source: trunk/LMDZ.TITAN/libf/phytitan/callcorrk.F90 @ 3581

Last change on this file since 3581 was 3497, checked in by debatzbr, 2 months ago

Add AC6H6 condensation in the microphysics

  • Property svn:executable set to *
File size: 40.0 KB
Line 
1      subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf,zday,      &
2          albedo,albedo_equivalent,emis,mu0,pplev,pplay,zzlev, &
3          pt,tsurf,fract,dist_star,                            &
4          dtlw,dtsw,fluxsurf_lw,                               &
5          fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw,               &
6          fluxabs_sw,fluxtop_dn,                               &
7          OLR_nu,OSR_nu,                                       &
8          int_dtaui,int_dtauv,popthi,popthv,poptti,popttv,     &
9          lastcall)
10
11      use mod_phys_lmdz_para, only : is_master
12      use radinc_h
13      use radcommon_h
14      use gases_h
15      USE tracer_h
16      use callkeys_mod, only: global1d, szangle
17      use comcstfi_mod, only: pi, mugaz, cpp
18      use callkeys_mod, only: diurnal,tracer,seashaze,corrk_recombin,   &
19                              strictboundcorrk,specOLR,diagdtau,        &
20                              tplanckmin,tplanckmax,callclouds,Fcloudy
21      use geometry_mod, only: latitude
22
23      implicit none
24
25!==================================================================
26!
27!     Purpose
28!     -------
29!     Solve the radiative transfer using the correlated-k method for
30!     the gaseous absorption and the Toon et al. (1989) method for
31!     scatttering due to aerosols.
32!
33!     Authors
34!     -------
35!     Emmanuel 01/2001, Forget 09/2001
36!     Robin Wordsworth (2009)
37!     
38!     Modified
39!     --------
40!     Jan Vatant d'Ollone (2018)
41!        --> corrk recombining case
42!     B. de Batz de Trenquelléon (2023)
43!        --> Titan's haze and coulds optics
44!        --> clear/dark columns method
45!        --> optical diagnostics
46!
47!==================================================================
48
49!-----------------------------------------------------------------------
50!     Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid
51!     Layer #1 is the layer near the ground.
52!     Layer #nlayer is the layer at the top.
53!-----------------------------------------------------------------------
54
55
56      ! INPUT
57      INTEGER,INTENT(IN) :: ngrid                  ! Number of atmospheric columns.
58      INTEGER,INTENT(IN) :: nlayer                 ! Number of atmospheric layers.
59      REAL,INTENT(IN) :: pq(ngrid,nlayer,nq)       ! Tracers (X/kg).
60      INTEGER,INTENT(IN) :: nq                     ! Number of tracers.
61      REAL,INTENT(IN) :: qsurf(ngrid,nq)           ! Tracers on surface (kg.m-2).
62      REAL,INTENT(IN) :: zday                      ! Time elapsed since Ls=0 (sols).
63      REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV)   ! Spectral Short Wavelengths Albedo. By MT2015
64      REAL,INTENT(IN) :: emis(ngrid)               ! Long Wave emissivity.
65      REAL,INTENT(IN) :: mu0(ngrid)                ! Cosine of sun incident angle.
66      REAL,INTENT(IN) :: pplev(ngrid,nlayer+1)     ! Inter-layer pressure (Pa).
67      REAL,INTENT(IN) :: pplay(ngrid,nlayer)       ! Mid-layer pressure (Pa).
68      REAL,INTENT(IN) :: zzlev(ngrid,nlayer+1)     ! Altitude at the atmospheric layer boundaries (ref : local surf).
69      REAL,INTENT(IN) :: pt(ngrid,nlayer)          ! Air temperature (K).
70      REAL,INTENT(IN) :: tsurf(ngrid)              ! Surface temperature (K).
71      REAL,INTENT(IN) :: fract(ngrid)              ! Fraction of day.
72      REAL,INTENT(IN) :: dist_star                 ! Distance star-planet (AU).
73      logical,intent(in) :: lastcall               ! Signals last call to physics.
74     
75      ! OUTPUT
76      REAL,INTENT(OUT) :: dtlw(ngrid,nlayer)             ! Heating rate (K/s) due to LW radiation.
77      REAL,INTENT(OUT) :: dtsw(ngrid,nlayer)             ! Heating rate (K/s) due to SW radiation.
78      REAL,INTENT(OUT) :: fluxsurf_lw(ngrid)             ! Incident LW flux to surf (W/m2).
79      REAL,INTENT(OUT) :: fluxsurf_sw(ngrid)             ! Incident SW flux to surf (W/m2)
80      REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid)          ! Absorbed SW flux by the surface (W/m2). By MT2015.
81      REAL,INTENT(OUT) :: fluxtop_lw(ngrid)              ! Outgoing LW flux to space (W/m2).
82      REAL,INTENT(OUT) :: fluxabs_sw(ngrid)              ! SW flux absorbed by the planet (W/m2).
83      REAL,INTENT(OUT) :: fluxtop_dn(ngrid)              ! Incident top of atmosphere SW flux (W/m2).
84      REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI)        ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1).
85      REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV)        ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1).
86      REAL,INTENT(OUT) :: albedo_equivalent(ngrid)       ! Spectrally Integrated Albedo. For Diagnostic. By MT2015
87      REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! IR optical thickness of layers within narrowbands for diags ().
88      REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! VI optical thickness of layers within narrowbands for diags ().
