[345] | 1 | ## Author: AS |
---|
[252] | 2 | def errormess(text,printvar=None): |
---|
[233] | 3 | print text |
---|
[399] | 4 | if printvar is not None: print printvar |
---|
[233] | 5 | exit() |
---|
| 6 | return |
---|
| 7 | |
---|
[345] | 8 | ## Author: AS |
---|
[349] | 9 | def adjust_length (tab, zelen): |
---|
| 10 | from numpy import ones |
---|
| 11 | if tab is None: |
---|
| 12 | outtab = ones(zelen) * -999999 |
---|
| 13 | else: |
---|
| 14 | if zelen != len(tab): |
---|
| 15 | print "not enough or too much values... setting same values all variables" |
---|
| 16 | outtab = ones(zelen) * tab[0] |
---|
| 17 | else: |
---|
| 18 | outtab = tab |
---|
| 19 | return outtab |
---|
| 20 | |
---|
| 21 | ## Author: AS |
---|
[468] | 22 | def getname(var=False,var2=False,winds=False,anomaly=False): |
---|
[252] | 23 | if var and winds: basename = var + '_UV' |
---|
| 24 | elif var: basename = var |
---|
| 25 | elif winds: basename = 'UV' |
---|
| 26 | else: errormess("please set at least winds or var",printvar=nc.variables) |
---|
| 27 | if anomaly: basename = 'd' + basename |
---|
[468] | 28 | if var2: basename = basename + '_' + var2 |
---|
[252] | 29 | return basename |
---|
| 30 | |
---|
[345] | 31 | ## Author: AS |
---|
[252] | 32 | def localtime(utc,lon): |
---|
| 33 | ltst = utc + lon / 15. |
---|
| 34 | ltst = int (ltst * 10) / 10. |
---|
| 35 | ltst = ltst % 24 |
---|
| 36 | return ltst |
---|
| 37 | |
---|
[569] | 38 | ## Author: AC |
---|
| 39 | def check_localtime(time): |
---|
| 40 | a=-1 |
---|
| 41 | for i in range(len(time)-1): |
---|
[583] | 42 | if (time[i] > time[i+1]): a=i |
---|
| 43 | if a >= 0 and a < (len(time)-1)/2.: |
---|
[569] | 44 | print "Sorry, time axis is not regular." |
---|
| 45 | print "Contourf needs regular axis... recasting" |
---|
| 46 | for i in range(a+1): |
---|
| 47 | time[i]=time[i]-24. |
---|
[583] | 48 | if a >= 0 and a >= (len(time)-1)/2.: |
---|
| 49 | print "Sorry, time axis is not regular." |
---|
| 50 | print "Contourf needs regular axis... recasting" |
---|
| 51 | for i in range((len(time)-1) - a): |
---|
| 52 | time[a+1+i]=time[a+1+i]+24. |
---|
[569] | 53 | return time |
---|
| 54 | |
---|
[525] | 55 | ## Author: AS, AC, JL |
---|
[233] | 56 | def whatkindfile (nc): |
---|
[647] | 57 | typefile = 'gcm' # default |
---|
[429] | 58 | if 'controle' in nc.variables: typefile = 'gcm' |
---|
| 59 | elif 'phisinit' in nc.variables: typefile = 'gcm' |
---|
[525] | 60 | elif 'time_counter' in nc.variables: typefile = 'earthgcm' |
---|
[548] | 61 | elif hasattr(nc,'START_DATE'): typefile = 'meso' |
---|
[429] | 62 | elif 'HGT_M' in nc.variables: typefile = 'geo' |
---|
[558] | 63 | elif hasattr(nc,'institution'): |
---|
| 64 | if "European Centre" in getattr(nc,'institution'): typefile = 'ecmwf' |
---|
[233] | 65 | return typefile |
---|
| 66 | |
---|
[345] | 67 | ## Author: AS |
---|
[233] | 68 | def getfield (nc,var): |
---|
| 69 | ## this allows to get much faster (than simply referring to nc.variables[var]) |
---|
[395] | 70 | import numpy as np |
---|
[233] | 71 | dimension = len(nc.variables[var].dimensions) |
---|
[392] | 72 | #print " Opening variable with", dimension, "dimensions ..." |
---|
[233] | 73 | if dimension == 2: field = nc.variables[var][:,:] |
---|
| 74 | elif dimension == 3: field = nc.variables[var][:,:,:] |
---|
| 75 | elif dimension == 4: field = nc.variables[var][:,:,:,:] |
---|
[494] | 76 | elif dimension == 1: field = nc.variables[var][:] |
---|
[395] | 77 | # if there are NaNs in the ncdf, they should be loaded as a masked array which will be |
---|
| 78 | # recasted as a regular array later in reducefield |
---|
| 79 | if (np.isnan(np.sum(field)) and (type(field).__name__ not in 'MaskedArray')): |
---|
| 80 | print "Warning: netcdf as nan values but is not loaded as a Masked Array." |
---|
| 81 | print "recasting array type" |
---|
| 82 | out=np.ma.masked_invalid(field) |
---|
| 83 | out.set_fill_value([np.NaN]) |
---|
| 84 | else: |
---|
[464] | 85 | # missing values from zrecast or hrecast are -1e-33 |
---|
[469] | 86 | masked=np.ma.masked_where(field < -1e30,field) |
---|
[578] | 87 | masked2=np.ma.masked_where(field > 1e35,field) |
---|
| 88 | masked.set_fill_value([np.NaN]) ; masked2.set_fill_value([np.NaN]) |
---|
| 89 | mask = np.ma.getmask(masked) ; mask2 = np.ma.getmask(masked2) |
---|
| 90 | if (True in np.array(mask)): |
---|
| 91 | out=masked |
---|
| 92 | print "Masked array... Missing value is NaN" |
---|
| 93 | elif (True in np.array(mask2)): |
---|
| 94 | out=masked2 |
---|
| 95 | print "Masked array... Missing value is NaN" |
---|
| 96 | # else: |
---|
| 97 | # # missing values from api are 1e36 |
---|
| 98 | # masked=np.ma.masked_where(field > 1e35,field) |
---|
| 99 | # masked.set_fill_value([np.NaN]) |
---|
| 100 | # mask = np.ma.getmask(masked) |
---|
| 101 | # if (True in np.array(mask)):out=masked |
---|
| 102 | # else:out=field |
---|
| 103 | else:out=field |
---|
[395] | 104 | return out |
---|
[233] | 105 | |
---|
[571] | 106 | ## Author: AC |
---|
[612] | 107 | # Compute the norm of the winds |
---|
| 108 | # The corresponding variable to call is UV or uvmet (to use api) |
---|
[572] | 109 | def windamplitude (nc): |
---|
[581] | 110 | import numpy as np |
---|
[571] | 111 | varinfile = nc.variables.keys() |
---|
| 112 | if "U" in varinfile: zu=getfield(nc,'U') |
---|
| 113 | elif "Um" in varinfile: zu=getfield(nc,'Um') |
---|
| 114 | if "V" in varinfile: zv=getfield(nc,'V') |
---|
| 115 | elif "Vm" in varinfile: zv=getfield(nc,'Vm') |
---|
| 116 | znt,znz,zny,znx = np.array(zu).shape |
---|
| 117 | if "U" in varinfile:znx=znx-1 |
---|
| 118 | zuint = np.zeros([znt,znz,zny,znx]) |
---|
| 119 | zvint = np.zeros([znt,znz,zny,znx]) |
---|
| 120 | if "U" in varinfile: |
---|
| 121 | for xx in np.arange(znx): zuint[:,:,:,xx] = (zu[:,:,:,xx] + zu[:,:,:,xx+1])/2. |
---|
| 122 | for yy in np.arange(zny): zvint[:,:,yy,:] = (zv[:,:,yy,:] + zv[:,:,yy+1,:])/2. |
---|
| 123 | else: |
---|
| 124 | zuint=zu |
---|
| 125 | zvint=zv |
---|
| 126 | return np.sqrt(zuint**2 + zvint**2) |
---|
| 127 | |
---|
[612] | 128 | ## Author: AC |
---|
[701] | 129 | # Compute the enrichment factor of non condensible gases |
---|
| 130 | # The corresponding variable to call is enfact |
---|
| 131 | def enrichment_factor(nc): |
---|
| 132 | import numpy as np |
---|
| 133 | varinfile = nc.variables.keys() |
---|
| 134 | if "co2" in varinfile: co2=getfield(nc,'co2') |
---|
| 135 | else: print "error, you need co2 var in your file" |
---|
| 136 | if "ap" in varinfile: ap=getfield(nc,'ap') |
---|
| 137 | else: print "error, you need ap var in your file" |
---|
| 138 | if "bp" in varinfile: bp=getfield(nc,'bp') |
---|
| 139 | else: print "error, you need bp var in your file" |
---|
| 140 | if "ps" in varinfile: ps=getfield(nc,'ps') |
---|
| 141 | else: print "error, you need ps var in your file" |
---|
| 142 | dimension = len(nc.variables['co2'].dimensions) |
---|
| 143 | if dimension == 3: |
---|
| 144 | znz,zny,znx = np.array(co2).shape |
---|
| 145 | znt=1 |
---|
| 146 | elif dimension == 4: znt,znz,zny,znx = np.array(co2).shape |
---|
| 147 | co2col = np.zeros([znt,zny,znx]) |
---|
| 148 | arcol = np.zeros([znt,zny,znx]) |
---|
| 149 | mmrarcol = np.zeros([znt,zny,znx]) |
---|
| 150 | meanar = np.zeros([znt]) |
---|
| 151 | pplev = np.zeros([znt,znz+1,zny,znx]) |
---|
| 152 | enfact = np.zeros([znt,zny,znx]) |
---|
| 153 | grav=3.72 |
---|
| 154 | for zz in np.arange(znz): |
---|
| 155 | pplev[:,zz,:,:] = ap[zz]+bp[zz]*ps[:,:,:] |
---|
| 156 | pplev[:,znz,:,:]=0. |
---|
| 157 | |
---|
| 158 | for zz in np.arange(znz): |
---|
| 159 | co2col[:,:,:] = co2col[:,:,:] + co2[:,zz,:,:]*(pplev[:,zz,:,:]-pplev[:,zz+1,:,:])/grav |
---|
| 160 | arcol[:,:,:] = arcol[:,:,:] + (1.-co2[:,zz,:,:])*(pplev[:,zz,:,:]-pplev[:,zz+1,:,:])/grav |
---|
| 161 | |
---|
| 162 | mmrarcol = arcol/(arcol + co2col) |
---|
| 163 | for xx in np.arange(znx): |
---|
| 164 | for yy in np.arange(zny): |
---|
| 165 | meanar[:] = meanar[:] + mmrarcol[:,yy,xx] |
---|
| 166 | meanar = meanar/(znx*zny) |
---|
[702] | 167 | for tt in np.arange(znt): |
---|
| 168 | enfact[tt,:,:] =-(meanar[tt] - mmrarcol[tt,:,:])/meanar[tt] |
---|
[701] | 169 | |
---|
| 170 | return enfact |
---|
| 171 | |
---|
| 172 | ## Author: AC |
---|
[612] | 173 | # Compute the norm of the slope angles |
---|
| 174 | # The corresponding variable to call is SLOPEXY |
---|
| 175 | def slopeamplitude (nc): |
---|
| 176 | import numpy as np |
---|
| 177 | varinfile = nc.variables.keys() |
---|
| 178 | if "slopex" in varinfile: zu=getfield(nc,'slopex') |
---|
| 179 | elif "SLOPEX" in varinfile: zu=getfield(nc,'SLOPEX') |
---|
| 180 | if "slopey" in varinfile: zv=getfield(nc,'slopey') |
---|
| 181 | elif "SLOPEY" in varinfile: zv=getfield(nc,'SLOPEY') |
---|
| 182 | znt,zny,znx = np.array(zu).shape |
---|
| 183 | zuint = np.zeros([znt,zny,znx]) |
---|
| 184 | zvint = np.zeros([znt,zny,znx]) |
---|
| 185 | zuint=zu |
---|
| 186 | zvint=zv |
---|
| 187 | return np.sqrt(zuint**2 + zvint**2) |
---|
| 188 | |
---|
