!IDEAL:MODEL_LAYER:INITIALIZATION ! This MODULE holds the routines which are used to perform various initializations ! for the individual domains. !----------------------------------------------------------------------- MODULE module_initialize_ideal USE module_domain ! frame/module_domain.F USE module_io_domain ! share USE module_state_description ! frame USE module_model_constants ! share USE module_bc ! share USE module_timing ! frame USE module_configure ! frame USE module_init_utilities ! dyn_em #ifdef DM_PARALLEL USE module_dm #endif CONTAINS !------------------------------------------------------------------- ! this is a wrapper for the solver-specific init_domain routines. ! Also dereferences the grid variables and passes them down as arguments. ! This is crucial, since the lower level routines may do message passing ! and this will get fouled up on machines that insist on passing down ! copies of assumed-shape arrays (by passing down as arguments, the ! data are treated as assumed-size -- ie. f77 -- arrays and the copying ! business is avoided). Fie on the F90 designers. Fie and a pox. SUBROUTINE init_domain ( grid ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid ! Local data. INTEGER :: idum1, idum2 CALL set_scalar_indices_from_config ( head_grid%id , idum1, idum2 ) CALL init_domain_rk( grid & ! #include ! ) END SUBROUTINE init_domain !------------------------------------------------------------------- SUBROUTINE init_domain_rk ( grid & ! # include ! ) IMPLICIT NONE ! Input data. TYPE (domain), POINTER :: grid # include TYPE (grid_config_rec_type) :: config_flags ! Local data INTEGER :: & ids, ide, jds, jde, kds, kde, & ims, ime, jms, jme, kms, kme, & its, ite, jts, jte, kts, kte, & i, j, k INTEGER :: nxx, nyy, ig, jg, im, error REAL :: dlam, dphi, vlat, tperturb REAL :: p_surf, p_level, pd_surf, qvf1, qvf2, qvf REAL :: thtmp, ptmp, temp(3), cof1, cof2 INTEGER :: icm,jcm SELECT CASE ( model_data_order ) CASE ( DATA_ORDER_ZXY ) kds = grid%sd31 ; kde = grid%ed31 ; ids = grid%sd32 ; ide = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; kms = grid%sm31 ; kme = grid%em31 ; ims = grid%sm32 ; ime = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; kts = grid%sp31 ; kte = grid%ep31 ; ! note that tile is entire patch its = grid%sp32 ; ite = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XYZ ) ids = grid%sd31 ; ide = grid%ed31 ; jds = grid%sd32 ; jde = grid%ed32 ; kds = grid%sd33 ; kde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; jms = grid%sm32 ; jme = grid%em32 ; kms = grid%sm33 ; kme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch jts = grid%sp32 ; jte = grid%ep32 ; ! note that tile is entire patch kts = grid%sp33 ; kte = grid%ep33 ; ! note that tile is entire patch CASE ( DATA_ORDER_XZY ) ids = grid%sd31 ; ide = grid%ed31 ; kds = grid%sd32 ; kde = grid%ed32 ; jds = grid%sd33 ; jde = grid%ed33 ; ims = grid%sm31 ; ime = grid%em31 ; kms = grid%sm32 ; kme = grid%em32 ; jms = grid%sm33 ; jme = grid%em33 ; its = grid%sp31 ; ite = grid%ep31 ; ! note that tile is entire patch kts = grid%sp32 ; kte = grid%ep32 ; ! note that tile is entire patch jts = grid%sp33 ; jte = grid%ep33 ; ! note that tile is entire patch END SELECT CALL model_to_grid_config_rec ( grid%id , model_config_rec , config_flags ) ! here we check to see if the boundary conditions are set properly CALL boundary_condition_check( config_flags, bdyzone, error, grid%id ) grid%itimestep=0 grid%step_number = 0 #ifdef DM_PARALLEL CALL wrf_dm_bcast_bytes( icm , IWORDSIZE ) CALL wrf_dm_bcast_bytes( jcm , IWORDSIZE ) #endif ! Initialize 2D surface arrays nxx = ide-ids ! Don't include u-stagger nyy = jde-jds ! Don't include v-stagger dphi = 180./REAL(nyy) dlam = 360./REAL(nxx) DO j = jts, jte DO i = its, ite ! ig is the I index in the global (domain) span of the array. ! jg is the J index in the global (domain) span of the array. ig = i - ids + 1 ! ids is not necessarily 1 jg = j - jds + 1 ! jds is not necessarily 1 grid%xlat(i,j) = (REAL(jg)-0.5)*dphi-90. grid%xlong(i,j) = (REAL(ig)-0.5)*dlam-180. vlat = grid%xlat(i,j) - 0.5*dphi grid%clat(i,j) = grid%xlat(i,j) grid%clong(i,j) = grid%xlong(i,j) grid%msftx(i,j) = 1./COS(grid%xlat(i,j)*degrad) grid%msfty(i,j) = 1. grid%msfux(i,j) = 1./COS(grid%xlat(i,j)*degrad) grid%msfuy(i,j) = 1. grid%e(i,j) = 2*EOMEG*COS(grid%xlat(i,j)*degrad) grid%f(i,j) = 2*EOMEG*SIN(grid%xlat(i,j)*degrad) ! The following two are the cosine and sine of the rotation ! of projection. Simple cylindrical is *simple* ... no rotation! grid%sina(i,j) = 0. grid%cosa(i,j) = 1. END DO END DO ! DO j = max(jds+1,jts), min(jde-1,jte) DO j = jts, jte DO i = its, ite vlat = grid%xlat(i,j) - 0.5*dphi grid%msfvx(i,j) = 1./COS(vlat*degrad) grid%msfvy(i,j) = 1. grid%msfvx_inv(i,j) = 1./grid%msfvx(i,j) END DO END DO IF(jts == jds) THEN DO i = its, ite grid%msfvx(i,jts) = 00. grid%msfvx_inv(i,jts) = 0. END DO END IF IF(jte == jde) THEN DO i = its, ite grid%msfvx(i,jte) = 00. grid%msfvx_inv(i,jte) = 0. END DO END IF DO j=jts,jte vlat = grid%xlat(its,j) - 0.5*dphi write(6,*) j,vlat,grid%msfvx(its,j),grid%msfvx_inv(its,j) ENDDO DO j=jts,jte DO i=its,ite grid%ht(i,j) = 0. grid%albedo(i,j) = 0. grid%thc(i,j) = 1000. grid%znt(i,j) = 0.01 grid%emiss(i,j) = 1. grid%ivgtyp(i,j) = 1 grid%lu_index(i,j) = REAL(ivgtyp(i,j)) grid%xland(i,j) = 1. grid%mavail(i,j) = 0. END DO END DO grid%dx = dlam*degrad/reradius grid%dy = dphi*degrad/reradius grid%rdx = 1./grid%dx grid%rdy = 1./grid%dy !WRITE(*,*) '' !WRITE(*,'(A,1PG14.6,A,1PG14.6)') ' For the namelist: dx =',grid%dx,', dy =',grid%dy CALL nl_set_mminlu(1,' ') grid%iswater = 0 grid%cen_lat = 0. grid%cen_lon = 0. grid%truelat1 = 0. grid%truelat2 = 0. grid%moad_cen_lat = 0. grid%stand_lon = 0. ! Apparently, map projection 0 is "none" which actually turns out to be ! a regular grid of latitudes and longitudes, the simple cylindrical projection grid%map_proj = 0 DO k = kds, kde grid%znw(k) = 1. - REAL(k-kds)/REAL(kde-kds) END DO DO k=1, kde-1 grid%dnw(k) = grid%znw(k+1) - grid%znw(k) grid%rdnw(k) = 1./grid%dnw(k) grid%znu(k) = 0.5*(grid%znw(k+1)+grid%znw(k)) ENDDO DO k=2, kde-1 grid%dn(k) = 0.5*(grid%dnw(k)+grid%dnw(k-1)) grid%rdn(k) = 1./grid%dn(k) grid%fnp(k) = .5* grid%dnw(k )/grid%dn(k) grid%fnm(k) = .5* grid%dnw(k-1)/grid%dn(k) ENDDO cof1 = (2.