89      ! Diagnostics
90      REAL,INTENT(OUT) :: popthi(ngrid,nlayer,L_NSPECTI,8)  ! IR optical properties of haze within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont).
91      REAL,INTENT(OUT) :: popthv(ngrid,nlayer,L_NSPECTV,8)  ! VI optical properties of haze within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont).
92      REAL,INTENT(OUT) :: poptti(ngrid,nlayer,L_NSPECTI,8)  ! IR optical properties of haze and clouds within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont).
93      REAL,INTENT(OUT) :: popttv(ngrid,nlayer,L_NSPECTV,8)  ! VI optical properties of haze and clouds within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont).
94     
95     
96     
97!-----------------------------------------------------------------------
98!     Declaration of the variables required by correlated-k subroutines
99!     Numbered from top to bottom (unlike in the GCM)
100!-----------------------------------------------------------------------
101
102      REAL*8 tmid(L_LEVELS),pmid(L_LEVELS)
103      REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS)
104
105      ! Optical values for the optci/cv subroutines
106      REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV)
107      ! IR
108      REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
109      REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS)
110      REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
111      REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
112      ! VI
113      REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
114      REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
115      REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS)
116      REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
117      REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
118     
119      ! Temporary optical values for the optci/cv subroutines (clear column)
120      REAL*8 dtaui_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
121      REAL*8 dtauv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
122      REAL*8 tauv_cc(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
123      REAL*8 taucumi_cc(L_LEVELS,L_NSPECTI,L_NGAUSS)
124      REAL*8 taucumv_cc(L_LEVELS,L_NSPECTV,L_NGAUSS)
125      REAL*8 wbari_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
126      REAL*8 wbarv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
127      REAL*8 cosbi_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
128      REAL*8 cosbv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
129      ! Temporary optical values for the optci/cv subroutines (dark column)
130      REAL*8 dtaui_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
131      REAL*8 dtauv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
132      REAL*8 tauv_dc(L_NLEVRAD,L_NSPECTV,L_NGAUSS)
133      REAL*8 taucumi_dc(L_LEVELS,L_NSPECTI,L_NGAUSS)
134      REAL*8 taucumv_dc(L_LEVELS,L_NSPECTV,L_NGAUSS)
135      REAL*8 wbari_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
136      REAL*8 wbarv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
137      REAL*8 cosbi_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS)
138      REAL*8 cosbv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS)
139 
140      ! Optical diagnostics
141      ! Haze
142      REAL*8 diag_opthi(L_LEVELS,L_NSPECTI,6)
143      REAL*8 diag_opthv(L_LEVELS,L_NSPECTV,6)
144      ! Clouds
145      REAL*8 diag_optti(L_LEVELS,L_NSPECTI,6)
146      REAL*8 diag_opttv(L_LEVELS,L_NSPECTV,6)
147      ! Temporary optical diagnostics (clear column)
148      REAL*8 diag_optti_cc(L_LEVELS,L_NSPECTI,6)
149      REAL*8 diag_opttv_cc(L_LEVELS,L_NSPECTV,6)
150      ! Temporary optical diagnostics (dark column)
151      REAL*8 diag_optti_dc(L_LEVELS,L_NSPECTI,6)
152      REAL*8 diag_opttv_dc(L_LEVELS,L_NSPECTV,6)
153
154
155      REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn
156      REAL*8 nfluxoutv_nu(L_NSPECTV)                 ! Outgoing band-resolved VI flux at TOA (W/m2).
157      REAL*8 nfluxtopi_nu(L_NSPECTI)                 ! Net band-resolved IR flux at TOA (W/m2).
158      REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI)         ! For 1D diagnostic.
159      REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD)
160      REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD)
161      REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD)
162      REAL*8 albi,acosz
163      REAL*8 albv(L_NSPECTV)                         ! Spectral Visible Albedo.
164
165      INTEGER ig,l,k,nw,iq,ip,ilay,it,lev2lay,cdcolumn,ng
166     
167      LOGICAL found
168
169      real*8 taugsurf(L_NSPECTV,L_NGAUSS-1)
170      real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1)
171
172      ! Miscellaneous :
173      character(len=100) :: message
174      character(len=10),parameter :: subname="callcorrk"
175
176      logical OLRz
177      real*8 NFLUXGNDV_nu(L_NSPECTV)
178   
179      ! Included by MT for albedo calculations.     
180      REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation.
181      REAL*8 surface_stellar_flux   ! Stellar flux reaching the surface. Useful for equivalent albedo calculation.
182     
183      ! For variable haze
184      REAL*8 seashazefact(L_LEVELS)
185
186      ! For muphys optics
187      REAL*8 pqmo(ngrid,nlayer,nmicro)  ! Tracers for microphysics optics (X/m2).
188      REAL*8 i2e(ngrid,nlayer)          ! int 2 ext factor ( X.kg-1 -> X.m-2 for optics )
189     
190      ! For corr-k recombining
191      REAL*8 pqr(ngrid,L_PINT,L_REFVAR)  ! Tracers for corr-k recombining (mol/mol).
192      REAL*8 fact, tmin, tmax
193     
194      LOGICAL usept(L_PINT,L_NTREF)  ! mask if pfref grid point will be used
195      INTEGER inflay(L_PINT)         ! nearest inferior GCM layer for pfgasref grid points
196     
197!=======================================================================
198!             I.  Initialization on every call   
199!=======================================================================
200 
201
202      ! How much light do we get ?