| 189 | ## Author: AC |
---|
| 190 | # Compute the temperature difference between surface and first level. |
---|
| 191 | # API is automatically called to get TSURF and TK. |
---|
| 192 | # The corresponding variable to call is DELTAT |
---|
| 193 | def deltat0t1 (nc): |
---|
| 194 | import numpy as np |
---|
| 195 | varinfile = nc.variables.keys() |
---|
| 196 | if "tsurf" in varinfile: zu=getfield(nc,'tsurf') |
---|
| 197 | elif "TSURF" in varinfile: zu=getfield(nc,'TSURF') |
---|
| 198 | if "tk" in varinfile: zv=getfield(nc,'tk') |
---|
| 199 | elif "TK" in varinfile: zv=getfield(nc,'TK') |
---|
| 200 | znt,zny,znx = np.array(zu).shape |
---|
| 201 | zuint = np.zeros([znt,zny,znx]) |
---|
| 202 | zuint=zu - zv[:,0,:,:] |
---|
| 203 | return zuint |
---|
| 204 | |
---|
[382] | 205 | ## Author: AS + TN + AC |
---|
[525] | 206 | def reducefield (input,d4=None,d3=None,d2=None,d1=None,yint=False,alt=None,anomaly=False,redope=None,mesharea=None): |
---|
[252] | 207 | ### we do it the reverse way to be compliant with netcdf "t z y x" or "t y x" or "y x" |
---|
[233] | 208 | ### it would be actually better to name d4 d3 d2 d1 as t z y x |
---|
[405] | 209 | ### ... note, anomaly is only computed over d1 and d2 for the moment |
---|
[233] | 210 | import numpy as np |
---|
[647] | 211 | from mymath import max,mean,min,sum,getmask |
---|
[422] | 212 | csmooth = 12 ## a fair amount of grid points (too high results in high computation time) |
---|
[483] | 213 | if redope is not None: |
---|
| 214 | if redope == "mint": input = min(input,axis=0) ; d1 = None |
---|
| 215 | elif redope == "maxt": input = max(input,axis=0) ; d1 = None |
---|
| 216 | else: errormess("not supported. but try lines in reducefield beforehand.") |
---|
| 217 | #elif redope == "minz": input = min(input,axis=1) ; d2 = None |
---|
| 218 | #elif redope == "maxz": input = max(input,axis=1) ; d2 = None |
---|
| 219 | #elif redope == "miny": input = min(input,axis=2) ; d3 = None |
---|
| 220 | #elif redope == "maxy": input = max(input,axis=2) ; d3 = None |
---|
| 221 | #elif redope == "minx": input = min(input,axis=3) ; d4 = None |
---|
| 222 | #elif redope == "maxx": input = max(input,axis=3) ; d4 = None |
---|
[233] | 223 | dimension = np.array(input).ndim |
---|
[525] | 224 | shape = np.array(np.array(input).shape) |
---|
[349] | 225 | #print 'd1,d2,d3,d4: ',d1,d2,d3,d4 |
---|
[405] | 226 | if anomaly: print 'ANOMALY ANOMALY' |
---|
[233] | 227 | output = input |
---|
| 228 | error = False |
---|
[350] | 229 | #### this is needed to cope the case where d4,d3,d2,d1 are single integers and not arrays |
---|
[345] | 230 | if d4 is not None and not isinstance(d4, np.ndarray): d4=[d4] |
---|
| 231 | if d3 is not None and not isinstance(d3, np.ndarray): d3=[d3] |
---|
| 232 | if d2 is not None and not isinstance(d2, np.ndarray): d2=[d2] |
---|
| 233 | if d1 is not None and not isinstance(d1, np.ndarray): d1=[d1] |
---|
| 234 | ### now the main part |
---|
[233] | 235 | if dimension == 2: |
---|
[525] | 236 | if mesharea is None: mesharea=np.ones(shape) |
---|
| 237 | if max(d2) >= shape[0]: error = True |
---|
| 238 | elif max(d1) >= shape[1]: error = True |
---|
| 239 | elif d1 is not None and d2 is not None: |
---|
[687] | 240 | try: |
---|
| 241 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 242 | totalarea = mean(totalarea[d2,:],axis=0);totalarea = mean(totalarea[d1]) |
---|
| 243 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 244 | output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea |
---|
[350] | 245 | elif d1 is not None: output = mean(input[:,d1],axis=1) |
---|
[647] | 246 | elif d2 is not None: |
---|
[687] | 247 | try: |
---|
| 248 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 249 | totalarea = mean(totalarea[d2,:],axis=0) |
---|
| 250 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 251 | output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea |
---|
[233] | 252 | elif dimension == 3: |
---|
[525] | 253 | if mesharea is None: mesharea=np.ones(shape[[1,2]]) |
---|
[345] | 254 | if max(d4) >= shape[0]: error = True |
---|
| 255 | elif max(d2) >= shape[1]: error = True |
---|
| 256 | elif max(d1) >= shape[2]: error = True |
---|
[647] | 257 | elif d4 is not None and d2 is not None and d1 is not None: |
---|
[525] | 258 | output = mean(input[d4,:,:],axis=0) |
---|
[687] | 259 | try: |
---|
| 260 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 261 | totalarea = mean(totalarea[d2,:],axis=0);totalarea = mean(totalarea[d1]) |
---|
| 262 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 263 | output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea |
---|
[525] | 264 | elif d4 is not None and d2 is not None: |
---|
| 265 | output = mean(input[d4,:,:],axis=0) |
---|
[687] | 266 | try: |
---|
| 267 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 268 | totalarea = mean(totalarea[d2,:],axis=0) |
---|
| 269 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 270 | output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea |
---|
[349] | 271 | elif d4 is not None and d1 is not None: output = mean(input[d4,:,:],axis=0); output=mean(output[:,d1],axis=1) |
---|
[525] | 272 | elif d2 is not None and d1 is not None: |
---|
[687] | 273 | try: |
---|
| 274 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
| 275 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
| 276 | totalarea = mean(totalarea[:,d2,:],axis=1);totalarea = mean(totalarea[:,d1],axis=1) |
---|
| 277 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 278 | output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea |
---|
[525] | 279 | elif d1 is not None: output = mean(input[:,:,d1],axis=2) |
---|
[647] | 280 | elif d2 is not None: |
---|
[687] | 281 | try: |
---|
| 282 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
| 283 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
| 284 | totalarea = mean(totalarea[:,d2,:],axis=1) |
---|
| 285 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 286 | output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea |
---|
[525] | 287 | elif d4 is not None: output = mean(input[d4,:,:],axis=0) |
---|
[233] | 288 | elif dimension == 4: |
---|
[647] | 289 | if mesharea is None: mesharea=np.ones(shape[[2,3]]) # mesharea=np.random.random_sample(shape[[2,3]])*5. + 2. # pour tester |
---|
[345] | 290 | if max(d4) >= shape[0]: error = True |
---|
| 291 | elif max(d3) >= shape[1]: error = True |
---|
| 292 | elif max(d2) >= shape[2]: error = True |
---|
| 293 | elif max(d1) >= shape[3]: error = True |
---|
[382] | 294 | elif d4 is not None and d3 is not None and d2 is not None and d1 is not None: |
---|
[392] | 295 | output = mean(input[d4,:,:,:],axis=0) |
---|
| 296 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
[427] | 297 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
[687] | 298 | try: |
---|
| 299 | totalarea = np.ma.masked_where(np.isnan(output),mesharea) |
---|
| 300 | totalarea = mean(totalarea[d2,:],axis=0); totalarea = mean(totalarea[d1]) |
---|
| 301 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 302 | output = output*mesharea; output = mean(output[d2,:],axis=0); output = mean(output[d1])/totalarea |
---|
[350] | 303 | elif d4 is not None and d3 is not None and d2 is not None: |
---|
[392] | 304 | output = mean(input[d4,:,:,:],axis=0) |
---|
| 305 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
[525] | 306 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
[687] | 307 | try: |
---|
| 308 | totalarea = np.ma.masked_where(np.isnan(output),mesharea) |
---|
| 309 | totalarea = mean(totalarea[d2,:],axis=0) |
---|
| 310 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 311 | output = output*mesharea; output = mean(output[d2,:],axis=0)/totalarea |
---|
[350] | 312 | elif d4 is not None and d3 is not None and d1 is not None: |
---|
[392] | 313 | output = mean(input[d4,:,:,:],axis=0) |
---|
| 314 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
[405] | 315 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
[392] | 316 | output = mean(output[:,d1],axis=1) |
---|
[350] | 317 | elif d4 is not None and d2 is not None and d1 is not None: |
---|
[392] | 318 | output = mean(input[d4,:,:,:],axis=0) |
---|
[405] | 319 | if anomaly: |
---|
| 320 | for k in range(output.shape[0]): output[k,:,:] = 100. * ((output[k,:,:] / smooth(output[k,:,:],csmooth)) - 1.) |
---|
[687] | 321 | try: |
---|
| 322 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
| 323 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 324 | totalarea = mean(totalarea[:,d2,:],axis=1); totalarea = mean(totalarea[:,d1],axis=1) |
---|
| 325 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 326 | output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea |
---|
[405] | 327 | #noperturb = smooth1d(output,window_len=7) |
---|
| 328 | #lenlen = len(output) ; output = output[1:lenlen-7] ; yeye = noperturb[4:lenlen-4] |
---|
| 329 | #plot(output) ; plot(yeye) ; show() ; plot(output-yeye) ; show() |
---|
[647] | 330 | elif d3 is not None and d2 is not None and d1 is not None: |
