1 | subroutine callcorrk(ngrid,nlayer,pq,nq,qsurf,zday, & |
---|
2 | albedo,albedo_equivalent,emis,mu0,pplev,pplay,zzlev, & |
---|
3 | pt,tsurf,fract,dist_star, & |
---|
4 | dtlw,dtsw,fluxsurf_lw, & |
---|
5 | fluxsurf_sw,fluxsurfabs_sw,fluxtop_lw, & |
---|
6 | fluxabs_sw,fluxtop_dn, & |
---|
7 | OLR_nu,OSR_nu, & |
---|
8 | int_dtaui,int_dtauv,popthi,popthv,poptti,popttv, & |
---|
9 | lastcall) |
---|
10 | |
---|
11 | use mod_phys_lmdz_para, only : is_master |
---|
12 | use radinc_h |
---|
13 | use radcommon_h |
---|
14 | use gases_h |
---|
15 | USE tracer_h |
---|
16 | use callkeys_mod, only: global1d, szangle |
---|
17 | use comcstfi_mod, only: pi, mugaz, cpp |
---|
18 | use callkeys_mod, only: diurnal,tracer,seashaze,corrk_recombin, & |
---|
19 | strictboundcorrk,specOLR,diagdtau, & |
---|
20 | tplanckmin,tplanckmax,callclouds,Fcloudy |
---|
21 | use geometry_mod, only: latitude |
---|
22 | |
---|
23 | implicit none |
---|
24 | |
---|
25 | !================================================================== |
---|
26 | ! |
---|
27 | ! Purpose |
---|
28 | ! ------- |
---|
29 | ! Solve the radiative transfer using the correlated-k method for |
---|
30 | ! the gaseous absorption and the Toon et al. (1989) method for |
---|
31 | ! scatttering due to aerosols. |
---|
32 | ! |
---|
33 | ! Authors |
---|
34 | ! ------- |
---|
35 | ! Emmanuel 01/2001, Forget 09/2001 |
---|
36 | ! Robin Wordsworth (2009) |
---|
37 | ! |
---|
38 | ! Modified |
---|
39 | ! -------- |
---|
40 | ! Jan Vatant d'Ollone (2018) |
---|
41 | ! --> corrk recombining case |
---|
42 | ! B. de Batz de Trenquelléon (2023) |
---|
43 | ! --> Titan's haze and could optics |
---|
44 | ! --> clear/dark columns method |
---|
45 | ! --> optical diagnostics |
---|
46 | ! |
---|
47 | !================================================================== |
---|
48 | |
---|
49 | !----------------------------------------------------------------------- |
---|
50 | ! Declaration of the arguments (INPUT - OUTPUT) on the LMD GCM grid |
---|
51 | ! Layer #1 is the layer near the ground. |
---|
52 | ! Layer #nlayer is the layer at the top. |
---|
53 | !----------------------------------------------------------------------- |
---|
54 | |
---|
55 | |
---|
56 | ! INPUT |
---|
57 | INTEGER,INTENT(IN) :: ngrid ! Number of atmospheric columns. |
---|
58 | INTEGER,INTENT(IN) :: nlayer ! Number of atmospheric layers. |
---|
59 | REAL,INTENT(IN) :: pq(ngrid,nlayer,nq) ! Tracers (X/kg). |
---|
60 | INTEGER,INTENT(IN) :: nq ! Number of tracers. |
---|
61 | REAL,INTENT(IN) :: qsurf(ngrid,nq) ! Tracers on surface (kg.m-2). |
---|
62 | REAL,INTENT(IN) :: zday ! Time elapsed since Ls=0 (sols). |
---|
63 | REAL,INTENT(IN) :: albedo(ngrid,L_NSPECTV) ! Spectral Short Wavelengths Albedo. By MT2015 |
---|
64 | REAL,INTENT(IN) :: emis(ngrid) ! Long Wave emissivity. |
---|
65 | REAL,INTENT(IN) :: mu0(ngrid) ! Cosine of sun incident angle. |
---|
66 | REAL,INTENT(IN) :: pplev(ngrid,nlayer+1) ! Inter-layer pressure (Pa). |
---|
67 | REAL,INTENT(IN) :: pplay(ngrid,nlayer) ! Mid-layer pressure (Pa). |
---|
68 | REAL,INTENT(IN) :: zzlev(ngrid,nlayer+1) ! Altitude at the atmospheric layer boundaries (ref : local surf). |
---|