203      do nw=1,L_NSPECTV
204         stel(nw)=stellarf(nw)/(dist_star**2)
205      end do
206
207      ! Convert (microphysical) tracers for optics: X.kg-1 --> X.m-2
208      ! NOTE: it should be moved somewhere else: calmufi performs the same kind of
209      ! computations... waste of time...
210      i2e(:,1:nlayer) = ( pplev(:,1:nlayer)-pplev(:,2:nlayer+1) ) / gzlat(:,1:nlayer)
211      pqmo(:,:,:) = 0.0
212      DO iq=1,nmicro
213        pqmo(:,:,iq) = pq(:,:,iq)*i2e(:,:)
214      ENDDO
215
216      ! Default value for fixed species for whom vmr has been taken
217      ! into account while computing high-resolution spectra
218      if (corrk_recombin) pqr(:,:,:) = 1.0
219
220!-----------------------------------------------------------------------   
221      do ig=1,ngrid ! Starting Big Loop over every GCM column
222!-----------------------------------------------------------------------
223         
224         ! Recombine reference corr-k if needed
225         if (corrk_recombin) then
226         
227         ! NB : To have decent CPU time recombining is not done on all gridpoints and wavelenghts but we
228         ! calculate a gasi/v_recomb variable on the reference corrk-k T,P grid (only for T,P values
229         ! who match the atmospheric conditions ) which is then processed as a standard pre-mix in
230         ! optci/v routines, but updated every time tracers on the ref P grid have varied > 1%.
231
232            ! Extract tracers for variable radiative species
233            ! Also find the nearest GCM layer under each ref pressure
234            do ip=1,L_PINT
235               
236               ilay=0
237               found = .false.
238               do l=1,nlayer
239                  if ( pplay(ig,l) .gt. 10.0**(pfgasref(ip)+2.0) ) then ! pfgasref=log(p[mbar])
240                     found=.true.
241                     ilay=l
242                  endif
243               enddo       
244
245               if (.not. found ) then ! set to min
246                  do iq=1,L_REFVAR
247                     if ( radvar_mask(iq) ) then
248                        pqr(ig,ip,iq) = pq(ig,1,radvar_indx(iq)) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol
249                     endif
250                  enddo
251               else
252                  if (ilay==nlayer) then ! set to max
253                     do iq=1,L_REFVAR
254                        if ( radvar_mask(iq) ) then
255                           pqr(ig,ip,iq) = pq(ig,nlayer,radvar_indx(iq)) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol
256                        endif
257                     enddo
258                  else ! standard
259                     fact = ( 10.0**(pfgasref(ip)+2.0) - pplay(ig,ilay+1) ) / ( pplay(ig,ilay) - pplay(ig,ilay+1) ) ! pfgasref=log(p[mbar])
260                     do iq=1,L_REFVAR
261                        if ( radvar_mask(iq) ) then
262                           pqr(ig,ip,iq) = pq(ig,ilay,radvar_indx(iq))**fact * pq(ig,ilay+1,radvar_indx(iq))**(1.0-fact)
263                           pqr(ig,ip,iq) = pqr(ig,ip,iq) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol
264                        endif
265                     enddo
266                  endif ! if ilay==nlayer
267               endif ! if not found
268
269               inflay(ip) = ilay
270
271            enddo ! ip=1,L_PINT
272
273            ! NB : The following usept is a trick to call recombine only for the reference T-P
274            ! grid points that are useful given the temperature range at this altitude
275            ! It saves a looot of time - JVO 18
276            usept(:,:) = .true.
277            do ip=1,L_PINT-1
278              if ( inflay(ip+1)==nlayer ) then
279                usept(ip,:) = .false.
280              endif
281              if ( inflay(ip) == 0 ) then
282                usept(ip+1:,:) = .false.
283              endif
284              if ( usept(ip,1) ) then ! if not all false
285                tmin = minval(pt(ig,max(inflay(ip+1)+1,1):min(inflay(ip)+1,nlayer)))
286                tmax = maxval(pt(ig,max(inflay(ip+1)+1,1):min(inflay(ip)+1,nlayer)))
287                do it=1,L_NTREF-1
288                  if ( tgasref(it+1) .lt. tmin ) then
289                    usept(ip,it) = .false.
290                  endif
291                enddo
292                do it=2,L_NTREF
293                  if ( tgasref(it-1) .gt. tmax ) then
294                    usept(ip,it) = .false.
295                  endif
296                enddo
297                ! in case of out-of-bounds
298                if ( tgasref(1)         .lt. tmin ) usept(ip,1) = .true.
299                if ( tgasref(L_NTREF)   .gt. tmax ) usept(ip,L_NTREF) = .true.
300              endif
301            enddo ! ip=1,L_PINT-1
302            ! deal with last bound
303            if ( inflay(L_PINT-1).ne.0 ) usept(L_PINT,:) = usept(L_PINT-1,:)
304
305
306            do ip=1,L_PINT
307
308               ! Recombine k at (useful only!) reference T-P values if tracers or T have enough varied
309               do it=1,L_NTREF
310
311                 if ( usept(ip,it) .eqv. .false. ) cycle
312
313                 do l=1,L_REFVAR
314                    if ( abs( (pqr(ig,ip,l) - pqrold(ip,l)) / max(1.0e-30,pqrold(ip,l))) .GT. 0.01  & ! +- 1%
315                         .or. ( useptold(ip,it) .eqv. .false.  ) ) then ! in case T change but not the tracers
316                       call recombin_corrk( pqr(ig,ip,:),ip,it )
317                       exit ! one is enough to trigger the update
318                    endif
319                 enddo
320                 
321               enddo
322
323            enddo ! ip=1,L_PINT
324
325            useptold(:,:)=usept(:,:)
326
327       endif ! if corrk_recombin
328
329!=======================================================================
330!              II.  Transformation of the GCM variables
331!=======================================================================
332
333
334         ! Albedo and Emissivity.