---|
| 331 | output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
[405] | 332 | if anomaly: |
---|
| 333 | for k in range(output.shape[0]): output[k,:,:] = 100. * ((output[k,:,:] / smooth(output[k,:,:],csmooth)) - 1.) |
---|
[687] | 334 | try: |
---|
| 335 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
| 336 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
| 337 | totalarea = mean(totalarea[:,d2,:],axis=1); totalarea = mean(totalarea[:,d1],axis=1) |
---|
| 338 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 339 | output = output*mesharea; output = mean(output[:,d2,:],axis=1); output = mean(output[:,d1],axis=1)/totalarea |
---|
[392] | 340 | elif d4 is not None and d3 is not None: |
---|
| 341 | output = mean(input[d4,:,:,:],axis=0) |
---|
| 342 | output = reduce_zaxis(output[d3,:,:],ax=0,yint=yint,vert=alt,indice=d3) |
---|
[405] | 343 | if anomaly: output = 100. * ((output / smooth(output,csmooth)) - 1.) |
---|
[392] | 344 | elif d4 is not None and d2 is not None: |
---|
[647] | 345 | output = mean(input[d4,:,:,:],axis=0) |
---|
[687] | 346 | try: |
---|
| 347 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
| 348 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 349 | totalarea = mean(totalarea[:,d2,:],axis=1) |
---|
| 350 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 351 | output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea |
---|
[392] | 352 | elif d4 is not None and d1 is not None: |
---|
| 353 | output = mean(input[d4,:,:,:],axis=0) |
---|
| 354 | output = mean(output[:,:,d1],axis=2) |
---|
[647] | 355 | elif d3 is not None and d2 is not None: |
---|
[392] | 356 | output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
[687] | 357 | try: |
---|
| 358 | totalarea = np.tile(mesharea,(output.shape[0],1,1)) |
---|
| 359 | totalarea = np.ma.masked_where(getmask(output),mesharea) |
---|
| 360 | totalarea = mean(totalarea[:,d2,:],axis=1) |
---|
| 361 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 362 | output = output*mesharea; output = mean(output[:,d2,:],axis=1)/totalarea |
---|
[392] | 363 | elif d3 is not None and d1 is not None: |
---|
| 364 | output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
[448] | 365 | output = mean(output[:,:,d1],axis=2) |
---|
[647] | 366 | elif d2 is not None and d1 is not None: |
---|
[687] | 367 | try: |
---|
| 368 | totalarea = np.tile(mesharea,(output.shape[0],output.shape[1],1,1)) |
---|
| 369 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
| 370 | totalarea = mean(totalarea[:,:,d2,:],axis=2); totalarea = mean(totalarea[:,:,d1],axis=1) |
---|
| 371 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 372 | output = output*mesharea; output = mean(output[:,:,d2,:],axis=2); output = mean(output[:,:,d1],axis=1)/totalarea |
---|
[392] | 373 | elif d1 is not None: output = mean(input[:,:,:,d1],axis=3) |
---|
[647] | 374 | elif d2 is not None: |
---|
[687] | 375 | try: |
---|
| 376 | totalarea = np.tile(mesharea,(output.shape[0],output.shape[1],1,output.shape[3])) |
---|
| 377 | totalarea = np.ma.masked_where(getmask(output),totalarea) |
---|
| 378 | totalarea = mean(totalarea[:,:,d2,:],axis=2) |
---|
| 379 | except: print "(problem with areas. I skip this)" ; mesharea = 1. ; totalarea = 1. |
---|
[647] | 380 | output = output*mesharea; output = mean(output[:,:,d2,:],axis=2)/totalarea |
---|
[437] | 381 | elif d3 is not None: output = reduce_zaxis(input[:,d3,:,:],ax=1,yint=yint,vert=alt,indice=d3) |
---|
[392] | 382 | elif d4 is not None: output = mean(input[d4,:,:,:],axis=0) |
---|
[468] | 383 | dimension2 = np.array(output).ndim |
---|
| 384 | shape2 = np.array(output).shape |
---|
| 385 | print 'REDUCEFIELD dim,shape: ',dimension,shape,' >>> ',dimension2,shape2 |
---|
[233] | 386 | return output, error |
---|
| 387 | |
---|
[392] | 388 | ## Author: AC + AS |
---|
| 389 | def reduce_zaxis (input,ax=None,yint=False,vert=None,indice=None): |
---|
[382] | 390 | from mymath import max,mean |
---|
| 391 | from scipy import integrate |
---|
[637] | 392 | import numpy as np |
---|
[392] | 393 | if yint and vert is not None and indice is not None: |
---|
[391] | 394 | if type(input).__name__=='MaskedArray': |
---|
| 395 | input.set_fill_value([np.NaN]) |
---|
[392] | 396 | output = integrate.trapz(input.filled(),x=vert[indice],axis=ax) |
---|
[391] | 397 | else: |
---|
[396] | 398 | output = integrate.trapz(input,x=vert[indice],axis=ax) |
---|
[382] | 399 | else: |
---|
| 400 | output = mean(input,axis=ax) |
---|
| 401 | return output |
---|
| 402 | |
---|
[345] | 403 | ## Author: AS + TN |
---|
[233] | 404 | def definesubplot ( numplot, fig ): |
---|
| 405 | from matplotlib.pyplot import rcParams |
---|
| 406 | rcParams['font.size'] = 12. ## default (important for multiple calls) |
---|
[345] | 407 | if numplot <= 0: |
---|
| 408 | subv = 99999 |
---|
| 409 | subh = 99999 |
---|
| 410 | elif numplot == 1: |
---|
[568] | 411 | subv = 1 |
---|
| 412 | subh = 1 |
---|
[233] | 413 | elif numplot == 2: |
---|
[483] | 414 | subv = 1 #2 |
---|
| 415 | subh = 2 #1 |
---|
[233] | 416 | fig.subplots_adjust(wspace = 0.35) |
---|
| 417 | rcParams['font.size'] = int( rcParams['font.size'] * 3. / 4. ) |
---|
| 418 | elif numplot == 3: |
---|
[453] | 419 | subv = 3 |
---|
| 420 | subh = 1 |
---|
[613] | 421 | fig.subplots_adjust(hspace = 0.5) |
---|
[233] | 422 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
[637] | 423 | elif numplot == 4: |
---|
[345] | 424 | subv = 2 |
---|
| 425 | subh = 2 |
---|
[610] | 426 | fig.subplots_adjust(wspace = 0.4, hspace = 0.3) |
---|
[345] | 427 | rcParams['font.size'] = int( rcParams['font.size'] * 2. / 3. ) |
---|
| 428 | elif numplot <= 6: |
---|
| 429 | subv = 2 |
---|
| 430 | subh = 3 |
---|
[638] | 431 | #fig.subplots_adjust(wspace = 0.4, hspace = 0.0) |
---|
| 432 | fig.subplots_adjust(wspace = 0.5, hspace = 0.3) |
---|
[233] | 433 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
[345] | 434 | elif numplot <= 8: |
---|
| 435 | subv = 2 |
---|
| 436 | subh = 4 |
---|
[233] | 437 | fig.subplots_adjust(wspace = 0.3, hspace = 0.3) |
---|
| 438 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
[345] | 439 | elif numplot <= 9: |
---|
| 440 | subv = 3 |
---|
| 441 | subh = 3 |
---|
[233] | 442 | fig.subplots_adjust(wspace = 0.3, hspace = 0.3) |
---|
| 443 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
[345] | 444 | elif numplot <= 12: |
---|
| 445 | subv = 3 |
---|
| 446 | subh = 4 |
---|
[453] | 447 | fig.subplots_adjust(wspace = 0, hspace = 0.1) |
---|
[345] | 448 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
| 449 | elif numplot <= 16: |
---|
| 450 | subv = 4 |
---|
| 451 | subh = 4 |
---|
| 452 | fig.subplots_adjust(wspace = 0.3, hspace = 0.3) |
---|
| 453 | rcParams['font.size'] = int( rcParams['font.size'] * 1. / 2. ) |
---|
[233] | 454 | else: |
---|
[345] | 455 | print "number of plot supported: 1 to 16" |
---|
[233] | 456 | exit() |
---|
[345] | 457 | return subv,subh |
---|
[233] | 458 | |
---|
[345] | 459 | ## Author: AS |
---|
[233] | 460 | def getstralt(nc,nvert): |
---|
[548] | 461 | varinfile = nc.variables.keys() |
---|
| 462 | if 'vert' not in varinfile: |
---|
[233] | 463 | stralt = "_lvl" + str(nvert) |
---|
[548] | 464 | else: |
---|
[233] | 465 | zelevel = int(nc.variables['vert'][nvert]) |
---|
| 466 | if abs(zelevel) < 10000.: strheight=str(zelevel)+"m" |
---|
| 467 | else: strheight=str(int(zelevel/1000.))+"km" |
---|
| 468 | if 'altitude' in nc.dimensions: stralt = "_"+strheight+"-AMR" |
---|
| 469 | elif 'altitude_abg' in nc.dimensions: stralt = "_"+strheight+"-ALS" |
---|
| 470 | elif 'bottom_top' in nc.dimensions: stralt = "_"+strheight |
---|
| 471 | elif 'pressure' in nc.dimensions: stralt = "_"+str(zelevel)+"Pa" |
---|
| 472 | else: stralt = "" |
---|
| 473 | return stralt |
---|
| 474 | |
---|
[345] | 475 | ## Author: AS |
---|
[468] | 476 | def getlschar ( namefile, getaxis=False ): |
---|
[195] | 477 | from netCDF4 import Dataset |
---|
| 478 | from timestuff import sol2ls |
---|
[233] | 479 | from numpy import array |
---|
[400] | 480 | from string import rstrip |
---|
[687] | 481 | import os as daos |
---|
| 482 | namefiletest = rstrip( rstrip( rstrip( namefile, chars="_z"), chars="_zabg"), chars="_p") |
---|
| 483 | testexist = daos.path.isfile(namefiletest) |
---|
[237] | 484 | zetime = None |
---|
[687] | 485 | if testexist: |
---|
| 486 | namefile = namefiletest |
---|
| 487 | #### we assume that wrfout is next to wrfout_z and wrfout_zabg |
---|
| 488 | nc = Dataset(namefile) |
---|
| 489 | zetime = None |
---|
| 490 | days_in_month = [61, 66, 66, 65, 60, 54, 50, 46, 47, 47, 51, 56] |
---|
| 491 | plus_in_month = [ 0, 61,127,193,258,318,372,422,468,515,562,613] |
---|
| 492 | if 'Times' in nc.variables: |
---|
[233] | 493 | zetime = nc.variables['Times'][0] |
---|
| 494 | shape = array(nc.variables['Times']).shape |
---|
| 495 | if shape[0] < 2: zetime = None |
---|
| 496 | if zetime is not None \ |
---|
[225] | 497 | and 'vert' not in nc.variables: |
---|
[489] | 498 | ##### strangely enough this does not work for api or ncrcat results! |