69 | REAL,INTENT(IN) :: pt(ngrid,nlayer) ! Air temperature (K). |
---|
70 | REAL,INTENT(IN) :: tsurf(ngrid) ! Surface temperature (K). |
---|
71 | REAL,INTENT(IN) :: fract(ngrid) ! Fraction of day. |
---|
72 | REAL,INTENT(IN) :: dist_star ! Distance star-planet (AU). |
---|
73 | logical,intent(in) :: lastcall ! Signals last call to physics. |
---|
74 | |
---|
75 | ! OUTPUT |
---|
76 | REAL,INTENT(OUT) :: dtlw(ngrid,nlayer) ! Heating rate (K/s) due to LW radiation. |
---|
77 | REAL,INTENT(OUT) :: dtsw(ngrid,nlayer) ! Heating rate (K/s) due to SW radiation. |
---|
78 | REAL,INTENT(OUT) :: fluxsurf_lw(ngrid) ! Incident LW flux to surf (W/m2). |
---|
79 | REAL,INTENT(OUT) :: fluxsurf_sw(ngrid) ! Incident SW flux to surf (W/m2) |
---|
80 | REAL,INTENT(OUT) :: fluxsurfabs_sw(ngrid) ! Absorbed SW flux by the surface (W/m2). By MT2015. |
---|
81 | REAL,INTENT(OUT) :: fluxtop_lw(ngrid) ! Outgoing LW flux to space (W/m2). |
---|
82 | REAL,INTENT(OUT) :: fluxabs_sw(ngrid) ! SW flux absorbed by the planet (W/m2). |
---|
83 | REAL,INTENT(OUT) :: fluxtop_dn(ngrid) ! Incident top of atmosphere SW flux (W/m2). |
---|
84 | REAL,INTENT(OUT) :: OLR_nu(ngrid,L_NSPECTI) ! Outgoing LW radition in each band (Normalized to the band width (W/m2/cm-1). |
---|
85 | REAL,INTENT(OUT) :: OSR_nu(ngrid,L_NSPECTV) ! Outgoing SW radition in each band (Normalized to the band width (W/m2/cm-1). |
---|
86 | REAL,INTENT(OUT) :: albedo_equivalent(ngrid) ! Spectrally Integrated Albedo. For Diagnostic. By MT2015 |
---|
87 | REAL,INTENT(OUT) :: int_dtaui(ngrid,nlayer,L_NSPECTI) ! IR optical thickness of layers within narrowbands for diags (). |
---|
88 | REAL,INTENT(OUT) :: int_dtauv(ngrid,nlayer,L_NSPECTV) ! VI optical thickness of layers within narrowbands for diags (). |
---|
89 | ! Diagnostics |
---|
90 | REAL,INTENT(OUT) :: popthi(ngrid,nlayer,L_NSPECTI,8) ! IR optical properties of haze within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont). |
---|
91 | REAL,INTENT(OUT) :: popthv(ngrid,nlayer,L_NSPECTV,8) ! VI optical properties of haze within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont). |
---|
92 | REAL,INTENT(OUT) :: poptti(ngrid,nlayer,L_NSPECTI,8) ! IR optical properties of haze and clouds within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont). |
---|
93 | REAL,INTENT(OUT) :: popttv(ngrid,nlayer,L_NSPECTV,8) ! VI optical properties of haze and clouds within narrowbands (dtau,tau,k,w,g,drayaer,taugaz,dcont). |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | !----------------------------------------------------------------------- |
---|
98 | ! Declaration of the variables required by correlated-k subroutines |
---|
99 | ! Numbered from top to bottom (unlike in the GCM) |
---|
100 | !----------------------------------------------------------------------- |
---|
101 | |
---|
102 | REAL*8 tmid(L_LEVELS),pmid(L_LEVELS) |
---|
103 | REAL*8 tlevrad(L_LEVELS),plevrad(L_LEVELS) |
---|
104 | |
---|
105 | ! Optical values for the optci/cv subroutines |
---|
106 | REAL*8 stel(L_NSPECTV),stel_fract(L_NSPECTV) |
---|
107 | ! IR |
---|
108 | REAL*8 dtaui(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
109 | REAL*8 taucumi(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