335         albi=1-emis(ig)   ! Long Wave.
336         DO nw=1,L_NSPECTV ! Short Wave loop.
337            albv(nw)=albedo(ig,nw)
338         ENDDO
339
340      if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight.
341         acosz = cos(pi*szangle/180.0)
342         print*,'acosz=',acosz,', szangle=',szangle
343      else
344         acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude.
345      endif
346
347!-----------------------------------------------------------------------
348!     Pressure and temperature
349!-----------------------------------------------------------------------
350
351      DO l=1,nlayer
352         plevrad(2*l)   = pplay(ig,nlayer+1-l)/scalep
353         plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep
354         tlevrad(2*l)   = pt(ig,nlayer+1-l)
355         tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2
356      END DO
357     
358      plevrad(1) = 0.
359      plevrad(2) = 0.   !! Trick to have correct calculations of fluxes in gflux(i/v).F, but the pmid levels are not impacted by this change.
360
361      tlevrad(1) = tlevrad(2)
362      tlevrad(2*nlayer+1)=tsurf(ig)
363     
364      pmid(1) = max(pgasmin,0.0001*plevrad(3))
365      pmid(2) =  pmid(1)
366
367      tmid(1) = tlevrad(2)
368      tmid(2) = tmid(1)
369   
370      DO l=1,L_NLAYRAD-1
371         tmid(2*l+1) = tlevrad(2*l+1)
372         tmid(2*l+2) = tlevrad(2*l+1)
373         pmid(2*l+1) = plevrad(2*l+1)
374         pmid(2*l+2) = plevrad(2*l+1)
375      END DO
376      pmid(L_LEVELS) = plevrad(L_LEVELS)
377      tmid(L_LEVELS) = tlevrad(L_LEVELS)
378
379!!Alternative interpolation:
380!         pmid(3) = pmid(1)
381!         pmid(4) = pmid(1)
382!         tmid(3) = tmid(1)
383!         tmid(4) = tmid(1)
384!      DO l=2,L_NLAYRAD-1
385!         tmid(2*l+1) = tlevrad(2*l)
386!         tmid(2*l+2) = tlevrad(2*l)
387!         pmid(2*l+1) = plevrad(2*l)
388!         pmid(2*l+2) = plevrad(2*l)
389!      END DO
390!      pmid(L_LEVELS) = plevrad(L_LEVELS-1)
391!      tmid(L_LEVELS) = tlevrad(L_LEVELS-1)
392
393      ! Test for out-of-bounds pressure.
394      if(plevrad(3).lt.pgasmin)then
395         print*,'Minimum pressure is outside the radiative'
396         print*,'transfer kmatrix bounds, exiting.'
397         call abort
398      elseif(plevrad(L_LEVELS).gt.pgasmax)then
399         print*,'Maximum pressure is outside the radiative'
400         print*,'transfer kmatrix bounds, exiting.'
401         call abort
402      endif
403
404      ! Test for out-of-bounds temperature.
405      do k=1,L_LEVELS
406         if(tlevrad(k).lt.tgasmin)then
407            print*,'Minimum temperature is outside the radiative'
408            print*,'transfer kmatrix bounds'
409            print*,"k=",k," tlevrad(k)=",tlevrad(k)
410            print*,"tgasmin=",tgasmin
411            if (strictboundcorrk) then
412              call abort
413            else
414              print*,'***********************************************'
415              print*,'we allow model to continue with tlevrad=tgasmin'
416              print*,'  ... we assume we know what you are doing ... '
417              print*,'  ... but do not let this happen too often ... '
418              print*,'***********************************************'
419              !tlevrad(k)=tgasmin
420            endif
421         elseif(tlevrad(k).gt.tgasmax)then
422!            print*,'Maximum temperature is outside the radiative'
423!            print*,'transfer kmatrix bounds, exiting.'
424!            print*,"k=",k," tlevrad(k)=",tlevrad(k)
425!            print*,"tgasmax=",tgasmax
426            if (strictboundcorrk) then
427              call abort
428            else
429!              print*,'***********************************************'
430!              print*,'we allow model to continue with tlevrad=tgasmax' 
431!              print*,'  ... we assume we know what you are doing ... '
432!              print*,'  ... but do not let this happen too often ... '
433!              print*,'***********************************************'
434              !tlevrad(k)=tgasmax
435            endif
436         endif
437
438         if (tlevrad(k).lt.tplanckmin) then
439            print*,'Minimum temperature is outside the boundaries for'
440            print*,'Planck function integration set in callphys.def, aborting.'
441            print*,"k=",k," tlevrad(k)=",tlevrad(k)
442            print*,"tplanckmin=",tplanckmin
443            message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def"
444            call abort_physic(subname,message,1)
445          else if (tlevrad(k).gt.tplanckmax) then
446            print*,'Maximum temperature is outside the boundaries for'
447            print*,'Planck function integration set in callphys.def, aborting.'