---|
| 499 | zesol = plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) - 1 ##les sols GCM commencent a 0 |
---|
| 500 | dals = int( 10. * sol2ls ( zesol ) ) / 10. |
---|
[197] | 501 | ### |
---|
| 502 | zetime2 = nc.variables['Times'][1] |
---|
| 503 | one = int(zetime[11]+zetime[12]) + int(zetime[14]+zetime[15])/37. |
---|
| 504 | next = int(zetime2[11]+zetime2[12]) + int(zetime2[14]+zetime2[15])/37. |
---|
| 505 | zehour = one |
---|
| 506 | zehourin = abs ( next - one ) |
---|
[489] | 507 | if not getaxis: |
---|
| 508 | lschar = "_Ls"+str(dals) |
---|
| 509 | else: |
---|
[468] | 510 | zelen = len(nc.variables['Times'][:]) |
---|
| 511 | yeye = range(zelen) ; lsaxis = range(zelen) ; solaxis = range(zelen) ; ltaxis = range(zelen) |
---|
| 512 | for iii in yeye: |
---|
[489] | 513 | zetime = nc.variables['Times'][iii] |
---|
[468] | 514 | ltaxis[iii] = int(zetime[11]+zetime[12]) + int(zetime[14]+zetime[15])/37. |
---|
[489] | 515 | solaxis[iii] = ltaxis[iii] / 24. + plus_in_month[ int(zetime[5]+zetime[6])-1 ] + int(zetime[8]+zetime[9]) - 1 ##les sols GCM commencent a 0 |
---|
[468] | 516 | lsaxis[iii] = sol2ls ( solaxis[iii] ) |
---|
| 517 | if ltaxis[iii] < ltaxis[iii-1]: ltaxis[iii] = ltaxis[iii] + 24. |
---|
[489] | 518 | #print ltaxis[iii], solaxis[iii], lsaxis[iii], getattr( nc, 'JULDAY' ) |
---|
[468] | 519 | lschar = lsaxis ; zehour = solaxis ; zehourin = ltaxis |
---|
[195] | 520 | else: |
---|
| 521 | lschar="" |
---|
[197] | 522 | zehour = 0 |
---|
| 523 | zehourin = 1 |
---|
| 524 | return lschar, zehour, zehourin |
---|
[195] | 525 | |
---|
[345] | 526 | ## Author: AS |
---|
[202] | 527 | def getprefix (nc): |
---|
| 528 | prefix = 'LMD_MMM_' |
---|
| 529 | prefix = prefix + 'd'+str(getattr(nc,'GRID_ID'))+'_' |
---|
| 530 | prefix = prefix + str(int(getattr(nc,'DX')/1000.))+'km_' |
---|
| 531 | return prefix |
---|
| 532 | |
---|
[345] | 533 | ## Author: AS |
---|
[184] | 534 | def getproj (nc): |
---|
[233] | 535 | typefile = whatkindfile(nc) |
---|
[548] | 536 | if typefile in ['meso','geo']: |
---|
[233] | 537 | ### (il faudrait passer CEN_LON dans la projection ?) |
---|
| 538 | map_proj = getattr(nc, 'MAP_PROJ') |
---|
| 539 | cen_lat = getattr(nc, 'CEN_LAT') |
---|
| 540 | if map_proj == 2: |
---|
| 541 | if cen_lat > 10.: |
---|
| 542 | proj="npstere" |
---|
[392] | 543 | #print "NP stereographic polar domain" |
---|
[233] | 544 | else: |
---|
| 545 | proj="spstere" |
---|
[392] | 546 | #print "SP stereographic polar domain" |
---|
[233] | 547 | elif map_proj == 1: |
---|
[392] | 548 | #print "lambert projection domain" |
---|
[233] | 549 | proj="lcc" |
---|
| 550 | elif map_proj == 3: |
---|
[392] | 551 | #print "mercator projection" |
---|
[233] | 552 | proj="merc" |
---|
| 553 | else: |
---|
| 554 | proj="merc" |
---|
[548] | 555 | elif typefile in ['gcm']: proj="cyl" ## pb avec les autres (de trace derriere la sphere ?) |
---|
| 556 | else: proj="ortho" |
---|
[184] | 557 | return proj |
---|
| 558 | |
---|
[345] | 559 | ## Author: AS |
---|
[180] | 560 | def ptitle (name): |
---|
| 561 | from matplotlib.pyplot import title |
---|
| 562 | title(name) |
---|
| 563 | print name |
---|
| 564 | |
---|
[345] | 565 | ## Author: AS |
---|
[252] | 566 | def polarinterv (lon2d,lat2d): |
---|
| 567 | import numpy as np |
---|
| 568 | wlon = [np.min(lon2d),np.max(lon2d)] |
---|
| 569 | ind = np.array(lat2d).shape[0] / 2 ## to get a good boundlat and to get the pole |
---|
| 570 | wlat = [np.min(lat2d[ind,:]),np.max(lat2d[ind,:])] |
---|
| 571 | return [wlon,wlat] |
---|
| 572 | |
---|
[345] | 573 | ## Author: AS |
---|
[180] | 574 | def simplinterv (lon2d,lat2d): |
---|
| 575 | import numpy as np |
---|
| 576 | return [[np.min(lon2d),np.max(lon2d)],[np.min(lat2d),np.max(lat2d)]] |
---|
| 577 | |
---|
[345] | 578 | ## Author: AS |
---|
[184] | 579 | def wrfinterv (lon2d,lat2d): |
---|
| 580 | nx = len(lon2d[0,:])-1 |
---|
| 581 | ny = len(lon2d[:,0])-1 |
---|
[225] | 582 | lon1 = lon2d[0,0] |
---|
| 583 | lon2 = lon2d[nx,ny] |
---|
| 584 | lat1 = lat2d[0,0] |
---|
| 585 | lat2 = lat2d[nx,ny] |
---|
[233] | 586 | if abs(0.5*(lat1+lat2)) > 60.: wider = 0.5 * (abs(lon1)+abs(lon2)) * 0.1 |
---|
| 587 | else: wider = 0. |
---|
| 588 | if lon1 < lon2: wlon = [lon1, lon2 + wider] |
---|
[225] | 589 | else: wlon = [lon2, lon1 + wider] |
---|
| 590 | if lat1 < lat2: wlat = [lat1, lat2] |
---|
| 591 | else: wlat = [lat2, lat1] |
---|
| 592 | return [wlon,wlat] |
---|
[184] | 593 | |
---|
[345] | 594 | ## Author: AS |
---|
[240] | 595 | def makeplotres (filename,res=None,pad_inches_value=0.25,folder='',disp=True,ext='png',erase=False): |
---|
[180] | 596 | import matplotlib.pyplot as plt |
---|
[240] | 597 | from os import system |
---|
| 598 | addstr = "" |
---|
| 599 | if res is not None: |
---|
| 600 | res = int(res) |
---|
| 601 | addstr = "_"+str(res) |
---|
| 602 | name = filename+addstr+"."+ext |
---|
[186] | 603 | if folder != '': name = folder+'/'+name |
---|
[180] | 604 | plt.savefig(name,dpi=res,bbox_inches='tight',pad_inches=pad_inches_value) |
---|
[240] | 605 | if disp: display(name) |
---|
| 606 | if ext in ['eps','ps','svg']: system("tar czvf "+name+".tar.gz "+name+" ; rm -f "+name) |
---|
| 607 | if erase: system("mv "+name+" to_be_erased") |
---|
[180] | 608 | return |
---|
| 609 | |
---|
[430] | 610 | ## Author: AS + AC |
---|
[451] | 611 | def dumpbdy (field,n,stag=None,condition=False,onlyx=False,onlyy=False): |
---|
[447] | 612 | nx = len(field[0,:])-1 |
---|
| 613 | ny = len(field[:,0])-1 |
---|
[444] | 614 | if condition: |
---|
| 615 | if stag == 'U': nx = nx-1 |
---|
| 616 | if stag == 'V': ny = ny-1 |
---|
| 617 | if stag == 'W': nx = nx+1 #special les case when we dump stag on W |
---|
[451] | 618 | if onlyx: result = field[:,n:nx-n] |
---|
| 619 | elif onlyy: result = field[n:ny-n,:] |
---|
| 620 | else: result = field[n:ny-n,n:nx-n] |
---|
| 621 | return result |
---|
[180] | 622 | |
---|
[444] | 623 | ## Author: AS + AC |
---|
[233] | 624 | def getcoorddef ( nc ): |
---|
[317] | 625 | import numpy as np |
---|
[233] | 626 | ## getcoord2d for predefined types |
---|
| 627 | typefile = whatkindfile(nc) |
---|
[548] | 628 | if typefile in ['meso']: |
---|
| 629 | if '9999' not in getattr(nc,'START_DATE') : |
---|
| 630 | ## regular mesoscale |
---|
| 631 | [lon2d,lat2d] = getcoord2d(nc) |
---|
| 632 | else: |
---|
| 633 | ## idealized mesoscale |
---|
| 634 | nx=getattr(nc,'WEST-EAST_GRID_DIMENSION') |
---|
| 635 | ny=getattr(nc,'SOUTH-NORTH_GRID_DIMENSION') |
---|
| 636 | dlat=getattr(nc,'DX') |
---|
| 637 | ## this is dirty because Martian-specific |
---|
| 638 | # ... but this just intended to get "lat-lon" like info |
---|
| 639 | falselon = np.arange(-dlat*(nx-1)/2.,dlat*(nx-1)/2.,dlat)/60000. |
---|
| 640 | falselat = np.arange(-dlat*(ny-1)/2.,dlat*(ny-1)/2.,dlat)/60000. |
---|
| 641 | [lon2d,lat2d] = np.meshgrid(falselon,falselat) ## dummy coordinates |
---|
| 642 | print "WARNING: domain plot artificially centered on lat,lon 0,0" |
---|
[637] | 643 | elif typefile in ['gcm','earthgcm','ecmwf']: |
---|
| 644 | if "longitude" in nc.dimensions: dalon = "longitude" |
---|
| 645 | elif "lon" in nc.dimensions: dalon = "lon" |
---|
| 646 | if "latitude" in nc.dimensions: dalat = "latitude" |
---|
| 647 | elif "lat" in nc.dimensions: dalat = "lat" |
---|
| 648 | [lon2d,lat2d] = getcoord2d(nc,nlat=dalat,nlon=dalon,is1d=True) |
---|
[233] | 649 | elif typefile in ['geo']: |
---|
| 650 | [lon2d,lat2d] = getcoord2d(nc,nlat='XLAT_M',nlon='XLONG_M') |
---|
| 651 | return lon2d,lat2d |
---|
| 652 | |
---|
[345] | 653 | ## Author: AS |
---|
[184] | 654 | def getcoord2d (nc,nlat='XLAT',nlon='XLONG',is1d=False): |
---|
| 655 | import numpy as np |
---|
| 656 | if is1d: |
---|
| 657 | lat = nc.variables[nlat][:] |
---|
| 658 | lon = nc.variables[nlon][:] |
---|
| 659 | [lon2d,lat2d] = np.meshgrid(lon,lat) |
---|
| 660 | else: |
---|
| 661 | lat = nc.variables[nlat][0,:,:] |
---|
| 662 | lon = nc.variables[nlon][0,:,:] |
---|
| 663 | [lon2d,lat2d] = [lon,lat] |
---|
| 664 | return lon2d,lat2d |
---|
| 665 | |
---|
[405] | 666 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
| 667 | def smooth1d(x,window_len=11,window='hanning'): |
---|
| 668 | import numpy |
---|
| 669 | """smooth the data using a window with requested size. |
---|
| 670 | This method is based on the convolution of a scaled window with the signal. |
---|
| 671 | The signal is prepared by introducing reflected copies of the signal |
---|
| 672 | (with the window size) in both ends so that transient parts are minimized |
---|
| 673 | in the begining and end part of the output signal. |
---|
| 674 | input: |
---|
| 675 | x: the input signal |
---|
| 676 | window_len: the dimension of the smoothing window; should be an odd integer |
---|
| 677 | window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' |
---|
| 678 | flat window will produce a moving average smoothing. |
---|
| 679 | output: |
---|
| 680 | the smoothed signal |
---|
| 681 | example: |
---|