110 | REAL*8 wbari(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
111 | REAL*8 cosbi(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
112 | ! VI |
---|
113 | REAL*8 dtauv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
114 | REAL*8 tauv(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
115 | REAL*8 taucumv(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
116 | REAL*8 wbarv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
117 | REAL*8 cosbv(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
118 | |
---|
119 | ! Temporary optical values for the optci/cv subroutines (clear column) |
---|
120 | REAL*8 dtaui_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
121 | REAL*8 dtauv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
122 | REAL*8 tauv_cc(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
123 | REAL*8 taucumi_cc(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
124 | REAL*8 taucumv_cc(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
125 | REAL*8 wbari_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
126 | REAL*8 wbarv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
127 | REAL*8 cosbi_cc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
128 | REAL*8 cosbv_cc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
129 | ! Temporary optical values for the optci/cv subroutines (dark column) |
---|
130 | REAL*8 dtaui_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
131 | REAL*8 dtauv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
132 | REAL*8 tauv_dc(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
133 | REAL*8 taucumi_dc(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
134 | REAL*8 taucumv_dc(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
135 | REAL*8 wbari_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
136 | REAL*8 wbarv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
137 | REAL*8 cosbi_dc(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
138 | REAL*8 cosbv_dc(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
139 | |
---|
140 | ! Optical diagnostics |
---|
141 | ! Haze |
---|
142 | REAL*8 diag_opthi(L_LEVELS,L_NSPECTI,6) |
---|
143 | REAL*8 diag_opthv(L_LEVELS,L_NSPECTV,6) |
---|
144 | ! Clouds |
---|
145 | REAL*8 diag_optti(L_LEVELS,L_NSPECTI,6) |
---|
146 | REAL*8 diag_opttv(L_LEVELS,L_NSPECTV,6) |
---|
147 | ! Temporary optical diagnostics (clear column) |
---|
148 | REAL*8 diag_optti_cc(L_LEVELS,L_NSPECTI,6) |
---|
149 | REAL*8 diag_opttv_cc(L_LEVELS,L_NSPECTV,6) |
---|
150 | ! Temporary optical diagnostics (dark column) |
---|
151 | REAL*8 diag_optti_dc(L_LEVELS,L_NSPECTI,6) |
---|
152 | REAL*8 diag_opttv_dc(L_LEVELS,L_NSPECTV,6) |
---|
153 | |
---|
154 | |
---|
155 | REAL*8 nfluxtopv,nfluxtopi,nfluxtop,fluxtopvdn |
---|
156 | REAL*8 nfluxoutv_nu(L_NSPECTV) ! Outgoing band-resolved VI flux at TOA (W/m2). |
---|
157 | REAL*8 nfluxtopi_nu(L_NSPECTI) ! Net band-resolved IR flux at TOA (W/m2). |
---|
158 | REAL*8 fluxupi_nu(L_NLAYRAD,L_NSPECTI) ! For 1D diagnostic. |
---|
159 | REAL*8 fmneti(L_NLAYRAD),fmnetv(L_NLAYRAD) |
---|
160 | REAL*8 fluxupv(L_NLAYRAD),fluxupi(L_NLAYRAD) |
---|
161 | REAL*8 fluxdnv(L_NLAYRAD),fluxdni(L_NLAYRAD) |
