{toc}{\contentsline {paragraph}{les trois composantes du flux de masse:}{10}} 57 \@writefile{toc}{\contentsline {paragraph}{le facteur de Coriolis multipli\'e par l'aire de la maille:}{10}} 58 \@writefile{toc}{\contentsline {paragraph}{la vorticit\'e potentielle absolue:}{10}} 59 \@writefile{toc}{\contentsline {paragraph}{l'\'energie cin\'etique}{10}} 60 \@writefile{toc}{\contentsline {paragraph}{\'equations du mouvement:}{10}} 61 \newlabel{eq:u1}{{3.5}{10}} 62 \newlabel{eq:v1}{{3.6}{10}} 63 \@writefile{toc}{\contentsline {paragraph}{\'equation thermodynamique:}{10}} 64 \newlabel{eq:thermo}{{3.7}{10}} 65 \@writefile{toc}{\contentsline {paragraph}{\'equation hydrostatique:}{11}} 66 \@writefile{toc}{\contentsline {paragraph}{\'equations de continuit\'e:}{11}} 67 \newlabel{eq:cont1}{{3.9}{11}} 68 \newlabel{eq:cont2}{{3.10}{11}} 69 \@writefile{toc}{\contentsline {section}{\numberline {3.2}High latitude filters}{11}} 70 \@writefile{toc}{\contentsline {section}{\numberline {3.3}Dissipation}{11}} 71 \@writefile{toc}{\contentsline {section}{\numberline {3.4}Sponge layer}{12}} 72 72 \citation{Forg:99} 73 73 \citation{Forg:99} 74 74 \citation{Lewi:99} 75 \@writefile{toc}{\contentsline {chapter}{\numberline {4}Physical parameterizations of the generic model: some references}{1 6}}75 \@writefile{toc}{\contentsline {chapter}{\numberline {4}Physical parameterizations of the generic model: some references}{13}} 76 76 \@writefile{lof}{\addvspace {10\p@ }} 77 77 \@writefile{lot}{\addvspace {10\p@ }} 78 \newlabel{sc:phystd}{{4}{1 6}}79 \@writefile{toc}{\contentsline {section}{\numberline {4.1}General}{1 6}}80 \@writefile{toc}{\contentsline {paragraph}{General references:}{1 6}}81 \@writefile{toc}{\contentsline {section}{\numberline {4.2}Radiative transfer}{1 6}}82 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}\bf Absorption/emission and diffusion by dust:}{1 6}}78 \newlabel{sc:phystd}{{4}{13}} 79 \@writefile{toc}{\contentsline {section}{\numberline {4.1}General}{13}} 80 \@writefile{toc}{\contentsline {paragraph}{General references:}{13}} 81 \@writefile{toc}{\contentsline {section}{\numberline {4.2}Radiative transfer}{13}} 82 \@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}\bf Absorption/emission and diffusion by dust:}{13}} 83 83 \citation{Toon:89} 84 84 \citation{Forg:98grl} … … 90 90 \citation{Hour:99} 91 91 \citation{Mont:04jgr} 92 \@writefile{toc}{\contentsline {section}{\numberline {4.3}Subgrid atmospheric dynamical processes}{1 7}}93 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Turbulent diffusion in the upper layer}{1 7}}94 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Convection}{1 7}}95 \@writefile{toc}{\contentsline {section}{\numberline {4.4}Surface thermal conduction}{1 7}}96 \@writefile{toc}{\contentsline {section}{\numberline {4.5}CO$_2$ Condensation}{1 7}}97 \@writefile{toc}{\contentsline {section}{\numberline {4.6}Tracer transport and sources}{1 7}}98 \@writefile{toc}{\contentsline {chapter}{\numberline {5}Running the model: a practice simulation}{1 9}}92 \@writefile{toc}{\contentsline {section}{\numberline {4.3}Subgrid atmospheric dynamical processes}{14}} 93 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}Turbulent diffusion in the upper layer}{14}} 94 \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Convection}{14}} 95 \@writefile{toc}{\contentsline {section}{\numberline {4.4}Surface thermal conduction}{14}} 96 \@writefile{toc}{\contentsline {section}{\numberline {4.5}CO$_2$ Condensation}{14}} 97 \@writefile{toc}{\contentsline {section}{\numberline {4.6}Tracer transport and sources}{14}} 98 \@writefile{toc}{\contentsline {chapter}{\numberline {5}Running the model: a practice simulation}{16}} 99 99 \@writefile{lof}{\addvspace {10\p@ }} 100 100 \@writefile{lot}{\addvspace {10\p@ }} 101 \newlabel{loc:contact1}{{5}{19}} 102 \@writefile{toc}{\contentsline {section}{\numberline {5.1}Installing the model from SVN}{19}} 103 \@writefile{toc}{\contentsline {section}{\numberline {5.2}Installing