1 | !IDEAL:MODEL_LAYER:INITIALIZATION |
---|
2 | |
---|
3 | ! This MODULE holds the routines which are used to perform various initializations |
---|
4 | ! for the individual domains. |
---|
5 | |
---|
6 | !----------------------------------------------------------------------- |
---|
7 | |
---|
8 | MODULE module_initialize_ideal |
---|
9 | |
---|
10 | USE module_domain ! frame/module_domain.F |
---|
11 | USE module_io_domain ! share |
---|
12 | USE module_state_description ! frame |
---|
13 | USE module_model_constants ! share |
---|
14 | USE module_bc ! share |
---|
15 | USE module_timing ! frame |
---|
16 | USE module_configure ! frame |
---|
17 | USE module_init_utilities ! dyn_em |
---|
18 | #ifdef DM_PARALLEL |
---|
19 | USE module_dm |
---|
20 | #endif |
---|
21 | |
---|
22 | |
---|
23 | CONTAINS |
---|
24 | |
---|
25 | |
---|
26 | !------------------------------------------------------------------- |
---|
27 | ! this is a wrapper for the solver-specific init_domain routines. |
---|
28 | ! Also dereferences the grid variables and passes them down as arguments. |
---|
29 | ! This is crucial, since the lower level routines may do message passing |
---|
30 | ! and this will get fouled up on machines that insist on passing down |
---|
31 | ! copies of assumed-shape arrays (by passing down as arguments, the |
---|
32 | ! data are treated as assumed-size -- ie. f77 -- arrays and the copying |
---|
33 | ! business is avoided). Fie on the F90 designers. Fie and a pox. |
---|
34 | |
---|
35 | SUBROUTINE init_domain ( grid ) |
---|
36 | |
---|
37 | IMPLICIT NONE |
---|
38 | |
---|
39 | ! Input data. |
---|
40 | TYPE (domain), POINTER :: grid |
---|
41 | ! Local data. |
---|
42 | INTEGER :: idum1, idum2 |
---|
43 | |
---|
44 | CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) |
---|
45 | |
---|
46 | CALL init_domain_rk( grid & |
---|
47 | ! |
---|
48 | #include <actual_new_args.inc> |
---|
49 | ! |
---|
50 | ) |
---|
51 | |
---|
52 | END SUBROUTINE init_domain |
---|
53 | |
---|
54 | !------------------------------------------------------------------- |
---|
55 | |
---|
56 | SUBROUTINE init_domain_rk ( grid & |
---|
57 | ! |
---|
58 | # include <dummy_new_args.inc> |
---|
59 | ! |
---|
60 | ) |
---|
61 | IMPLICIT NONE |
---|
62 | |
---|
63 | ! Input data. |
---|
64 | TYPE (domain), POINTER :: grid |
---|
65 | |
---|
66 | # include <dummy_decl.inc> |
---|
67 | |
---|
68 | TYPE (grid_config_rec_type) :: config_flags |
---|
69 | |
---|
70 | ! Local data |
---|
71 | INTEGER :: & |
---|
72 | ids, ide, jds, jde, kds, kde, & |
---|
73 | ims, ime, jms, jme, kms, kme, & |
---|
74 | its, ite, jts, jte, kts, kte, & |
---|
75 | i, j, k |
---|
76 | |
---|
77 | INTEGER :: nxx, nyy, ig, jg, im, error |
---|
78 | |
---|
79 | REAL :: dlam, dphi, vlat, tperturb |
---|
80 | REAL :: p_surf, p_level, pd_surf, qvf1, qvf2, qvf |
---|
81 | REAL :: thtmp, ptmp, temp(3), cof1, cof2 |
---|
82 | |
---|
83 | INTEGER :: icm,jcm |
---|
84 | |
---|
85 | SELECT CASE ( model_data_order ) |
---|
86 | CASE ( DATA_ORDER_ZXY ) |
---|
87 | kds = grid%sd31 ; kde = grid%ed31 ; |
---|
88 | ids = grid%sd32 ; ide = grid%ed32 ; |
---|
89 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
90 | |
---|
91 | kms = grid%sm31 ; kme = grid%em31 ; |
---|
92 | ims = grid%sm32 ; ime = grid%em32 ; |
---|
93 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
94 | |
---|
95 | kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch |
---|
96 | its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch |
---|
97 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
98 | CASE ( DATA_ORDER_XYZ ) |
---|