448            print*,"k=",k," tlevrad(k)=",tlevrad(k)
449            print*,"tplanckmax=",tplanckmax
450            message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def"
451            call abort_physic(subname,message,1)
452          endif
453
454      enddo
455
456      do k=1,L_NLAYRAD+1
457         if(tmid(k).lt.tgasmin)then
458            print*,'Minimum temperature is outside the radiative'
459            print*,'transfer kmatrix bounds, exiting.'
460            print*,"k=",k," tmid(k)=",tmid(k)
461            print*,"tgasmin=",tgasmin
462            if (strictboundcorrk) then
463              call abort
464            else
465              print*,'***********************************************'
466              print*,'we allow model to continue with tmid=tgasmin'
467              print*,'  ... we assume we know what you are doing ... '
468              print*,'  ... but do not let this happen too often ... '
469              print*,'***********************************************'
470              tmid(k)=tgasmin
471            endif
472         elseif(tmid(k).gt.tgasmax)then
473!            print*,'Maximum temperature is outside the radiative'
474!            print*,'transfer kmatrix bounds, exiting.'
475!            print*,"k=",k," tmid(k)=",tmid(k)
476!            print*,"tgasmax=",tgasmax
477            if (strictboundcorrk) then
478              call abort
479            else
480!              print*,'***********************************************'
481!              print*,'we allow model to continue with tmid=tgasmin'
482!              print*,'  ... we assume we know what you are doing ... '
483!              print*,'  ... but do not let this happen too often ... '
484!              print*,'***********************************************'
485              tmid(k)=tgasmax
486            endif
487         endif
488      enddo
489
490!=======================================================================
491!          III. Calling the main radiative transfer subroutines
492!=======================================================================
493
494         Cmk(:)      = 0.01 * 1.0 / (gzlat(ig,:) * mugaz * 1.672621e-27) ! q_main=1.0 assumed.
495         gzlat_ig(:) = gzlat(ig,:)
496         
497         ! Compute the haze seasonal modulation factor
498         if (seashaze) call season_haze(zday,latitude(ig),plevrad,seashazefact)
499
500!-----------------------------------------------------------------------
501!        Short Wave Part
502!-----------------------------------------------------------------------
503
504         ! Clear column :
505         cdcolumn = 0
506         call optcv(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tmid,pmid,    &
507              dtauv_cc,tauv_cc,taucumv_cc,wbarv_cc,cosbv_cc,tauray,taugsurf,seashazefact,&
508              diag_opthv,diag_opttv_cc,cdcolumn)
509         ! Dark column :
510         cdcolumn = 1
511         call optcv(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tmid,pmid,    &
512              dtauv_dc,tauv_dc,taucumv_dc,wbarv_dc,cosbv_dc,tauray,taugsurf,seashazefact,&
513              diag_opthv,diag_opttv_dc,cdcolumn)
514         
515         ! Mean opacity, ssa and asf :
516         where ((exp(-dtauv_cc(:,:,:)).ge.1.d-40) .and. (exp(-dtauv_dc(:,:,:)).ge.1.d-40))
517            dtauv(:,:,:) = -log((1-Fcloudy)*exp(-dtauv_cc(:,:,:)) + Fcloudy*exp(-dtauv_dc(:,:,:)))
518         elsewhere
519            dtauv(:,:,:) = dtauv_dc(:,:,:) ! No need to average...
520         endwhere
521         do ng = 1, L_NGAUSS
522            do nw = 1, L_NSPECTV
523               taucumv(1,nw,ng) = 0.0d0
524               do k = 2, L_LEVELS
525                  if ((exp(-taucumv_cc(k,nw,ng)).ge.1.d-40) .and. (exp(-taucumv_dc(k,nw,ng)).ge.1.d-40)) then
526                     taucumv(k,nw,ng) = taucumv(k-1,nw,ng) - log((1-Fcloudy)*exp(-taucumv_cc(k,nw,ng)) + Fcloudy*exp(-taucumv_dc(k,nw,ng)))
527                  else
528                     taucumv(k,nw,ng) = taucumv(k-1,nw,ng) + taucumv_dc(k,nw,ng) ! No need to average...
529                  end if
530               end do
531               do l = 1, L_NLAYRAD
532                  tauv(l,nw,ng) = taucumv(2*l,nw,ng)
533               end do
534               tauv(l,nw,ng) = taucumv(2*L_NLAYRAD+1,nw,ng)
535            end do
536         end do
537         wbarv = (1-Fcloudy) * wbarv_cc + Fcloudy * wbarv_dc
538         cosbv = (1-Fcloudy) * cosbv_cc + Fcloudy * cosbv_dc
539         
540         ! Diagnostics for clouds :
541         if (callclouds) then
542            where (diag_opttv_cc(:,:,1) .lt. 1.d-30)
543               diag_opttv_cc(:,:,1) = 1.d-30
544            endwhere
545            where (diag_opttv_dc(:,:,1) .lt. 1.d-30)
546               diag_opttv_dc(:,:,1) = 1.d-30
547            endwhere
548            diag_opttv(:,:,1) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,1)) + Fcloudy*exp(-diag_opttv_dc(:,:,1)) )
549            diag_opttv(:,:,2) = (1-Fcloudy) * diag_opttv_cc(:,:,2) + Fcloudy * diag_opttv_dc(:,:,2)
550            diag_opttv(:,:,3) = (1-Fcloudy) * diag_opttv_cc(:,:,3) + Fcloudy * diag_opttv_dc(:,:,3)
551            diag_opttv(:,:,4) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,4)) + Fcloudy*exp(-diag_opttv_dc(:,:,4)) )
552            diag_opttv(:,:,5) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,5)) + Fcloudy*exp(-diag_opttv_dc(:,:,5)) )
553            diag_opttv(:,:,6) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,6)) + Fcloudy*exp(-diag_opttv_dc(:,:,6)) )
554         endif
555         
556         if(fract(ig) .ge. 1.0e-4) then ! Only during daylight.