| 682 | t=linspace(-2,2,0.1) |
---|
| 683 | x=sin(t)+randn(len(t))*0.1 |
---|
| 684 | y=smooth(x) |
---|
| 685 | see also: |
---|
| 686 | numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve |
---|
| 687 | scipy.signal.lfilter |
---|
| 688 | TODO: the window parameter could be the window itself if an array instead of a string |
---|
| 689 | """ |
---|
| 690 | x = numpy.array(x) |
---|
| 691 | if x.ndim != 1: |
---|
| 692 | raise ValueError, "smooth only accepts 1 dimension arrays." |
---|
| 693 | if x.size < window_len: |
---|
| 694 | raise ValueError, "Input vector needs to be bigger than window size." |
---|
| 695 | if window_len<3: |
---|
| 696 | return x |
---|
| 697 | if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: |
---|
| 698 | raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" |
---|
| 699 | s=numpy.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] |
---|
| 700 | #print(len(s)) |
---|
| 701 | if window == 'flat': #moving average |
---|
| 702 | w=numpy.ones(window_len,'d') |
---|
| 703 | else: |
---|
| 704 | w=eval('numpy.'+window+'(window_len)') |
---|
| 705 | y=numpy.convolve(w/w.sum(),s,mode='valid') |
---|
| 706 | return y |
---|
| 707 | |
---|
[345] | 708 | ## Author: AS |
---|
[180] | 709 | def smooth (field, coeff): |
---|
| 710 | ## actually blur_image could work with different coeff on x and y |
---|
| 711 | if coeff > 1: result = blur_image(field,int(coeff)) |
---|
| 712 | else: result = field |
---|
| 713 | return result |
---|
| 714 | |
---|
[345] | 715 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
[180] | 716 | def gauss_kern(size, sizey=None): |
---|
| 717 | import numpy as np |
---|
| 718 | # Returns a normalized 2D gauss kernel array for convolutions |
---|
| 719 | size = int(size) |
---|
| 720 | if not sizey: |
---|
| 721 | sizey = size |
---|
| 722 | else: |
---|
| 723 | sizey = int(sizey) |
---|
| 724 | x, y = np.mgrid[-size:size+1, -sizey:sizey+1] |
---|
| 725 | g = np.exp(-(x**2/float(size)+y**2/float(sizey))) |
---|
| 726 | return g / g.sum() |
---|
| 727 | |
---|
[345] | 728 | ## FROM COOKBOOK http://www.scipy.org/Cookbook/SignalSmooth |
---|
[180] | 729 | def blur_image(im, n, ny=None) : |
---|
| 730 | from scipy.signal import convolve |
---|
| 731 | # blurs the image by convolving with a gaussian kernel of typical size n. |
---|
| 732 | # The optional keyword argument ny allows for a different size in the y direction. |
---|
| 733 | g = gauss_kern(n, sizey=ny) |
---|
| 734 | improc = convolve(im, g, mode='same') |
---|
| 735 | return improc |
---|
| 736 | |
---|
[345] | 737 | ## Author: AS |
---|
[233] | 738 | def getwinddef (nc): |
---|
| 739 | ### |
---|
[548] | 740 | varinfile = nc.variables.keys() |
---|
| 741 | if 'Um' in varinfile: [uchar,vchar] = ['Um','Vm'] #; print "this is API meso file" |
---|
| 742 | elif 'U' in varinfile: [uchar,vchar] = ['U','V'] #; print "this is RAW meso file" |
---|
| 743 | elif 'u' in varinfile: [uchar,vchar] = ['u','v'] #; print "this is GCM file" |
---|
| 744 | ### you can add choices here ! |
---|
| 745 | else: [uchar,vchar] = ['not found','not found'] |
---|
[233] | 746 | ### |
---|
[548] | 747 | if uchar in ['U']: metwind = False ## geometrical (wrt grid) |
---|
| 748 | else: metwind = True ## meteorological (zon/mer) |
---|
| 749 | if metwind is False: print "Not using meteorological winds. You trust numerical grid as being (x,y)" |
---|
[233] | 750 | ### |
---|
| 751 | return uchar,vchar,metwind |
---|
[202] | 752 | |
---|
[345] | 753 | ## Author: AS |
---|
[184] | 754 | def vectorfield (u, v, x, y, stride=3, scale=15., factor=250., color='black', csmooth=1, key=True): |
---|
| 755 | ## scale regle la reference du vecteur |
---|
| 756 | ## factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. |
---|
| 757 | import matplotlib.pyplot as plt |
---|
| 758 | import numpy as np |
---|
[638] | 759 | #posx = np.min(x) - np.std(x) / 10. |
---|
| 760 | #posy = np.min(y) - np.std(y) / 10. |
---|
| 761 | posx = np.min(x) |
---|
| 762 | posy = np.min(y) - 4.*np.std(y) / 10. |
---|
[184] | 763 | u = smooth(u,csmooth) |
---|
| 764 | v = smooth(v,csmooth) |
---|
[188] | 765 | widthvec = 0.003 #0.005 #0.003 |
---|
[184] | 766 | q = plt.quiver( x[::stride,::stride],\ |
---|
| 767 | y[::stride,::stride],\ |
---|
| 768 | u[::stride,::stride],\ |
---|
| 769 | v[::stride,::stride],\ |
---|
[228] | 770 | angles='xy',color=color,pivot='middle',\ |
---|
[184] | 771 | scale=factor,width=widthvec ) |
---|
[202] | 772 | if color in ['white','yellow']: kcolor='black' |
---|
| 773 | else: kcolor=color |
---|
[184] | 774 | if key: p = plt.quiverkey(q,posx,posy,scale,\ |
---|
[194] | 775 | str(int(scale)),coordinates='data',color=kcolor,labelpos='S',labelsep = 0.03) |
---|
[184] | 776 | return |
---|
[180] | 777 | |
---|
[345] | 778 | ## Author: AS |
---|
[180] | 779 | def display (name): |
---|
[184] | 780 | from os import system |
---|
| 781 | system("display "+name+" > /dev/null 2> /dev/null &") |
---|
| 782 | return name |
---|
[180] | 783 | |
---|
[345] | 784 | ## Author: AS |
---|
[180] | 785 | def findstep (wlon): |
---|
[184] | 786 | steplon = int((wlon[1]-wlon[0])/4.) #3 |
---|
| 787 | step = 120. |
---|
| 788 | while step > steplon and step > 15. : step = step / 2. |
---|
| 789 | if step <= 15.: |
---|
| 790 | while step > steplon and step > 5. : step = step - 5. |
---|
| 791 | if step <= 5.: |
---|
| 792 | while step > steplon and step > 1. : step = step - 1. |
---|
| 793 | if step <= 1.: |
---|
| 794 | step = 1. |
---|
[180] | 795 | return step |
---|
| 796 | |
---|
[345] | 797 | ## Author: AS |
---|
[451] | 798 | def define_proj (char,wlon,wlat,back=None,blat=None,blon=None): |
---|
[180] | 799 | from mpl_toolkits.basemap import Basemap |
---|
| 800 | import numpy as np |
---|
| 801 | import matplotlib as mpl |
---|
[240] | 802 | from mymath import max |
---|
[180] | 803 | meanlon = 0.5*(wlon[0]+wlon[1]) |
---|
| 804 | meanlat = 0.5*(wlat[0]+wlat[1]) |
---|
[637] | 805 | zewidth = np.abs(wlon[0]-wlon[1])*60000.*np.cos(3.14*meanlat/180.) |
---|
| 806 | zeheight = np.abs(wlat[0]-wlat[1])*60000. |
---|
[385] | 807 | if blat is None: |
---|
[398] | 808 | ortholat=meanlat |
---|
[453] | 809 | if wlat[0] >= 80.: blat = -40. |
---|
[345] | 810 | elif wlat[1] <= -80.: blat = -40. |
---|
| 811 | elif wlat[1] >= 0.: blat = wlat[0] |
---|
| 812 | elif wlat[0] <= 0.: blat = wlat[1] |
---|
[398] | 813 | else: ortholat=blat |
---|
[451] | 814 | if blon is None: ortholon=meanlon |
---|
| 815 | else: ortholon=blon |
---|
[207] | 816 | h = 50. ## en km |
---|
[202] | 817 | radius = 3397200. |
---|
[637] | 818 | #print meanlat, meanlon |
---|
[184] | 819 | if char == "cyl": m = Basemap(rsphere=radius,projection='cyl',\ |
---|
[180] | 820 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
[184] | 821 | elif char == "moll": m = Basemap(rsphere=radius,projection='moll',lon_0=meanlon) |
---|
[451] | 822 | elif char == "ortho": m = Basemap(rsphere=radius,projection='ortho',lon_0=ortholon,lat_0=ortholat) |
---|
[184] | 823 | elif char == "lcc": m = Basemap(rsphere=radius,projection='lcc',lat_1=meanlat,lat_0=meanlat,lon_0=meanlon,\ |
---|
[637] | 824 | width=zewidth,height=zeheight) |
---|
| 825 | #llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
[184] | 826 | elif char == "npstere": m = Basemap(rsphere=radius,projection='npstere', boundinglat=blat, lon_0=0.) |
---|
[395] | 827 | elif char == "spstere": m = Basemap(rsphere=radius,projection='spstere', boundinglat=blat, lon_0=180.) |
---|
[207] | 828 | elif char == "nplaea": m = Basemap(rsphere=radius,projection='nplaea', boundinglat=wlat[0], lon_0=meanlon) |
---|
| 829 | elif char == "laea": m = Basemap(rsphere=radius,projection='laea',lon_0=meanlon,lat_0=meanlat,lat_ts=meanlat,\ |
---|
[637] | 830 | width=zewidth,height=zeheight) |
---|
| 831 | #llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
[184] | 832 | elif char == "nsper": m = Basemap(rsphere=radius,projection='nsper',lon_0=meanlon,lat_0=meanlat,satellite_height=h*1000.) |
---|
| 833 | elif char == "merc": m = Basemap(rsphere=radius,projection='merc',lat_ts=0.,\ |
---|
| 834 | llcrnrlat=wlat[0],urcrnrlat=wlat[1],llcrnrlon=wlon[0],urcrnrlon=wlon[1]) |
---|
| 835 | fontsizemer = int(mpl.rcParams['font.size']*3./4.) |
---|
[207] | 836 | if char in ["cyl","lcc","merc","nsper","laea"]: step = findstep(wlon) |
---|
| 837 | else: step = 10. |
---|
[238] | 838 | steplon = step*2. |
---|
[453] | 839 | zecolor ='grey' |
---|
| 840 | zelinewidth = 1 |
---|
| 841 | zelatmax = 80 |
---|
[637] | 842 | if meanlat > 75.: zelatmax = 90. ; step = step/2. |
---|
[453] | 843 | # to show gcm grid: |
---|
| 844 | #zecolor = 'r' |
---|
| 845 | #zelinewidth = 1 |
---|
[647] | 846 | #step = 180./48. |
---|
| 847 | #steplon = 360./64. |
---|
| 848 | #zelatmax = 90. - step/3 |
---|
[516] | 849 | if char not in ["moll"]: |
---|
| 850 | m.drawmeridians(np.r_[-180.:180.:steplon], labels=[0,0,0,1], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, latmax=zelatmax) |
---|
| 851 | m.drawparallels(np.r_[-90.:90.:step], labels=[1,0,0,0], color=zecolor, linewidth=zelinewidth, fontsize=fontsizemer, latmax=zelatmax) |