99 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
100 | jds = grid%sd32 ; jde = grid%ed32 ; |
---|
101 | kds = grid%sd33 ; kde = grid%ed33 ; |
---|
102 | |
---|
103 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
104 | jms = grid%sm32 ; jme = grid%em32 ; |
---|
105 | kms = grid%sm33 ; kme = grid%em33 ; |
---|
106 | |
---|
107 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
108 | jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch |
---|
109 | kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch |
---|
110 | CASE ( DATA_ORDER_XZY ) |
---|
111 | ids = grid%sd31 ; ide = grid%ed31 ; |
---|
112 | kds = grid%sd32 ; kde = grid%ed32 ; |
---|
113 | jds = grid%sd33 ; jde = grid%ed33 ; |
---|
114 | |
---|
115 | ims = grid%sm31 ; ime = grid%em31 ; |
---|
116 | kms = grid%sm32 ; kme = grid%em32 ; |
---|
117 | jms = grid%sm33 ; jme = grid%em33 ; |
---|
118 | |
---|
119 | its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch |
---|
120 | kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch |
---|
121 | jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch |
---|
122 | |
---|
123 | END SELECT |
---|
124 | |
---|
125 | CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) |
---|
126 | |
---|
127 | ! here we check to see if the boundary conditions are set properly |
---|
128 | |
---|
129 | CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) |
---|
130 | |
---|
131 | grid%itimestep=0 |
---|
132 | grid%step_number = 0 |
---|
133 | |
---|
134 | |
---|
135 | #ifdef DM_PARALLEL |
---|
136 | CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) |
---|
137 | CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) |
---|
138 | #endif |
---|
139 | |
---|
140 | ! Initialize 2D surface arrays |
---|
141 | |
---|
142 | nxx = ide-ids ! Don't include u-stagger |
---|
143 | nyy = jde-jds ! Don't include v-stagger |
---|
144 | dphi = 180./REAL(nyy) |
---|
145 | dlam = 360./REAL(nxx) |
---|
146 | |
---|
147 | DO j = jts, jte |
---|
148 | DO i = its, ite |
---|
149 | ! ig is the I index in the global (domain) span of the array. |
---|
150 | ! jg is the J index in the global (domain) span of the array. |
---|
151 | ig = i - ids + 1 ! ids is not necessarily 1 |
---|
152 | jg = j - jds + 1 ! jds is not necessarily 1 |
---|
153 | |
---|
154 | grid%xlat(i,j) = (REAL(jg)-0.5)*dphi-90. |
---|
155 | grid%xlong(i,j) = (REAL(ig)-0.5)*dlam-180. |
---|
156 | vlat = grid%xlat(i,j) - 0.5*dphi |
---|
157 | |
---|
158 | grid%clat(i,j) = grid%xlat(i,j) |
---|
159 | grid%clong(i,j) = grid%xlong(i,j) |
---|
160 | |
---|
161 | grid%msftx(i,j) = 1./COS(grid%xlat(i,j)*degrad) |
---|
162 | grid%msfty(i,j) = 1. |
---|
163 | grid%msfux(i,j) = 1./COS(grid%xlat(i,j)*degrad) |
---|
164 | grid%msfuy(i,j) = 1. |
---|
165 | grid%e(i,j) = 2*EOMEG*COS(grid%xlat(i,j)*degrad) |
---|
166 | grid%f(i,j) = 2*EOMEG*SIN(grid%xlat(i,j)*degrad) |
---|
167 | |
---|
168 | ! The following two are the cosine and sine of the rotation |
---|
169 | ! of projection. Simple cylindrical is *simple* ... no rotation! |
---|
170 | grid%sina(i,j) = 0. |
---|
171 | grid%cosa(i,j) = 1. |
---|
172 | |
---|
173 | END DO |
---|
174 | END DO |
---|
175 | |
---|
176 | ! DO j = max(jds+1,jts), min(jde-1,jte) |
---|
177 | DO j = jts, jte |
---|
178 | DO i = its, ite |
---|
179 | vlat = grid%xlat(i,j) - 0.5*dphi |
---|
180 | grid%msfvx(i,j) = 1./COS(vlat*degrad) |
---|
181 | grid%msfvy(i,j) = 1. |
---|
182 | grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) |
---|
183 | END DO |
---|
184 | END DO |
---|
185 | |
---|
186 | IF(jts == jds) THEN |
---|
187 | DO i = its, ite |
---|
188 | grid%msfvx(i,jts) = 00. |
---|
189 | grid%msfvx_inv(i,jts) = 0. |