557            if((ngrid.eq.1).and.(global1d))then
558               do nw=1,L_NSPECTV
559                  stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle
560               end do
561            else
562               do nw=1,L_NSPECTV
563                  stel_fract(nw)= stel(nw) * fract(ig)
564               end do
565            endif
566            call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv,  &
567                 acosz,stel_fract,                                 &
568                 nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu,   &
569                 fmnetv,fluxupv,fluxdnv,fzerov,taugsurf)
570
571         else ! During the night, fluxes = 0.
572            nfluxtopv        = 0.0d0
573            fluxtopvdn       = 0.0d0
574            nfluxoutv_nu(:)  = 0.0d0
575            nfluxgndv_nu(:)  = 0.0d0
576            do l=1,L_NLAYRAD
577               fmnetv(l)=0.0d0
578               fluxupv(l)=0.0d0
579               fluxdnv(l)=0.0d0
580            end do
581         end if
582
583
584         ! Equivalent Albedo Calculation (for OUTPUT). MT2015
585         if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight.       
586            surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV))     
587            if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive.
588               DO nw=1,L_NSPECTV                 
589                  albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw)
590               ENDDO
591               albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux
592               albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV))
593            else
594               albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
595            endif
596         else
597            albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0.
598         endif
599
600
601!-----------------------------------------------------------------------
602!        Long Wave Part
603!-----------------------------------------------------------------------
604
605
606         ! Clear column :
607         cdcolumn = 0
608         call optci(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tlevrad,tmid,pmid,&
609              dtaui_cc,taucumi_cc,cosbi_cc,wbari_cc,taugsurfi,seashazefact,   &
610              diag_opthi,diag_optti_cc,cdcolumn)
611         ! Dark column :
612         cdcolumn = 1
613         call optci(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tlevrad,tmid,pmid,&
614              dtaui_dc,taucumi_dc,cosbi_dc,wbari_dc,taugsurfi,seashazefact,   &
615              diag_opthi,diag_optti_dc,cdcolumn)
616
617         ! Mean opacity, ssa and asf :
618         where ((exp(-dtaui_cc(:,:,:)).ge.1.d-40) .and. (exp(-dtaui_dc(:,:,:)).ge.1.d-40))
619            dtaui(:,:,:) = -log((1-Fcloudy)*exp(-dtaui_cc(:,:,:)) + Fcloudy*exp(-dtaui_dc(:,:,:)))
620         elsewhere
621            dtaui(:,:,:) = dtaui_dc(:,:,:) ! No need to average...
622         endwhere
623         do ng = 1, L_NGAUSS
624            do nw = 1, L_NSPECTI
625               taucumi(1,nw,ng) = 0.0d0
626               do k = 2, L_LEVELS
627                  if ((exp(-taucumi_cc(k,nw,ng)).ge.1.d-40) .and. (exp(-taucumi_dc(k,nw,ng)).ge.1.d-40)) then
628                     taucumi(k,nw,ng) = taucumi(k-1,nw,ng) - log((1-Fcloudy)*exp(-taucumi_cc(k,nw,ng)) + Fcloudy*exp(-taucumi_dc(k,nw,ng)))
629                  else
630                     taucumi(k,nw,ng) = taucumi(k-1,nw,ng) + taucumi_dc(k,nw,ng) ! No need to average...
631                  end if
632               end do
633            end do
634         end do
635         wbari = (1-Fcloudy) * wbari_cc + Fcloudy * wbari_dc
636         cosbi = (1-Fcloudy) * cosbi_cc + Fcloudy * cosbi_dc
637
638         ! Diagnostics for clouds :
639         if (callclouds) then
640            where (diag_optti_cc(:,:,1) .lt. 1.d-30)
641               diag_optti_cc(:,:,1) = 1.d-30
642            endwhere
643            where (diag_optti_dc(:,:,1) .lt. 1.d-30)
644               diag_optti_dc(:,:,1) = 1.d-30
645            endwhere
646            diag_optti(:,:,1) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,1)) + Fcloudy*exp(-diag_optti_dc(:,:,1)) )
647            diag_optti(:,:,2) = (1-Fcloudy) * diag_optti_cc(:,:,2) + Fcloudy * diag_optti_dc(:,:,2)
648            diag_optti(:,:,3) = (1-Fcloudy) * diag_optti_cc(:,:,3) + Fcloudy * diag_optti_dc(:,:,3)
649            diag_optti(:,:,4) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,4)) + Fcloudy*exp(-diag_optti_dc(:,:,4)) )
650            diag_optti(:,:,5) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,5)) + Fcloudy*exp(-diag_optti_dc(:,:,5)) )
651            diag_optti(:,:,6) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,6)) + Fcloudy*exp(-diag_optti_dc(:,:,6)) )
652         endif
653
654         call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi,      &
655              wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu,         &
656              fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi)
657
658!-----------------------------------------------------------------------
659!     Transformation of the correlated-k code outputs
660!     (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw)
661
662!     Flux incident at the top of the atmosphere
663         fluxtop_dn(ig)=fluxtopvdn
664
665         fluxtop_lw(ig)  = real(nfluxtopi)
666         fluxabs_sw(ig)  = real(-nfluxtopv)
667         fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD))
668         fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD))
669         
670!        Flux absorbed by the surface. By MT2015.         