---|
[233] | 852 | if back: m.warpimage(marsmap(back),scale=0.75) |
---|
| 853 | #if not back: |
---|
| 854 | # if not var: back = "mola" ## if no var: draw mola |
---|
| 855 | # elif typefile in ['mesoapi','meso','geo'] \ |
---|
| 856 | # and proj not in ['merc','lcc','nsper','laea']: back = "molabw" ## if var but meso: draw molabw |
---|
| 857 | # else: pass ## else: draw None |
---|
[180] | 858 | return m |
---|
| 859 | |
---|
[345] | 860 | ## Author: AS |
---|
[232] | 861 | #### test temporaire |
---|
| 862 | def putpoints (map,plot): |
---|
| 863 | #### from http://www.scipy.org/Cookbook/Matplotlib/Maps |
---|
| 864 | # lat/lon coordinates of five cities. |
---|
| 865 | lats = [18.4] |
---|
| 866 | lons = [-134.0] |
---|
| 867 | points=['Olympus Mons'] |
---|
| 868 | # compute the native map projection coordinates for cities. |
---|
| 869 | x,y = map(lons,lats) |
---|
| 870 | # plot filled circles at the locations of the cities. |
---|
| 871 | map.plot(x,y,'bo') |
---|
| 872 | # plot the names of those five cities. |
---|
| 873 | wherept = 0 #1000 #50000 |
---|
| 874 | for name,xpt,ypt in zip(points,x,y): |
---|
| 875 | plot.text(xpt+wherept,ypt+wherept,name) |
---|
| 876 | ## le nom ne s'affiche pas... |
---|
| 877 | return |
---|
| 878 | |
---|
[345] | 879 | ## Author: AS |
---|
[233] | 880 | def calculate_bounds(field,vmin=None,vmax=None): |
---|
| 881 | import numpy as np |
---|
| 882 | from mymath import max,min,mean |
---|
| 883 | ind = np.where(field < 9e+35) |
---|
| 884 | fieldcalc = field[ ind ] # la syntaxe compacte ne marche si field est un tuple |
---|
| 885 | ### |
---|
| 886 | dev = np.std(fieldcalc)*3.0 |
---|
| 887 | ### |
---|
[562] | 888 | if vmin is None: zevmin = mean(fieldcalc) - dev |
---|
[233] | 889 | else: zevmin = vmin |
---|
| 890 | ### |
---|
| 891 | if vmax is None: zevmax = mean(fieldcalc) + dev |
---|
| 892 | else: zevmax = vmax |
---|
| 893 | if vmin == vmax: |
---|
| 894 | zevmin = mean(fieldcalc) - dev ### for continuity |
---|
| 895 | zevmax = mean(fieldcalc) + dev ### for continuity |
---|
| 896 | ### |
---|
| 897 | if zevmin < 0. and min(fieldcalc) > 0.: zevmin = 0. |
---|
[468] | 898 | print "BOUNDS field ", min(fieldcalc), max(fieldcalc), " //// adopted", zevmin, zevmax |
---|
[233] | 899 | return zevmin, zevmax |
---|
[232] | 900 | |
---|
[345] | 901 | ## Author: AS |
---|
[233] | 902 | def bounds(what_I_plot,zevmin,zevmax): |
---|
[247] | 903 | from mymath import max,min,mean |
---|
[233] | 904 | ### might be convenient to add the missing value in arguments |
---|
[310] | 905 | #what_I_plot[ what_I_plot < zevmin ] = zevmin#*(1. + 1.e-7) |
---|
| 906 | if zevmin < 0: what_I_plot[ what_I_plot < zevmin*(1. - 1.e-7) ] = zevmin*(1. - 1.e-7) |
---|
| 907 | else: what_I_plot[ what_I_plot < zevmin*(1. + 1.e-7) ] = zevmin*(1. + 1.e-7) |
---|
[451] | 908 | #print "NEW MIN ", min(what_I_plot) |
---|
[233] | 909 | what_I_plot[ what_I_plot > 9e+35 ] = -9e+35 |
---|
[587] | 910 | what_I_plot[ what_I_plot > zevmax ] = zevmax*(1. - 1.e-7) |
---|
[451] | 911 | #print "NEW MAX ", max(what_I_plot) |
---|
[233] | 912 | return what_I_plot |
---|
| 913 | |
---|
[345] | 914 | ## Author: AS |
---|
[241] | 915 | def nolow(what_I_plot): |
---|
| 916 | from mymath import max,min |
---|
| 917 | lim = 0.15*0.5*(abs(max(what_I_plot))+abs(min(what_I_plot))) |
---|
[392] | 918 | print "NO PLOT BELOW VALUE ", lim |
---|
[241] | 919 | what_I_plot [ abs(what_I_plot) < lim ] = 1.e40 |
---|
| 920 | return what_I_plot |
---|
| 921 | |
---|
[418] | 922 | |
---|
| 923 | ## Author : AC |
---|
| 924 | def hole_bounds(what_I_plot,zevmin,zevmax): |
---|
| 925 | import numpy as np |
---|
| 926 | zi=0 |
---|
| 927 | for i in what_I_plot: |
---|
| 928 | zj=0 |
---|
| 929 | for j in i: |
---|
| 930 | if ((j < zevmin) or (j > zevmax)):what_I_plot[zi,zj]=np.NaN |
---|
| 931 | zj=zj+1 |
---|
| 932 | zi=zi+1 |
---|
| 933 | |
---|
| 934 | return what_I_plot |
---|
| 935 | |
---|
[345] | 936 | ## Author: AS |
---|
[233] | 937 | def zoomset (wlon,wlat,zoom): |
---|
| 938 | dlon = abs(wlon[1]-wlon[0])/2. |
---|
| 939 | dlat = abs(wlat[1]-wlat[0])/2. |
---|
| 940 | [wlon,wlat] = [ [wlon[0]+zoom*dlon/100.,wlon[1]-zoom*dlon/100.],\ |
---|
| 941 | [wlat[0]+zoom*dlat/100.,wlat[1]-zoom*dlat/100.] ] |
---|
[392] | 942 | print "ZOOM %",zoom,wlon,wlat |
---|
[233] | 943 | return wlon,wlat |
---|
| 944 | |
---|
[345] | 945 | ## Author: AS |
---|
[201] | 946 | def fmtvar (whichvar="def"): |
---|
[204] | 947 | fmtvar = { \ |
---|
[502] | 948 | "MIXED": "%.0f",\ |
---|
| 949 | "UPDRAFT": "%.0f",\ |
---|
| 950 | "DOWNDRAFT": "%.0f",\ |
---|
[405] | 951 | "TK": "%.0f",\ |
---|
[637] | 952 | "T": "%.0f",\ |
---|
[516] | 953 | #"ZMAX_TH": "%.0f",\ |
---|
| 954 | #"WSTAR": "%.0f",\ |
---|
[425] | 955 | # Variables from TES ncdf format |
---|
[363] | 956 | "T_NADIR_DAY": "%.0f",\ |
---|
[376] | 957 | "T_NADIR_NIT": "%.0f",\ |
---|
[425] | 958 | # Variables from tes.py ncdf format |
---|
[398] | 959 | "TEMP_DAY": "%.0f",\ |
---|
| 960 | "TEMP_NIGHT": "%.0f",\ |
---|
[425] | 961 | # Variables from MCS and mcs.py ncdf format |
---|
[427] | 962 | "DTEMP": "%.0f",\ |
---|
| 963 | "NTEMP": "%.0f",\ |
---|
| 964 | "DNUMBINTEMP": "%.0f",\ |
---|
| 965 | "NNUMBINTEMP": "%.0f",\ |
---|
[425] | 966 | # other stuff |
---|
[405] | 967 | "TPOT": "%.0f",\ |
---|
[295] | 968 | "TSURF": "%.0f",\ |
---|
[612] | 969 | "U_OUT1": "%.0f",\ |
---|
| 970 | "T_OUT1": "%.0f",\ |
---|
[204] | 971 | "def": "%.1e",\ |
---|
| 972 | "PTOT": "%.0f",\ |
---|
| 973 | "HGT": "%.1e",\ |
---|
| 974 | "USTM": "%.2f",\ |
---|
[225] | 975 | "HFX": "%.0f",\ |
---|
[232] | 976 | "ICETOT": "%.1e",\ |
---|
[237] | 977 | "TAU_ICE": "%.2f",\ |
---|
[451] | 978 | "TAUICE": "%.2f",\ |
---|
[252] | 979 | "VMR_ICE": "%.1e",\ |
---|
[345] | 980 | "MTOT": "%.1f",\ |
---|
[405] | 981 | "ANOMALY": "%.1f",\ |
---|
[241] | 982 | "W": "%.1f",\ |
---|
[287] | 983 | "WMAX_TH": "%.1f",\ |
---|
[562] | 984 | "WSTAR": "%.1f",\ |
---|
[287] | 985 | "QSURFICE": "%.0f",\ |
---|
[405] | 986 | "UM": "%.0f",\ |
---|
[490] | 987 | "WIND": "%.0f",\ |
---|
[612] | 988 | "UVMET": "%.0f",\ |
---|
| 989 | "UV": "%.0f",\ |
---|
[295] | 990 | "ALBBARE": "%.2f",\ |
---|
[317] | 991 | "TAU": "%.1f",\ |
---|
[382] | 992 | "CO2": "%.2f",\ |
---|
[701] | 993 | "ENFACT": "%.1f",\ |
---|
[345] | 994 | #### T.N. |
---|
| 995 | "TEMP": "%.0f",\ |
---|
| 996 | "VMR_H2OICE": "%.0f",\ |
---|
| 997 | "VMR_H2OVAP": "%.0f",\ |
---|
| 998 | "TAUTES": "%.2f",\ |
---|
| 999 | "TAUTESAP": "%.2f",\ |
---|
| 1000 | |
---|
[204] | 1001 | } |
---|
[518] | 1002 | if "TSURF" in whichvar: whichvar = "TSURF" |
---|
[204] | 1003 | if whichvar not in fmtvar: |
---|
| 1004 | whichvar = "def" |
---|
| 1005 | return fmtvar[whichvar] |
---|
[201] | 1006 | |
---|
[345] | 1007 | ## Author: AS |
---|
[233] | 1008 | #################################################################################################################### |
---|
| 1009 | ### Colorbars http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps?action=AttachFile&do=get&target=colormaps3.png |
---|
[202] | 1010 | def defcolorb (whichone="def"): |
---|
[204] | 1011 | whichcolorb = { \ |
---|
| 1012 | "def": "spectral",\ |
---|
| 1013 | "HGT": "spectral",\ |
---|
[426] | 1014 | "HGT_M": "spectral",\ |
---|
[405] | 1015 | "TK": "gist_heat",\ |
---|
[425] | 1016 | "TPOT": "Paired",\ |
---|
[295] | 1017 | "TSURF": "RdBu_r",\ |
---|
[204] | 1018 | "QH2O": "PuBu",\ |
---|
| 1019 | "USTM": "YlOrRd",\ |
---|
[490] | 1020 | "WIND": "YlOrRd",\ |
---|
[363] | 1021 | #"T_nadir_nit": "RdBu_r",\ |
---|
| 1022 | #"T_nadir_day": "RdBu_r",\ |
---|
[225] | 1023 | "HFX": "RdYlBu",\ |
---|
[310] | 1024 | "ICETOT": "YlGnBu_r",\ |
---|
[345] | 1025 | #"MTOT": "PuBu",\ |
---|
| 1026 | "CCNQ": "YlOrBr",\ |
---|
| 1027 | "CCNN": "YlOrBr",\ |
---|
| 1028 | "TEMP": "Jet",\ |
---|
[238] | 1029 | "TAU_ICE": "Blues",\ |
---|
[451] | 1030 | "TAUICE": "Blues",\ |
---|
[252] | 1031 | "VMR_ICE": "Blues",\ |
---|
[241] | 1032 | "W": "jet",\ |
---|
[287] | 1033 | "WMAX_TH": "spectral",\ |
---|
[405] | 1034 | "ANOMALY": "RdBu_r",\ |
---|
[287] | 1035 | "QSURFICE": "hot_r",\ |
---|
[295] | 1036 | "ALBBARE": "spectral",\ |
---|
[317] | 1037 | "TAU": "YlOrBr_r",\ |
---|
[382] | 1038 | "CO2": "YlOrBr_r",\ |
---|
[345] | 1039 | #### T.N. |
---|
[647] | 1040 | "MTOT": "spectral",\ |
---|
[345] | 1041 | "H2O_ICE_S": "RdBu",\ |
---|
| 1042 | "VMR_H2OICE": "PuBu",\ |
---|
| 1043 | "VMR_H2OVAP": "PuBu",\ |
---|
[453] | 1044 | "WATERCAPTAG": "Blues",\ |
---|
[204] | 1045 | } |
---|
[241] | 1046 | #W --> spectral ou jet |
---|
[240] | 1047 | #spectral BrBG RdBu_r |
---|
[392] | 1048 | #print "predefined colorbars" |
---|
[518] | 1049 | if "TSURF" in whichone: whichone = "TSURF" |
---|
[204] | 1050 | if whichone not in whichcolorb: |
---|
| 1051 | whichone = "def" |
---|
| 1052 | return whichcolorb[whichone] |
---|
[202] | 1053 | |
---|
[345] | 1054 | ## Author: AS |
---|
[202] | 1055 | def definecolorvec (whichone="def"): |
---|
| 1056 | whichcolor = { \ |