---|
190 | END DO |
---|
191 | END IF |
---|
192 | |
---|
193 | IF(jte == jde) THEN |
---|
194 | DO i = its, ite |
---|
195 | grid%msfvx(i,jte) = 00. |
---|
196 | grid%msfvx_inv(i,jte) = 0. |
---|
197 | END DO |
---|
198 | END IF |
---|
199 | |
---|
200 | DO j=jts,jte |
---|
201 | vlat = grid%xlat(its,j) - 0.5*dphi |
---|
202 | write(6,*) j,vlat,grid%msfvx(its,j),grid%msfvx_inv(its,j) |
---|
203 | ENDDO |
---|
204 | |
---|
205 | DO j=jts,jte |
---|
206 | DO i=its,ite |
---|
207 | grid%ht(i,j) = 0. |
---|
208 | |
---|
209 | grid%albedo(i,j) = 0. |
---|
210 | grid%thc(i,j) = 1000. |
---|
211 | grid%znt(i,j) = 0.01 |
---|
212 | grid%emiss(i,j) = 1. |
---|
213 | grid%ivgtyp(i,j) = 1 |
---|
214 | grid%lu_index(i,j) = REAL(ivgtyp(i,j)) |
---|
215 | grid%xland(i,j) = 1. |
---|
216 | grid%mavail(i,j) = 0. |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | |
---|
220 | grid%dx = dlam*degrad/reradius |
---|
221 | grid%dy = dphi*degrad/reradius |
---|
222 | grid%rdx = 1./grid%dx |
---|
223 | grid%rdy = 1./grid%dy |
---|
224 | |
---|
225 | !WRITE(*,*) '' |
---|
226 | !WRITE(*,'(A,1PG14.6,A,1PG14.6)') ' For the namelist: dx =',grid%dx,', dy =',grid%dy |
---|
227 | |
---|
228 | CALL nl_set_mminlu(1,' ') |
---|
229 | grid%iswater = 0 |
---|
230 | grid%cen_lat = 0. |
---|
231 | grid%cen_lon = 0. |
---|
232 | grid%truelat1 = 0. |
---|
233 | grid%truelat2 = 0. |
---|
234 | grid%moad_cen_lat = 0. |
---|
235 | grid%stand_lon = 0. |
---|
236 | ! Apparently, map projection 0 is "none" which actually turns out to be |
---|
237 | ! a regular grid of latitudes and longitudes, the simple cylindrical projection |
---|
238 | grid%map_proj = 0 |
---|
239 | |
---|
240 | DO k = kds, kde |
---|
241 | grid%znw(k) = 1. - REAL(k-kds)/REAL(kde-kds) |
---|
242 | END DO |
---|
243 | |
---|
244 | DO k=1, kde-1 |
---|
245 | grid%dnw(k) = grid%znw(k+1) - grid%znw(k) |
---|
246 | grid%rdnw(k) = 1./grid%dnw(k) |
---|
247 | grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) |
---|
248 | ENDDO |
---|
249 | DO k=2, kde-1 |
---|
250 | grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) |
---|
251 | grid%rdn(k) = 1./grid%dn(k) |
---|
252 | grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) |
---|
253 | grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) |
---|
254 | ENDDO |
---|
255 | |
---|
256 | cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) |
---|
257 | cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) |
---|
258 | grid%cf1 = grid%fnp(2) + cof1 |
---|
259 | grid%cf2 = grid%fnm(2) - cof1 - cof2 |
---|
260 | grid%cf3 = cof2 |
---|
261 | |
---|
262 | grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) |
---|
263 | grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) |
---|
264 | |
---|
265 | |
---|
266 | ! Need to add perturbations to initial profile. Set up random number |
---|
267 | ! seed here. |
---|
268 | CALL random_seed |
---|
269 | |
---|
270 | ! General assumption from here after is that the initial temperature |
---|
271 | ! profile is isothermal at a value of T0, and the initial winds are |
---|
272 | ! all 0. |
---|
273 | |
---|
274 | ! find ptop for the desired ztop (ztop is input from the namelist) |
---|
275 | grid%p_top = p0 * EXP(-(g*config_flags%ztop)/(r_d*T0)) |
---|
276 | |
---|
277 | |
---|
278 | ! Values of geopotential (base, perturbation, and at p0) at the surface |
---|
279 | DO j = jts, jte |
---|
280 | DO i = its, ite |
---|
281 | grid%phb(i,1,j) = grid%ht(i,j)*g |
---|
282 | grid%php(i,1,j) = 0. ! This is perturbation geopotential |
---|
283 | ! Since this is an initial condition, there |
---|
284 | ! should be no perturbation! |