*grid%dn(2)+grid%dn(3))/(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(2) cof2 = grid%dn(2) /(grid%dn(2)+grid%dn(3))*grid%dnw(1)/grid%dn(3) grid%cf1 = grid%fnp(2) + cof1 grid%cf2 = grid%fnm(2) - cof1 - cof2 grid%cf3 = cof2 grid%cfn = (.5*grid%dnw(kde-1)+grid%dn(kde-1))/grid%dn(kde-1) grid%cfn1 = -.5*grid%dnw(kde-1)/grid%dn(kde-1) ! Need to add perturbations to initial profile. Set up random number ! seed here. CALL random_seed ! General assumption from here after is that the initial temperature ! profile is isothermal at a value of T0, and the initial winds are ! all 0. ! find ptop for the desired ztop (ztop is input from the namelist) grid%p_top = p0 * EXP(-(g*config_flags%ztop)/(r_d*T0)) ! Values of geopotential (base, perturbation, and at p0) at the surface DO j = jts, jte DO i = its, ite grid%phb(i,1,j) = grid%ht(i,j)*g grid%php(i,1,j) = 0. ! This is perturbation geopotential ! Since this is an initial condition, there ! should be no perturbation! grid%ph0(i,1,j) = grid%ht(i,j)*g ENDDO ENDDO DO J = jts, jte DO I = its, ite p_surf = p0 * EXP(-(g*grid%phb(i,1,j)/g)/(r_d*T0)) grid%mub(i,j) = p_surf-grid%p_top ! given p (coordinate), calculate theta and compute 1/rho from equation ! of state DO K = kts, kte-1 p_level = grid%znu(k)*(p_surf - grid%p_top) + grid%p_top grid%pb(i,k,j) = p_level grid%t_init(i,k,j) = T0*(p0/p_level)**rcp grid%t_init(i,k,j) = grid%t_init(i,k,j) - t0 grid%alb(i,k,j)=(r_d/p1000mb)*(grid%t_init(i,k,j)+t0)*(grid%pb(i,k,j)/p1000mb)**cvpm END DO ! calculate hydrostatic balance (alternatively we could interpolate ! the geopotential from the sounding, but this assures that the base ! state is in exact hydrostatic balance with respect to the model eqns. DO k = kts+1, kte grid%phb(i,k,j) = grid%phb(i,k-1,j) - grid%dnw(k-1)*grid%mub(i,j)*grid%alb(i,k-1,j) ENDDO ENDDO ENDDO DO im = PARAM_FIRST_SCALAR, num_moist DO J = jts, jte DO K = kts, kte-1 DO I = its, ite grid%moist(i,k,j,im) = 0. END DO END DO END DO END DO ! Now calculate the full (hydrostatically-balanced) state for each column ! We will include moisture DO J = jts, jte DO I = its, ite ! At this point p_top is already set. find the DRY mass in the column pd_surf = p0 * EXP(-(g*grid%phb(i,1,j)/g)/(r_d*T0)) ! compute the perturbation mass (mu/mu_1/mu_2) and the full mass grid%mu_1(i,j) = pd_surf-grid%p_top - grid%mub(i,j) grid%mu_2(i,j) = grid%mu_1(i,j) grid%mu0(i,j) = grid%mu_1(i,j) + grid%mub(i,j) ! given the dry pressure and coordinate system, calculate the ! perturbation potential temperature (t/t_1/t_2) DO k = kds, kde-1 p_level = grid%znu(k)*(pd_surf - grid%p_top) + grid%p_top grid%t_1(i,k,j) = T0*(p0/p_level)**rcp ! Add a small perturbation to