the model without SVN}{21}} 104 \@writefile{toc}{\contentsline {section}{\numberline {5.3}Compiling the model}{21}} 105 \newlabel{sc:run1}{{5.3}{21}} 106 \@writefile{toc}{\contentsline {section}{\numberline {5.4}Input files (initial states and def files)}{22}} 107 \@writefile{toc}{\contentsline {section}{\numberline {5.5}Running the model}{22}} 108 \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Input/output data}}{23}} 109 \newlabel{fig:inout}{{5.1}{23}} 110 \@writefile{toc}{\contentsline {section}{\numberline {5.6}Visualizing the output files}{24}} 111 \@writefile{toc}{\contentsline {subsection}{\numberline {5.6.1}Using GrAds to visualize outputs}{24}} 112 \newlabel{loc:visu}{{5.6.1}{24}} 113 \@writefile{toc}{\contentsline {section}{\numberline {5.7}Resuming a simulation}{25}} 114 \@writefile{toc}{\contentsline {section}{\numberline {5.8}Chain simulations}{25}} 115 \@writefile{toc}{\contentsline {section}{\numberline {5.9}Creating and modifying initial states}{25}} 116 \newlabel{sc:newstart}{{5.9}{25}} 117 \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.1}Using program ``newstart''}{25}} 118 \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.2}Creating the initial start\_archive.nc file }{27}} 119 \@writefile{toc}{\contentsline {subsection}{\numberline {5.9.3}Changing the horizontal or vertical grid resolution}{27}} 101 \newlabel{loc:contact1}{{5}{16}} 102 \@writefile{toc}{\contentsline {section}{\numberline {5.1}Installing the model from SVN}{16}} 103 \@writefile{toc}{\contentsline {section}{\numberline {5.2}Installing the model without SVN}{18}} 104 \@writefile{toc}{\contentsline {section}{\numberline {5.3}Compiling the LMDZ.GENERIC model (sequential only)}{18}} 105 \newlabel{sc:run1}{{5.3}{18}} 106 \@writefile{toc}{\contentsline {section}{\numberline {5.4}Compiling the LMDZ.COMMON model (sequential or parallel)}{19}} 107 \newlabel{sc:run1_common}{{5.4}{19}} 108 \@writefile{toc}{\contentsline {section}{\numberline {5.5}Input files (initial states and def files)}{20}} 109 \@writefile{toc}{\contentsline {section}{\numberline {5.6}Running the model}{20}} 110 \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Input/output data}}{21}} 111 \newlabel{fig:inout}{{5.1}{21}} 112 \@writefile{toc}{\contentsline {section}{\numberline {5.7}Visualizing the output files}{23}} 113 \@writefile{toc}{\contentsline {subsection}{\numberline {5.7.1}Using GrAds to visualize outputs}{23}} 114 \newlabel{loc:visu}{{5.7.1}{24}} 115 \@writefile{toc}{\contentsline {section}{\numberline {5.8}Resuming a simulation}{24}} 116 \@writefile{toc}{\contentsline {section}{\numberline {5.9}Chain simulations}{24}} 117 \@writefile{toc}{\contentsline {section}{\numberline {5.10}Creating and modifying initial states}{25}} 118 \newlabel{sc:newstart}{{5.10}{25}} 119 \@writefile{toc}{\contentsline {subsection}{\numberline {5.10.1}Using program ``newstart''}{25}} 120 \@writefile{toc}{\contentsline {subsection}{\numberline {5.10.2}Creating the initial start\_archive.nc file }{26}} 121 \@writefile{toc}{\contentsline {subsection}{\numberline {5.10.3}Changing the horizontal or vertical grid resolution}{27}} 120 122 \@writefile{toc}{\contentsline {chapter}{\numberline {6}Program organization and compilation script}{28}} 121 123 \@writefile{lof}{\addvspace {10\p@ }} … … 124 126 \newlabel{loc:contenu}{{6}{28}} 125 127 \@writefile{toc}{\contentsline {section}{\numberline {6.1}Organization of the model source files}{28}} 128 \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Organigram of subroutine function physiq.F90}}{29}} 129 \newlabel{fg:organi_phys}{{6.1}{29}} 126 130 \@writefile{toc}{\contentsline {section}{\numberline {6.2}Programming}{29}} 127 131 \@writefile{toc}{\contentsline {section}{\numberline {6.3}Model organization}{29}} 128 132 \@writefile{toc}{\contentsline {section}{\numberline {6.4}Compiling the model}{29}} 129 133 \newlabel{sc:compil1}{{6.4}{29}} 130 \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Organigram of subroutine