---|
285 | grid%ph0(i,1,j) = grid%ht(i,j)*g |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | |
---|
289 | |
---|
290 | DO J = jts, jte |
---|
291 | DO I = its, ite |
---|
292 | |
---|
293 | p_surf = p0 * EXP(-(g*grid%phb(i,1,j)/g)/(r_d*T0)) |
---|
294 | grid%mub(i,j) = p_surf-grid%p_top |
---|
295 | |
---|
296 | ! given p (coordinate), calculate theta and compute 1/rho from equation |
---|
297 | ! of state |
---|
298 | |
---|
299 | DO K = kts, kte-1 |
---|
300 | p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top |
---|
301 | grid%pb(i,k,j) = p_level |
---|
302 | |
---|
303 | grid%t_init(i,k,j) = T0*(p0/p_level)**rcp |
---|
304 | grid%t_init(i,k,j) = grid%t_init(i,k,j) - t0 |
---|
305 | |
---|
306 | grid%alb(i,k,j)=(r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm |
---|
307 | END DO |
---|
308 | |
---|
309 | ! calculate hydrostatic balance (alternatively we could interpolate |
---|
310 | ! the geopotential from the sounding, but this assures that the base |
---|
311 | ! state is in exact hydrostatic balance with respect to the model eqns. |
---|
312 | |
---|
313 | DO k = kts+1, kte |
---|
314 | grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) |
---|
315 | ENDDO |
---|
316 | |
---|
317 | ENDDO |
---|
318 | ENDDO |
---|
319 | |
---|
320 | DO im = PARAM_FIRST_SCALAR, num_moist |
---|
321 | DO J = jts, jte |
---|
322 | DO K = kts, kte-1 |
---|
323 | DO I = its, ite |
---|
324 | grid%moist(i,k,j,im) = 0. |
---|
325 | END DO |
---|
326 | END DO |
---|
327 | END DO |
---|
328 | END DO |
---|
329 | |
---|
330 | ! Now calculate the full (hydrostatically-balanced) state for each column |
---|
331 | ! We will include moisture |
---|
332 | DO J = jts, jte |
---|
333 | DO I = its, ite |
---|
334 | |
---|
335 | ! At this point p_top is already set. find the DRY mass in the column |
---|
336 | pd_surf = p0 * EXP(-(g*grid%phb(i,1,j)/g)/(r_d*T0)) |
---|
337 | |
---|
338 | ! compute the perturbation mass (mu/mu_1/mu_2) and the full mass |
---|
339 | grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) |
---|
340 | grid%mu_2(i,j) = grid%mu_1(i,j) |
---|
341 | grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) |
---|
342 | |
---|
343 | ! given the dry pressure and coordinate system, calculate the |
---|
344 | ! perturbation potential temperature (t/t_1/t_2) |
---|
345 | |
---|
346 | DO k = kds, kde-1 |
---|
347 | p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top |
---|
348 | grid%t_1(i,k,j) = T0*(p0/p_level)**rcp |
---|
349 | ! Add a small perturbation to initial isothermal profile |
---|
350 | CALL random_number(tperturb) |
---|
351 | grid%t_1(i,k,j)=grid%t_1(i,k,j)*(1.0+0.004*(tperturb-0.5)) |
---|
352 | grid%t_1(i,k,j) = grid%t_1(i,k,j)-t0 |
---|
353 | grid%t_2(i,k,j) = grid%t_1(i,k,j) |
---|
354 | END DO |
---|
355 | |
---|
356 | |
---|
357 | ! integrate the hydrostatic equation (from the RHS of the bigstep |
---|
358 | ! vertical momentum equation) down from the top to get p. |
---|
359 | ! first from the top of the model to the top pressure |
---|
360 | |
---|
361 | k = kte-1 ! top level |
---|
362 | |
---|
363 | qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV)) |
---|
364 | qvf2 = 1./(1.+qvf1) |
---|
365 | qvf1 = qvf1*qvf2 |
---|
366 | |
---|
367 | ! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k) |
---|
368 | grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 |
---|
369 | qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) |
---|
370 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
371 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
372 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