---|
| 1057 | "def": "black",\ |
---|
| 1058 | "vis": "yellow",\ |
---|
| 1059 | "vishires": "yellow",\ |
---|
| 1060 | "molabw": "yellow",\ |
---|
| 1061 | "mola": "black",\ |
---|
| 1062 | "gist_heat": "white",\ |
---|
| 1063 | "hot": "tk",\ |
---|
| 1064 | "gist_rainbow": "black",\ |
---|
| 1065 | "spectral": "black",\ |
---|
| 1066 | "gray": "red",\ |
---|
| 1067 | "PuBu": "black",\ |
---|
| 1068 | } |
---|
| 1069 | if whichone not in whichcolor: |
---|
| 1070 | whichone = "def" |
---|
| 1071 | return whichcolor[whichone] |
---|
| 1072 | |
---|
[345] | 1073 | ## Author: AS |
---|
[180] | 1074 | def marsmap (whichone="vishires"): |
---|
[233] | 1075 | from os import uname |
---|
| 1076 | mymachine = uname()[1] |
---|
| 1077 | ### not sure about speed-up with this method... looks the same |
---|
[511] | 1078 | if "lmd.jussieu.fr" in mymachine: domain = "/u/aslmd/WWW/maps/" |
---|
| 1079 | elif "aymeric-laptop" in mymachine: domain = "/home/aymeric/Dropbox/Public/" |
---|
| 1080 | else: domain = "http://www.lmd.jussieu.fr/~aslmd/maps/" |
---|
[180] | 1081 | whichlink = { \ |
---|
[233] | 1082 | #"vis": "http://maps.jpl.nasa.gov/pix/mar0kuu2.jpg",\ |
---|
| 1083 | #"vishires": "http://www.lmd.jussieu.fr/~aslmd/maps/MarsMap_2500x1250.jpg",\ |
---|
| 1084 | #"geolocal": "http://dl.dropbox.com/u/11078310/geolocal.jpg",\ |
---|
| 1085 | #"mola": "http://www.lns.cornell.edu/~seb/celestia/mars-mola-2k.jpg",\ |
---|
| 1086 | #"molabw": "http://dl.dropbox.com/u/11078310/MarsElevation_2500x1250.jpg",\ |
---|
[453] | 1087 | "thermalday": domain+"thermalday.jpg",\ |
---|
| 1088 | "thermalnight": domain+"thermalnight.jpg",\ |
---|
| 1089 | "tesalbedo": domain+"tesalbedo.jpg",\ |
---|
[233] | 1090 | "vis": domain+"mar0kuu2.jpg",\ |
---|
| 1091 | "vishires": domain+"MarsMap_2500x1250.jpg",\ |
---|
| 1092 | "geolocal": domain+"geolocal.jpg",\ |
---|
| 1093 | "mola": domain+"mars-mola-2k.jpg",\ |
---|
| 1094 | "molabw": domain+"MarsElevation_2500x1250.jpg",\ |
---|
[238] | 1095 | "clouds": "http://www.johnstonsarchive.net/spaceart/marswcloudmap.jpg",\ |
---|
| 1096 | "jupiter": "http://www.mmedia.is/~bjj/data/jupiter_css/jupiter_css.jpg",\ |
---|
| 1097 | "jupiter_voy": "http://www.mmedia.is/~bjj/data/jupiter/jupiter_vgr2.jpg",\ |
---|
[558] | 1098 | #"bw": domain+"EarthElevation_2500x1250.jpg",\ |
---|
[273] | 1099 | "bw": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg",\ |
---|
| 1100 | "contrast": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg",\ |
---|
| 1101 | "nice": "http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg",\ |
---|
| 1102 | "blue": "http://eoimages.gsfc.nasa.gov/ve/2430/land_ocean_ice_2048.jpg",\ |
---|
[296] | 1103 | "blueclouds": "http://eoimages.gsfc.nasa.gov/ve/2431/land_ocean_ice_cloud_2048.jpg",\ |
---|
| 1104 | "justclouds": "http://eoimages.gsfc.nasa.gov/ve/2432/cloud_combined_2048.jpg",\ |
---|
[180] | 1105 | } |
---|
[238] | 1106 | ### see http://www.mmedia.is/~bjj/planetary_maps.html |
---|
[180] | 1107 | if whichone not in whichlink: |
---|
| 1108 | print "marsmap: choice not defined... you'll get the default one... " |
---|
| 1109 | whichone = "vishires" |
---|
| 1110 | return whichlink[whichone] |
---|
| 1111 | |
---|
[273] | 1112 | #def earthmap (whichone): |
---|
| 1113 | # if whichone == "contrast": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthMapAtmos_2500x1250.jpg" |
---|
| 1114 | # elif whichone == "bw": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/EarthElevation_2500x1250.jpg" |
---|
| 1115 | # elif whichone == "nice": whichlink="http://users.info.unicaen.fr/~karczma/TEACH/InfoGeo/Images/Planets/earthmap1k.jpg" |
---|
| 1116 | # return whichlink |
---|
[180] | 1117 | |
---|
[345] | 1118 | ## Author: AS |
---|
[241] | 1119 | def latinterv (area="Whole"): |
---|
| 1120 | list = { \ |
---|
| 1121 | "Europe": [[ 20., 80.],[- 50., 50.]],\ |
---|
| 1122 | "Central_America": [[-10., 40.],[ 230., 300.]],\ |
---|
| 1123 | "Africa": [[-20., 50.],[- 50., 50.]],\ |
---|
[273] | 1124 | "Whole": [[-90., 90.],[-180., 180.]],\ |
---|
| 1125 | "Southern_Hemisphere": [[-90., 60.],[-180., 180.]],\ |
---|
| 1126 | "Northern_Hemisphere": [[-60., 90.],[-180., 180.]],\ |
---|
[241] | 1127 | "Tharsis": [[-30., 60.],[-170.,- 10.]],\ |
---|
| 1128 | "Whole_No_High": [[-60., 60.],[-180., 180.]],\ |
---|
| 1129 | "Chryse": [[-60., 60.],[- 60., 60.]],\ |
---|
| 1130 | "North_Pole": [[ 50., 90.],[-180., 180.]],\ |
---|
| 1131 | "Close_North_Pole": [[ 75., 90.],[-180., 180.]],\ |
---|
| 1132 | "Far_South_Pole": [[-90.,-40.],[-180., 180.]],\ |
---|
| 1133 | "South_Pole": [[-90.,-50.],[-180., 180.]],\ |
---|
| 1134 | "Close_South_Pole": [[-90.,-75.],[-180., 180.]],\ |
---|
[637] | 1135 | "Sirenum_Crater_large": [[-46.,-34.],[-166.,-151.]],\ |
---|
| 1136 | "Sirenum_Crater_small": [[-36.,-26.],[-168.,-156.]],\ |
---|
| 1137 | "Rupes": [[ 72., 90.],[-120.,- 20.]],\ |
---|
[241] | 1138 | } |
---|
| 1139 | if area not in list: area = "Whole" |
---|
| 1140 | [olat,olon] = list[area] |
---|
| 1141 | return olon,olat |
---|
| 1142 | |
---|
[345] | 1143 | ## Author: TN |
---|
| 1144 | def separatenames (name): |
---|
| 1145 | from numpy import concatenate |
---|
| 1146 | # look for comas in the input name to separate different names (files, variables,etc ..) |
---|
| 1147 | if name is None: |
---|
| 1148 | names = None |
---|
| 1149 | else: |
---|
| 1150 | names = [] |
---|
| 1151 | stop = 0 |
---|
| 1152 | currentname = name |
---|
| 1153 | while stop == 0: |
---|
| 1154 | indexvir = currentname.find(',') |
---|
| 1155 | if indexvir == -1: |
---|
| 1156 | stop = 1 |
---|
| 1157 | name1 = currentname |
---|
| 1158 | else: |
---|
| 1159 | name1 = currentname[0:indexvir] |
---|
| 1160 | names = concatenate((names,[name1])) |
---|
| 1161 | currentname = currentname[indexvir+1:len(currentname)] |
---|
| 1162 | return names |
---|
| 1163 | |
---|
| 1164 | |
---|
| 1165 | ## Author: TN |
---|
| 1166 | def readslices(saxis): |
---|
| 1167 | from numpy import empty |
---|
| 1168 | if saxis == None: |
---|
| 1169 | zesaxis = None |
---|
| 1170 | else: |
---|
| 1171 | zesaxis = empty((len(saxis),2)) |
---|
| 1172 | for i in range(len(saxis)): |
---|
| 1173 | a = separatenames(saxis[i]) |
---|
| 1174 | if len(a) == 1: |
---|
| 1175 | zesaxis[i,:] = float(a[0]) |
---|
| 1176 | else: |
---|
| 1177 | zesaxis[i,0] = float(a[0]) |
---|
| 1178 | zesaxis[i,1] = float(a[1]) |
---|
| 1179 | |
---|
| 1180 | return zesaxis |
---|
| 1181 | |
---|
[568] | 1182 | ## Author: TN |
---|
| 1183 | def readdata(data,datatype,coord1,coord2): |
---|
| 1184 | ## Read sparse data |
---|
| 1185 | from numpy import empty |
---|
[572] | 1186 | if datatype == 'txt': |
---|
[568] | 1187 | if len(data[coord1].shape) == 1: |
---|
| 1188 | return data[coord1][:] |
---|
| 1189 | elif len(data[coord1].shape) == 2: |
---|
| 1190 | return data[coord1][:,int(coord2)-1] |
---|
| 1191 | else: |
---|
| 1192 | errormess('error in readdata') |
---|
[572] | 1193 | elif datatype == 'sav': |
---|
[568] | 1194 | return data[coord1][coord2] |
---|
| 1195 | else: |
---|
| 1196 | errormess(datatype+' type is not supported!') |
---|
| 1197 | |
---|
| 1198 | |
---|
[399] | 1199 | ## Author: AS |
---|
[475] | 1200 | def bidimfind(lon2d,lat2d,vlon,vlat,file=None): |
---|
[399] | 1201 | import numpy as np |
---|
[475] | 1202 | import matplotlib.pyplot as mpl |
---|
[399] | 1203 | if vlat is None: array = (lon2d - vlon)**2 |
---|
| 1204 | elif vlon is None: array = (lat2d - vlat)**2 |
---|
| 1205 | else: array = (lon2d - vlon)**2 + (lat2d - vlat)**2 |
---|
| 1206 | idy,idx = np.unravel_index( np.argmin(array), lon2d.shape ) |
---|
| 1207 | if vlon is not None: |
---|
[475] | 1208 | if (np.abs(lon2d[idy,idx]-vlon)) > 5: errormess("longitude not found ",printvar=lon2d) |
---|
[399] | 1209 | if vlat is not None: |
---|
[475] | 1210 | if (np.abs(lat2d[idy,idx]-vlat)) > 5: errormess("latitude not found ",printvar=lat2d) |
---|
| 1211 | if file is not None: |
---|
| 1212 | print idx,idy,lon2d[idy,idx],vlon |
---|
| 1213 | print idx,idy,lat2d[idy,idx],vlat |
---|
| 1214 | var = file.variables["HGT"][:,:,:] |
---|
[489] | 1215 | mpl.contourf(var[0,:,:],30,cmap = mpl.get_cmap(name="Greys_r") ) ; mpl.axis('off') ; mpl.plot(idx,idy,'mx',mew=4.0,ms=20.0) |
---|
[475] | 1216 | mpl.show() |
---|
| 1217 | return idy,idx |
---|
[399] | 1218 | |
---|
[345] | 1219 | ## Author: TN |
---|
[399] | 1220 | def getsindex(saxis,index,axis): |
---|
[345] | 1221 | # input : all the desired slices and the good index |
---|
| 1222 | # output : all indexes to be taken into account for reducing field |
---|
| 1223 | import numpy as np |
---|
[349] | 1224 | if ( np.array(axis).ndim == 2): |
---|
| 1225 | axis = axis[:,0] |
---|
[345] | 1226 | if saxis is None: |
---|
| 1227 | zeindex = None |
---|
| 1228 | else: |
---|
| 1229 | aaa = int(np.argmin(abs(saxis[index,0] - axis))) |
---|
| 1230 | bbb = int(np.argmin(abs(saxis[index,1] - axis))) |
---|
| 1231 | [imin,imax] = np.sort(np.array([aaa,bbb])) |
---|
| 1232 | zeindex = np.array(range(imax-imin+1))+imin |
---|