initial isothermal profile CALL random_number(tperturb) grid%t_1(i,k,j)=grid%t_1(i,k,j)*(1.0+0.004*(tperturb-0.5)) grid%t_1(i,k,j) = grid%t_1(i,k,j)-t0 grid%t_2(i,k,j) = grid%t_1(i,k,j) END DO ! integrate the hydrostatic equation (from the RHS of the bigstep ! vertical momentum equation) down from the top to get p. ! first from the top of the model to the top pressure k = kte-1 ! top level qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 ! grid%p(i,k,j) = - 0.5*grid%mu_1(i,j)/grid%rdnw(k) grid%p(i,k,j) = - 0.5*(grid%mu_1(i,j)+qvf1*grid%mub(i,j))/grid%rdnw(k)/qvf2 qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) ! down the column do k=kte-2,kts,-1 qvf1 = 0.5*(grid%moist(i,k,j,P_QV)+grid%moist(i,k+1,j,P_QV)) qvf2 = 1./(1.+qvf1) qvf1 = qvf1*qvf2 grid%p(i,k,j) = grid%p(i,k+1,j) - (grid%mu_1(i,j) + qvf1*grid%mub(i,j))/qvf2/grid%rdn(k+1) qvf = 1. + rvovrd*grid%moist(i,k,j,P_QV) grid%alt(i,k,j) = (r_d/p1000mb)*(grid%t_1(i,k,j)+t0)*qvf* & (((grid%p(i,k,j)+grid%pb(i,k,j))/p1000mb)**cvpm) grid%al(i,k,j) = grid%alt(i,k,j) - grid%alb(i,k,j) enddo ! this is the hydrostatic equation used in the model after the ! small timesteps. In the model, al (inverse density) ! is computed from the geopotential. grid%ph_1(i,1,j) = 0. DO k = kts+1,kte grid%ph_1(i,k,j) = grid%ph_1(i,k-1,j) - (1./grid%rdnw(k-1))*( & (grid%mub(i,j)+grid%mu_1(i,j))*grid%al(i,k-1,j)+ & grid%mu_1(i,j)*grid%alb(i,k-1,j) ) grid%ph_2(i,k,j) = grid%ph_1(i,k,j) grid%ph0(i,k,j) = grid%ph_1(i,k,j) + grid%phb(i,k,j) ENDDO END DO END DO ! Now set U & V DO J = jts, jte DO K = kts, kte-1 DO I = its, ite grid%u_1(i,k,j) = 0. grid%u_2(i,k,j) = 0. grid%v_1(i,k,j) = 0. grid%v_2(i,k,j) = 0. END DO END DO END DO DO j=jts, jte DO k=kds, kde DO i=its, ite grid%ww(i,k,j) = 0. grid%w_1(i,k,j) = 0. grid%w_2(i,k,j) = 0. grid%h_diabatic(i,k,j) = 0. END DO END DO END DO DO k=kts,kte grid%t_base(k) = grid%t_init(its,k,jts) grid%qv_base(k) = 0. grid%u_base(k) = 0. grid%v_base(k) = 0. END DO ! One subsurface layer: infinite slab at constant temperature below ! the surface. Surface temperature is an infinitely thin "skin" on ! top of a half-infinite slab. The temperature of both the skin and ! the slab are determined from the initial nearest-surface-air-layer ! temperature. DO J = jts, MIN(jte, jde-1) DO I = its, MIN(ite, ide-1) thtmp = grid%t_2(i,1,j)+t0 ptmp = grid%p(i,1,j)+grid%pb(i,1,j) temp(1) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,2,j)+t0 ptmp = grid%p(i,2,j)+grid%pb(i,2,j) temp(2) = thtmp * (ptmp/p1000mb)**rcp thtmp = grid%t_2(i,3,j)+t0 ptmp = grid%p(i,3,j)+grid%pb(i,3,j) temp(3) = thtmp * (ptmp/p1000mb)**rcp grid%tsk(I,J)=cf1*temp(1)+cf2*temp(2)+cf3*temp(3) grid%tmn(I,J)=grid%tsk(I,J)-0.5 END DO END DO RETURN END SUBROUTINE init_domain_rk !--------------------------------------------------------------------- SUBROUTINE init_module_initialize END SUBROUTINE init_module_initialize !--------------------------------------------------------------------- END MODULE module_initialize_ideal