671         fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig))
672
673         if(fluxtop_dn(ig).lt.0.0)then
674            print*,'Achtung! fluxtop_dn has lost the plot!'
675            print*,'fluxtop_dn=',fluxtop_dn(ig)
676            print*,'acosz=',acosz
677            print*,'temp=   ',pt(ig,:)
678            print*,'pplay=  ',pplay(ig,:)
679            call abort
680         endif
681
682!     Spectral output, for exoplanet observational comparison
683         if(specOLR)then
684            do nw=1,L_NSPECTI
685               OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth
686            end do
687            do nw=1,L_NSPECTV
688               !GSR_nu(ig,nw)=nfluxgndv_nu(nw)
689               OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth
690            end do
691         endif
692
693!     Finally, the heating rates
694
695         DO l=2,L_NLAYRAD
696            dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1))  &
697                *gzlat(ig,L_NLAYRAD+1-l)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
698            dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1))  &
699                *gzlat(ig,L_NLAYRAD+1-l)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1)))
700         END DO     
701
702!     These are values at top of atmosphere
703         dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv)           &
704             *gzlat(ig,L_NLAYRAD)/(cpp*scalep*(plevrad(3)-plevrad(1)))
705         dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi)           &
706             *gzlat(ig,L_NLAYRAD)/(cpp*scalep*(plevrad(3)-plevrad(1)))
707
708
709      !  Optical thickness diagnostics (added by JVO)
710      if (diagdtau) then
711         do l=1,L_NLAYRAD
712            do nw=1,L_NSPECTV
713               int_dtauv(ig,l,nw) = 0.0d0
714               DO k=1,L_NGAUSS
715               ! Output exp(-tau) because gweight ponderates exp and not tau itself
716               int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k)
717               ENDDO
718            enddo
719            do nw=1,L_NSPECTI
720            int_dtaui(ig,l,nw) = 0.0d0
721               DO k=1,L_NGAUSS
722               ! Output exp(-tau) because gweight ponderates exp and not tau itself
723               int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k)
724               ENDDO
725            enddo
726         enddo
727      endif
728     
729     
730      ! Diagnostics : optical properties of haze and clouds (dtau, tau, k, w, g) :
731      do l = 2, L_LEVELS, 2
732         lev2lay = L_NLAYRAD+1 - l/2
733         ! Visible :
734         do nw = 1, L_NSPECTV
735            popthv(ig,lev2lay,nw,:) = 0.0d0
736            popttv(ig,lev2lay,nw,:) = 0.0d0
737            ! Optical thickness (dtau) :
738            popthv(ig,lev2lay,nw,1) = (diag_opthv(l,nw,1) + diag_opthv(l+1,nw,1)) / 2.0
739            if (callclouds) then
740               popttv(ig,lev2lay,nw,1) = (diag_opttv(l,nw,1) + diag_opttv(l+1,nw,1)) / 2.0
741            endif
742            ! Opacity (tau) :
743            do k = L_NLAYRAD, lev2lay, -1
744               popthv(ig,lev2lay,nw,2) = popthv(ig,lev2lay,nw,2) + popthv(ig,k,nw,1)
745               if (callclouds) then
746                  popttv(ig,lev2lay,nw,2) = popttv(ig,lev2lay,nw,2) + popttv(ig,k,nw,1)
747               endif
748            enddo
749            ! Extinction (k) :
750            popthv(ig,lev2lay,nw,3) = popthv(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
751            if (callclouds) then
752               popttv(ig,lev2lay,nw,3) = popttv(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
753            endif
754            ! Simple Scattering Albedo (w) and Asymmetry Parameter (g) :
755            popthv(ig,lev2lay,nw,4) = (diag_opthv(l,nw,2) + diag_opthv(l+1,nw,2)) / 2.0
756            popthv(ig,lev2lay,nw,5) = (diag_opthv(l,nw,3) + diag_opthv(l+1,nw,3)) / 2.0
757            if (callclouds) then
758               popttv(ig,lev2lay,nw,4) = (diag_opttv(l,nw,2) + diag_opttv(l+1,nw,2)) / 2.0
759               popttv(ig,lev2lay,nw,5) = (diag_opttv(l,nw,3) + diag_opttv(l+1,nw,3)) / 2.0
760            endif
761            ! DRAYAER, TAUGAS, DCONT :
762            popthv(ig,lev2lay,nw,6) = (diag_opthv(l,nw,4) + diag_opthv(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
763            popthv(ig,lev2lay,nw,7) = (diag_opthv(l,nw,5) + diag_opthv(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
764            popthv(ig,lev2lay,nw,8) = (diag_opthv(l,nw,6) + diag_opthv(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
765            if (callclouds) then
766               popttv(ig,lev2lay,nw,6) = (diag_opttv(l,nw,4) + diag_opttv(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
767               popttv(ig,lev2lay,nw,7) = (diag_opttv(l,nw,5) + diag_opttv(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
768               popttv(ig,lev2lay,nw,8) = (diag_opttv(l,nw,6) + diag_opttv(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
769            endif
770         enddo
771         ! Infra-Red
772         do nw=1,L_NSPECTI
773            popthi(ig,lev2lay,nw,:) = 0.0d0
774            poptti(ig,lev2lay,nw,:) = 0.0d0