| 1233 | # because -180 and 180 are the same point in longitude, |
---|
| 1234 | # we get rid of one for averaging purposes. |
---|
| 1235 | if axis[imin] == -180 and axis[imax] == 180: |
---|
| 1236 | zeindex = zeindex[0:len(zeindex)-1] |
---|
[392] | 1237 | print "INFO: whole longitude averaging asked, so last point is not taken into account." |
---|
[345] | 1238 | return zeindex |
---|
| 1239 | |
---|
| 1240 | ## Author: TN |
---|
| 1241 | def define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,indextime,what_I_plot,dim0,vertmode): |
---|
| 1242 | # Purpose of define_axis is to find x and y axis scales in a smart way |
---|
| 1243 | # x axis priority: 1/time 2/lon 3/lat 4/vertical |
---|
| 1244 | # To be improved !!!... |
---|
| 1245 | from numpy import array,swapaxes |
---|
| 1246 | x = None |
---|
| 1247 | y = None |
---|
| 1248 | count = 0 |
---|
| 1249 | what_I_plot = array(what_I_plot) |
---|
| 1250 | shape = what_I_plot.shape |
---|
[477] | 1251 | if indextime is None and len(time) > 1: |
---|
[392] | 1252 | print "AXIS is time" |
---|
[345] | 1253 | x = time |
---|
| 1254 | count = count+1 |
---|
[477] | 1255 | if indexlon is None and len(lon) > 1: |
---|
[392] | 1256 | print "AXIS is lon" |
---|
[345] | 1257 | if count == 0: x = lon |
---|
| 1258 | else: y = lon |
---|
| 1259 | count = count+1 |
---|
[579] | 1260 | if indexlat is None and len(lat) > 1: |
---|
[392] | 1261 | print "AXIS is lat" |
---|
[345] | 1262 | if count == 0: x = lat |
---|
| 1263 | else: y = lat |
---|
| 1264 | count = count+1 |
---|
[579] | 1265 | if indexvert is None and ((dim0 == 4) or (y is None)): |
---|
[392] | 1266 | print "AXIS is vert" |
---|
[345] | 1267 | if vertmode == 0: # vertical axis is as is (GCM grid) |
---|
| 1268 | if count == 0: x=range(len(vert)) |
---|
| 1269 | else: y=range(len(vert)) |
---|
| 1270 | count = count+1 |
---|
| 1271 | else: # vertical axis is in kms |
---|
| 1272 | if count == 0: x = vert |
---|
| 1273 | else: y = vert |
---|
| 1274 | count = count+1 |
---|
| 1275 | x = array(x) |
---|
| 1276 | y = array(y) |
---|
[468] | 1277 | print "CHECK SHAPE: what_I_plot, x, y", what_I_plot.shape, x.shape, y.shape |
---|
[345] | 1278 | if len(shape) == 1: |
---|
[562] | 1279 | if shape[0] != len(x): print "WARNING: shape[0] != len(x). Correcting." ; what_I_plot = what_I_plot[0:len(x)] |
---|
[579] | 1280 | if len(y.shape) > 0: y = () |
---|
[345] | 1281 | elif len(shape) == 2: |
---|
[562] | 1282 | if shape[1] == len(y) and shape[0] == len(x) and shape[0] != shape[1]: |
---|
| 1283 | print "INFO: swapaxes: ",what_I_plot.shape,shape ; what_I_plot = swapaxes(what_I_plot,0,1) |
---|
| 1284 | else: |
---|
| 1285 | if shape[0] != len(y): print "WARNING: shape[0] != len(y). Correcting." ; what_I_plot = what_I_plot[0:len(y),:] |
---|
| 1286 | elif shape[1] != len(x): print "WARNING: shape[1] != len(x). Correcting." ; what_I_plot = what_I_plot[:,0:len(x)] |
---|
| 1287 | elif len(shape) == 3: |
---|
| 1288 | if vertmode < 0: print "not supported. must check array dimensions at some point. not difficult to implement though." |
---|
[345] | 1289 | return what_I_plot,x,y |
---|
[349] | 1290 | |
---|
[428] | 1291 | # Author: TN + AS |
---|
[349] | 1292 | def determineplot(slon, slat, svert, stime): |
---|
| 1293 | nlon = 1 # number of longitudinal slices -- 1 is None |
---|
| 1294 | nlat = 1 |
---|
| 1295 | nvert = 1 |
---|
| 1296 | ntime = 1 |
---|
| 1297 | nslices = 1 |
---|
| 1298 | if slon is not None: |
---|
| 1299 | nslices = nslices*len(slon) |
---|
| 1300 | nlon = len(slon) |
---|
| 1301 | if slat is not None: |
---|
| 1302 | nslices = nslices*len(slat) |
---|
| 1303 | nlat = len(slat) |
---|
| 1304 | if svert is not None: |
---|
| 1305 | nslices = nslices*len(svert) |
---|
| 1306 | nvert = len(svert) |
---|
| 1307 | if stime is not None: |
---|
| 1308 | nslices = nslices*len(stime) |
---|
| 1309 | ntime = len(stime) |
---|
| 1310 | #else: |
---|
| 1311 | # nslices = 2 |
---|
| 1312 | mapmode = 0 |
---|
| 1313 | if slon is None and slat is None: |
---|
| 1314 | mapmode = 1 # in this case we plot a map, with the given projection |
---|
| 1315 | |
---|
| 1316 | return nlon, nlat, nvert, ntime, mapmode, nslices |
---|
[440] | 1317 | |
---|
[448] | 1318 | ## Author: AC |
---|
| 1319 | ## Reduce complexity of main script by moving the contour part here. Also allow to call it from elsewhere |
---|
| 1320 | ## which can be usefull |
---|
| 1321 | # |
---|
| 1322 | #def call_contour(what_I_plot,error,x,y,m,lon,lat,vert,time,vertmode,ze_var2,indextime,indexlon,indexlat,indexvert,yintegral,mapmode,typefile,var2,ticks): |
---|
| 1323 | # from matplotlib.pyplot import contour, plot, clabel |
---|
| 1324 | # import numpy as np |
---|
| 1325 | # #what_I_plot = what_I_plot*mult |
---|
| 1326 | # if not error: |
---|
| 1327 | # if mapmode == 1: |
---|
| 1328 | # if typefile in ['mesoapi','meso']: what_I_plot = dumpbdy(what_I_plot,6) |
---|
| 1329 | # zevmin, zevmax = calculate_bounds(what_I_plot) |
---|
| 1330 | # zelevels = np.linspace(zevmin,zevmax,ticks) #20) |
---|
| 1331 | # if var2 == 'HGT': zelevels = np.arange(-10000.,30000.,2000.) |
---|
| 1332 | # if mapmode == 0: |
---|
| 1333 | # #if typefile in ['mesoideal']: what_I_plot = dumpbdy(what_I_plot,0,stag='W') |
---|
| 1334 | # itime=indextime |
---|
| 1335 | # if len(what_I_plot.shape) is 3: itime=[0] |
---|
| 1336 | # what_I_plot, x, y = define_axis(lon,lat,vert,time,indexlon,indexlat,indexvert,\ |
---|
| 1337 | # itime,what_I_plot, len(ze_var2.shape),vertmode) |
---|
| 1338 | # ### If we plot a 2-D field |
---|
| 1339 | # if len(what_I_plot.shape) is 2: |
---|
| 1340 | # #zelevels=[1.] |
---|
| 1341 | # if mapmode == 0:cs = contour(x,y,what_I_plot, zelevels, colors='k', linewidths = 1 ) #0.33 colors='w' )# , alpha=0.5) |
---|
| 1342 | # elif mapmode == 1:cs = m.contour(x,y,what_I_plot, zelevels, colors='k', linewidths = 1 ) #0.33 colors='w' )# , alpha=0.5) |
---|
| 1343 | # #clabel(cs,zelevels,inline=3,fmt='%1.1f',fontsize=7) |
---|
| 1344 | # ### If we plot a 1-D field |
---|
| 1345 | # elif len(what_I_plot.shape) is 1: |
---|
| 1346 | # plot(what_I_plot,x) |
---|
| 1347 | # else: |
---|
| 1348 | # errormess("There is an error in reducing field !") |
---|
| 1349 | # return error |
---|
[440] | 1350 | |
---|
[638] | 1351 | ## Author : AS |
---|
| 1352 | def maplatlon( lon,lat,field,\ |
---|
| 1353 | proj="cyl",colorb="jet",ndiv=10,zeback="molabw",trans=0.6,title="",\ |
---|
| 1354 | vecx=None,vecy=None,stride=2 ): |
---|
| 1355 | ### an easy way to map a field over lat/lon grid |
---|
| 1356 | import numpy as np |
---|
| 1357 | import matplotlib.pyplot as mpl |
---|
| 1358 | from matplotlib.cm import get_cmap |
---|
| 1359 | ## get lon and lat in 2D version. get lat/lon intervals |
---|
| 1360 | numdim = len(np.array(lon).shape) |
---|
| 1361 | if numdim == 2: [lon2d,lat2d] = [lon,lat] |
---|
| 1362 | elif numdim == 1: [lon2d,lat2d] = np.meshgrid(lon,lat) |
---|
| 1363 | else: errormess("lon and lat arrays must be 1D or 2D") |
---|
| 1364 | [wlon,wlat] = latinterv() |
---|
| 1365 | ## define projection and background. define x and y given the projection |
---|
| 1366 | m = define_proj(proj,wlon,wlat,back=zeback,blat=None,blon=None) |
---|
| 1367 | x, y = m(lon2d, lat2d) |
---|
| 1368 | ## define field. bound field. |
---|
| 1369 | what_I_plot = np.transpose(field) |
---|
| 1370 | zevmin, zevmax = calculate_bounds(what_I_plot) ## vmin=min(what_I_plot_frame), vmax=max(what_I_plot_frame)) |
---|
| 1371 | what_I_plot = bounds(what_I_plot,zevmin,zevmax) |
---|
| 1372 | ## define contour field levels. define color palette |
---|
| 1373 | ticks = ndiv + 1 |
---|
| 1374 | zelevels = np.linspace(zevmin,zevmax,ticks) |
---|
| 1375 | palette = get_cmap(name=colorb) |
---|
| 1376 | ## contour field |
---|
| 1377 | m.contourf( x, y, what_I_plot, zelevels, cmap = palette, alpha = trans ) |
---|
| 1378 | ## draw colorbar |
---|
| 1379 | if proj in ['moll','cyl']: zeorientation="horizontal" ; zepad = 0.07 |
---|
| 1380 | else: zeorientation="vertical" ; zepad = 0.03 |
---|
| 1381 | #daformat = fmtvar(fvar.upper()) |
---|
| 1382 | daformat = "%.0f" |
---|
| 1383 | zecb = mpl.colorbar( fraction=0.05,pad=zepad,format=daformat,orientation=zeorientation,\ |
---|
| 1384 | ticks=np.linspace(zevmin,zevmax,num=min([ticks/2+1,21])),extend='neither',spacing='proportional' ) |
---|
| 1385 | ## give a title |
---|
| 1386 | if zeorientation == "horizontal": zecb.ax.set_xlabel(title) |
---|
| 1387 | else: ptitle(title) |
---|
| 1388 | ## draw vector |
---|
| 1389 | if vecx is not None and vecy is not None: |
---|
| 1390 | [vecx_frame,vecy_frame] = m.rotate_vector( np.transpose(vecx), np.transpose(vecy), lon2d, lat2d ) ## for metwinds |
---|
| 1391 | vectorfield(vecx_frame, vecy_frame, x, y, stride=stride, csmooth=2,\ |
---|
| 1392 | scale=30., factor=500., color=definecolorvec(colorb), key=True) |
---|
| 1393 | ## scale regle la reference du vecteur. factor regle toutes les longueurs (dont la reference). l'AUGMENTER pour raccourcir les vecteurs. |
---|
| 1394 | return |
---|