function physiq.F90}}{30}} 131 \newlabel{fg:organi_phys}{{6.1}{30}} 132 \@writefile{toc}{\contentsline {paragraph}{Help manual for the makegcm script}{31}} 133 \@writefile{toc}{\contentsline {chapter}{\numberline {7}Input/Output}{33}} 134 \@writefile{toc}{\contentsline {paragraph}{Help manual for the makegcm script}{30}} 135 \@writefile{toc}{\contentsline {chapter}{\numberline {7}Input/Output}{32}} 134 136 \@writefile{lof}{\addvspace {10\p@ }} 135 137 \@writefile{lot}{\addvspace {10\p@ }} 136 \newlabel{sc:io}{{7}{3 3}}137 \@writefile{toc}{\contentsline {section}{\numberline {7.1}NetCDF format}{3 3}}138 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}NetCDF file editor: ncdump}{3 3}}139 \@writefile{toc}{\contentsline {paragraph}{Main commands for ncdump}{3 3}}140 \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Example of temperature data (in this case for present-day Mars) at a given time using GrADS visualization}}{3 4}}141 \newlabel{fg:grads}{{7.1}{3 4}}142 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}Graphic visualization of the NetCDF files using GrAds}{3 4}}143 \@writefile{toc}{\contentsline {section}{\numberline {7.2}Input and parameter files}{3 4}}144 \newlabel{loc:entrees}{{7.2}{3 4}}145 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}run.def}{3 5}}146 \newlabel{vb:run.def}{{7.2.1}{3 5}}147 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}callphys.def}{3 7}}148 \newlabel{sc:callphys.def}{{7.2.2}{3 7}}149 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.3}traceur.def}{3 9}}150 \newlabel{sc:traceur.def}{{7.2.3}{3 9}}151 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.4}z2sig.def}{3 9}}152 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.5}Initialization files: start and startfi}{ 40}}153 \@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Organization of NetCDF files }}{ 41}}154 \newlabel{fg:netcdf}{{7.2}{ 41}}155 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical headers}{4 3}}156 \@writefile{toc}{\contentsline {paragraph}{Surface conditions}{4 3}}157 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical state variables}{4 3}}158 \@writefile{toc}{\contentsline {paragraph}{The ``control'' array}{4 4}}159 \@writefile{toc}{\contentsline {section}{\numberline {7.3}Output files}{4 6}}160 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}NetCDF restart files - restart.nc and restartfi.nc}{4 6}}161 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.2} NetCDF file - diagfi.nc}{4 6}}162 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.3}Stats files}{4 7}}163 \@writefile{toc}{\contentsline {chapter}{\numberline {8}Water Cycle Simulation}{5 1}}138 \newlabel{sc:io}{{7}{32}} 139 \@writefile{toc}{\contentsline {section}{\numberline {7.1}NetCDF format}{32}} 140 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.1}NetCDF file editor: ncdump}{32}} 141 \@writefile{toc}{\contentsline {paragraph}{Main commands for ncdump}{32}} 142 \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Example of temperature data (in this case for present-day Mars) at a given time using GrADS visualization}}{33}} 143 \newlabel{fg:grads}{{7.1}{33}} 144 \@writefile{toc}{\contentsline {subsection}{\numberline {7.1.2}Graphic visualization of the NetCDF files using GrAds}{33}} 145 \@writefile{toc}{\contentsline {section}{\numberline {7.2}Input and parameter files}{33}} 146 \newlabel{loc:entrees}{{7.2}{33}} 147 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.1}run.def}{33}} 148 \newlabel{vb:run.def}{{7.2.1}{33}} 149 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.2}callphys.def}{36}} 150 \newlabel{sc:callphys.def}{{7.2.2}{36}} 151 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.3}traceur.def}{38}} 152 \newlabel{sc:traceur.def}{{7.2.3}{38}} 153 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.4}z2sig.def}{38}} 154 \@writefile{toc}{\contentsline {subsection}{\numberline {7.2.5}Initialization files: start and startfi}{39}} 155 \@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces Organization of NetCDF files }}{39}} 156 \newlabel{fg:netcdf}{{7.2}{39}} 157 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical headers}{41}} 158 \@writefile{toc}{\contentsline {paragraph}{Surface conditions}{41}} 159 \@writefile{toc}{\contentsline {paragraph}{Physical and dynamical state variables}{41}} 160 \@writefile{toc}{\contentsline {paragraph}{The ``control'' array}{42}} 161 \@writefile{toc}{\contentsline {section}{\numberline {7.3}Output files}{45}} 162 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.1}NetCDF restart files - restart.nc and restartfi.nc}{45}} 163 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.2} NetCDF file - diagfi.nc}{45}} 164 \@writefile{toc}{\contentsline {subsection}{\numberline {7.3.3}Stats files}{46}} 165 \@writefile{toc}{\contentsline {chapter}{\numberline {8}Water Cycle Simulation}{50}} 164 166 \@writefile{lof}{\addvspace {10\p@ }} 165 167 \@writefile{lot}{\addvspace {10\p@ }} 166 \newlabel{sc:water}{{8}{5 1}}167 \@writefile{toc}{\contentsline {chapter}{\numberline {9}1D version of the generic model}{5 4}}168 \newlabel{sc:water}{{8}{50}} 169 \@writefile{toc}{\contentsline {chapter}{\numberline {9}1D version of the generic model}{53}} 168 170 \@writefile{lof}{\addvspace {10\p@ }} 169 171 \@writefile{lot}{\addvspace {10\p@ }} 170 \newlabel{sc:rcm1d}{{9}{5 4}}171 \@writefile{toc}{\contentsline {section}{\numberline {9.1}Compilation}{5 4}}172 \@writefile{toc}{\contentsline {section}{\numberline {9.2}1-D runs and input files}{5 4}}173 \@writefile{toc}{\contentsline {section}{\numberline {9.3}Output data}{5 6}}174 \@writefile{toc}{\contentsline {chapter}{\numberline {10}Zoomed simulations}{5 7}}172 \newlabel{sc:rcm1d}{{9}{53}} 173 \@writefile{toc}{\contentsline {section}{\numberline {9.1}Compilation}{53}} 174 \@writefile{toc}{\contentsline {section}{\numberline {9.2}1-D runs and input files}{53}} 175 \@writefile{toc}{\contentsline {section}{\numberline {9.3}Output data}{55}} 176 \@writefile{toc}{\contentsline {chapter}{\numberline {10}Zoomed simulations}{56}} 175 177 \@writefile{lof}{\addvspace {10\p@ }} 176 178 \@writefile{lot}{\addvspace {10\p@ }} 177 \newlabel{sc:zoom}{{10}{5 7}}178 \@writefile{toc}{\contentsline {section}{\numberline {10.1}To define the zoomed area}{5 7}}179 \@writefile{toc}{\contentsline {section}{\numberline {10.2}Making a zoomed initial state}{5 7}}180 \@writefile{toc}{\contentsline {section}{\numberline {10.3}Running a zoomed simulation and stability issue}{5 8}}181 \@writefile{toc}{\contentsline {chapter}{\numberline {11}Changing the radiative transfer properties}{5 9}}179 \newlabel{sc:zoom}{{10}{56}} 180 \@writefile{toc}{\contentsline {section}{\numberline {10.1}To define the zoomed area}{56}} 181 \@writefile{toc}{\contentsline {section}{\numberline {10.2}Making a zoomed initial state}{56}} 182 \@writefile{toc}{\contentsline {section}{\numberline {10.3}Running a zoomed simulation and stability issue}{57}} 183 \@writefile{toc}{\contentsline {chapter}{\numberline {11}Changing the radiative transfer properties}{58}} 182 184 \@writefile{lof}{\addvspace {10\p@ }} 183 185 \@writefile{lot}{\addvspace {10\p@ }} 184 \newlabel{sc:kspectrum}{{11}{5 9}}185 \@writefile{toc}{\contentsline {section}{\numberline {11.1}Producing the high-resolution data}{5 9}}186 \@writefile{toc}{\contentsline {section}{\numberline {11.2}Performing the correlated-k conversion}{ 60}}186 \newlabel{sc:kspectrum}{{11}{58}} 187 \@writefile{toc}{\contentsline {section}{\numberline {11.1}Producing the high-resolution data}{58}} 188 \@writefile{toc}{\contentsline {section}{\numberline {11.2}Performing the correlated-k conversion}{59}} 187 189 \bibdata{newfred.bib} 188 \@writefile{toc}{\contentsline {section}{\numberline {11.3}Implementing the absorption data in the GCM}{6 1}}190 \@writefile{toc}{\contentsline {section}{\numberline {11.3}Implementing the absorption data in the GCM}{60}} 189 191 \bibstyle{plain}
Note: See TracChangeset
for help on using the changeset viewer.