775            ! Optical thickness (dtau) :
776            popthi(ig,lev2lay,nw,1) = (diag_opthi(l,nw,1) + diag_opthi(l+1,nw,1)) / 2.0
777            if (callclouds) then
778               poptti(ig,lev2lay,nw,1) = (diag_optti(l,nw,1) + diag_optti(l+1,nw,1)) / 2.0
779            endif
780            ! Opacity (tau) :
781            do k = L_NLAYRAD, lev2lay, -1
782               popthi(ig,lev2lay,nw,2) = popthi(ig,lev2lay,nw,2) + popthi(ig,k,nw,1)
783               if (callclouds) then
784                  poptti(ig,lev2lay,nw,2) = poptti(ig,lev2lay,nw,2) + poptti(ig,k,nw,1)
785               endif
786            enddo
787            ! Extinction (k) :
788            popthi(ig,lev2lay,nw,3) = popthi(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
789            if (callclouds) then
790               poptti(ig,lev2lay,nw,3) = poptti(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
791            endif
792            ! Simple Scattering Albedo (w) and Asymmetry Parameter (g) :
793            popthi(ig,lev2lay,nw,4) = (diag_opthi(l,nw,2) + diag_opthi(l+1,nw,2)) / 2.0
794            popthi(ig,lev2lay,nw,5) = (diag_opthi(l,nw,3) + diag_opthi(l+1,nw,3)) / 2.0
795            if (callclouds) then
796               poptti(ig,lev2lay,nw,4) = (diag_optti(l,nw,2) + diag_optti(l+1,nw,2)) / 2.0
797               poptti(ig,lev2lay,nw,5) = (diag_optti(l,nw,3) + diag_optti(l+1,nw,3)) / 2.0
798            endif
799            ! DRAYAER, TAUGAS, DCONT :
800            popthi(ig,lev2lay,nw,6) = (diag_opthi(l,nw,4) + diag_opthi(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
801            popthi(ig,lev2lay,nw,7) = (diag_opthi(l,nw,5) + diag_opthi(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
802            popthi(ig,lev2lay,nw,8) = (diag_opthi(l,nw,6) + diag_opthi(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
803            if (callclouds) then
804               poptti(ig,lev2lay,nw,6) = (diag_optti(l,nw,4) + diag_optti(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
805               poptti(ig,lev2lay,nw,7) = (diag_optti(l,nw,5) + diag_optti(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
806               poptti(ig,lev2lay,nw,8) = (diag_optti(l,nw,6) + diag_optti(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay))
807            endif
808         enddo
809      enddo
810
811
812!-----------------------------------------------------------------------   
813      end do ! End of big loop over every GCM column.
814!-----------------------------------------------------------------------
815
816
817!-----------------------------------------------------------------------
818!     Additional diagnostics
819!-----------------------------------------------------------------------
820
821      ! IR spectral output, for exoplanet observational comparison
822      if(lastcall.and.(ngrid.eq.1))then  ! could disable the 1D output, they are in the diagfi and diagspec... JL12
823
824         print*,'Saving scalar quantities in surf_vals.out...'
825         print*,'psurf = ', pplev(1,1),' Pa'
826         open(116,file='surf_vals.out')
827         write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1),         &
828                      real(-nfluxtopv),real(nfluxtopi)
829         close(116)
830
831!          USEFUL COMMENT - Do Not Remove.
832!
833!           if(specOLR)then
834!               open(117,file='OLRnu.out')
835!               do nw=1,L_NSPECTI
836!                  write(117,*) OLR_nu(1,nw)
837!               enddo
838!               close(117)
839!
840!               open(127,file='OSRnu.out')
841!               do nw=1,L_NSPECTV
842!                  write(127,*) OSR_nu(1,nw)
843!               enddo
844!               close(127)
845!           endif
846
847           ! OLR vs altitude: do it as a .txt file.
848         OLRz=.false.
849         if(OLRz)then
850            print*,'saving IR vertical flux for OLRz...'
851            open(118,file='OLRz_plevs.out')
852            open(119,file='OLRz.out')
853            do l=1,L_NLAYRAD
854               write(118,*) plevrad(2*l)
855               do nw=1,L_NSPECTI
856                  write(119,*) fluxupi_nu(l,nw)
857               enddo
858            enddo
859            close(118)
860            close(119)
861         endif
862
863      endif
864
865      if (lastcall) then
866        IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi )
867        IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv )
868        IF( ALLOCATED( gasi_recomb ) ) DEALLOCATE( gasi_recomb )
869        IF( ALLOCATED( gasv_recomb ) ) DEALLOCATE( gasv_recomb )
870        IF( ALLOCATED( pqrold ) ) DEALLOCATE( pqrold )
871        IF( ALLOCATED( useptold ) ) DEALLOCATE( useptold )
872!$OMP BARRIER
873!$OMP MASTER
874        IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref )
875        IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref )
876        IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref )
877        IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight )
878!$OMP END MASTER
879!$OMP BARRIER
880      endif
881
882
883    end subroutine callcorrk
Note: See TracBrowser for help on using the repository browser.