373 | |
---|
374 | ! down the column |
---|
375 | |
---|
376 | do k=kte-2,kts,-1 |
---|
377 | qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k+1,j,P_QV)) |
---|
378 | qvf2 = 1./(1.+qvf1) |
---|
379 | qvf1 = qvf1*qvf2 |
---|
380 | grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) |
---|
381 | qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) |
---|
382 | grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & |
---|
383 | (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) |
---|
384 | grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) |
---|
385 | enddo |
---|
386 | |
---|
387 | ! this is the hydrostatic equation used in the model after the |
---|
388 | ! small timesteps. In the model, al (inverse density) |
---|
389 | ! is computed from the geopotential. |
---|
390 | |
---|
391 | grid%ph_1(i,1,j) = 0. |
---|
392 | DO k = kts+1,kte |
---|
393 | grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( & |
---|
394 | (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & |
---|
395 | grid%mu_1(i,j)*grid%alb(i,k-1,j) ) |
---|
396 | |
---|
397 | grid%ph_2(i,k,j) = grid%ph_1(i,k,j) |
---|
398 | grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) |
---|
399 | ENDDO |
---|
400 | |
---|
401 | END DO |
---|
402 | END DO |
---|
403 | |
---|
404 | |
---|
405 | |
---|
406 | ! Now set U & V |
---|
407 | DO J = jts, jte |
---|
408 | DO K = kts, kte-1 |
---|
409 | DO I = its, ite |
---|
410 | grid%u_1(i,k,j) = 0. |
---|
411 | grid%u_2(i,k,j) = 0. |
---|
412 | grid%v_1(i,k,j) = 0. |
---|
413 | grid%v_2(i,k,j) = 0. |
---|
414 | END DO |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | |
---|
418 | |
---|
419 | DO j=jts, jte |
---|
420 | DO k=kds, kde |
---|
421 | DO i=its, ite |
---|
422 | grid%ww(i,k,j) = 0. |
---|
423 | grid%w_1(i,k,j) = 0. |
---|
424 | grid%w_2(i,k,j) = 0. |
---|
425 | grid%h_diabatic(i,k,j) = 0. |
---|
426 | END DO |
---|
427 | END DO |
---|
428 | END DO |
---|
429 | |
---|
430 | |
---|
431 | DO k=kts,kte |
---|
432 | grid%t_base(k) = grid%t_init(its,k,jts) |
---|
433 | grid%qv_base(k) = 0. |
---|
434 | grid%u_base(k) = 0. |
---|
435 | grid%v_base(k) = 0. |
---|
436 | END DO |
---|
437 | |
---|
438 | ! One subsurface layer: infinite slab at constant temperature below |
---|
439 | ! the surface. Surface temperature is an infinitely thin "skin" on |
---|
440 | ! top of a half-infinite slab. The temperature of both the skin and |
---|
441 | ! the slab are determined from the initial nearest-surface-air-layer |
---|
442 | ! temperature. |
---|
443 | DO J = jts, MIN(jte, jde-1) |
---|
444 | DO I = its, MIN(ite, ide-1) |
---|
445 | thtmp = grid%t_2(i,1,j)+t0 |
---|
446 | ptmp = grid%p(i,1,j)+grid%pb(i,1,j) |
---|
447 | temp(1) = thtmp * (ptmp/p1000mb)**rcp |
---|
448 | thtmp = grid%t_2(i,2,j)+t0 |
---|
449 | ptmp = grid%p(i,2,j)+grid%pb(i,2,j) |
---|
450 | temp(2) = thtmp * (ptmp/p1000mb)**rcp |
---|
451 | thtmp = grid%t_2(i,3,j)+t0 |
---|
452 | ptmp = grid%p(i,3,j)+grid%pb(i,3,j) |
---|
453 | temp(3) = thtmp * (ptmp/p1000mb)**rcp |
---|
454 | grid%tsk(I,J)=cf1*temp(1)+cf2*temp(2)+cf3*temp(3) |
---|
455 | grid%tmn(I,J)=grid%tsk(I,J)-0.5 |
---|
456 | END DO |
---|
457 | END DO |
---|
458 | |
---|
459 | RETURN |
---|
460 | |
---|
461 | END SUBROUTINE init_domain_rk |
---|
462 | |
---|
463 | !--------------------------------------------------------------------- |
---|
464 | |
---|
465 | SUBROUTINE init_module_initialize |
---|
466 | END SUBROUTINE init_module_initialize |
---|
467 | |
---|
468 | !--------------------------------------------------------------------- |
---|
469 | |
---|
470 | END MODULE module_initialize_ideal |
---|