---|
162 | REAL*8 albi,acosz |
---|
163 | REAL*8 albv(L_NSPECTV) ! Spectral Visible Albedo. |
---|
164 | |
---|
165 | INTEGER ig,l,k,nw,iq,ip,ilay,it,lev2lay,cdcolumn,ng |
---|
166 | |
---|
167 | LOGICAL found |
---|
168 | |
---|
169 | real*8 taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
170 | real*8 taugsurfi(L_NSPECTI,L_NGAUSS-1) |
---|
171 | |
---|
172 | ! Miscellaneous : |
---|
173 | character(len=100) :: message |
---|
174 | character(len=10),parameter :: subname="callcorrk" |
---|
175 | |
---|
176 | logical OLRz |
---|
177 | real*8 NFLUXGNDV_nu(L_NSPECTV) |
---|
178 | |
---|
179 | ! Included by MT for albedo calculations. |
---|
180 | REAL*8 albedo_temp(L_NSPECTV) ! For equivalent albedo calculation. |
---|
181 | REAL*8 surface_stellar_flux ! Stellar flux reaching the surface. Useful for equivalent albedo calculation. |
---|
182 | |
---|
183 | ! For variable haze |
---|
184 | REAL*8 seashazefact(L_LEVELS) |
---|
185 | |
---|
186 | ! For muphys optics |
---|
187 | REAL*8 pqmo(ngrid,nlayer,nmicro) ! Tracers for microphysics optics (X/m2). |
---|
188 | REAL*8 i2e(ngrid,nlayer) ! int 2 ext factor ( X.kg-1 -> X.m-2 for optics ) |
---|
189 | |
---|
190 | ! For corr-k recombining |
---|
191 | REAL*8 pqr(ngrid,L_PINT,L_REFVAR) ! Tracers for corr-k recombining (mol/mol). |
---|
192 | REAL*8 fact, tmin, tmax |
---|
193 | |
---|
194 | LOGICAL usept(L_PINT,L_NTREF) ! mask if pfref grid point will be used |
---|
195 | INTEGER inflay(L_PINT) ! nearest inferior GCM layer for pfgasref grid points |
---|
196 | |
---|
197 | !======================================================================= |
---|
198 | ! I. Initialization on every call |
---|
199 | !======================================================================= |
---|
200 | |
---|
201 | |
---|
202 | ! How much light do we get ? |
---|
203 | do nw=1,L_NSPECTV |
---|
204 | stel(nw)=stellarf(nw)/(dist_star**2) |
---|
205 | end do |
---|
206 | |
---|
207 | ! Convert (microphysical) tracers for optics: X.kg-1 --> X.m-2 |
---|
208 | ! NOTE: it should be moved somewhere else: calmufi performs the same kind of |
---|
209 | ! computations... waste of time... |
---|
210 | i2e(:,1:nlayer) = ( pplev(:,1:nlayer)-pplev(:,2:nlayer+1) ) / gzlat(:,1:nlayer) |
---|
211 | pqmo(:,:,:) = 0.0 |
---|
212 | DO iq=1,nmicro |
---|
213 | pqmo(:,:,iq) = pq(:,:,iq)*i2e(:,:) |
---|
214 | ENDDO |
---|
215 | |
---|
216 | ! Default value for fixed species for whom vmr has been taken |
---|
217 | ! into account while computing high-resolution spectra |
---|
218 | if (corrk_recombin) pqr(:,:,:) = 1.0 |
---|
219 | |
---|
220 | !----------------------------------------------------------------------- |
---|
221 | do ig=1,ngrid ! Starting Big Loop over every GCM column |
---|
222 | !----------------------------------------------------------------------- |
---|
223 | |
---|
224 | ! Recombine reference corr-k if needed |
---|
225 | if (corrk_recombin) then |
---|
226 | |
---|
227 | ! NB : To have decent CPU time recombining is not done on all gridpoints and wavelenghts but we |
---|
228 | ! calculate a gasi/v_recomb variable on the reference corrk-k T,P grid (only for T,P values |
---|
229 | ! who match the atmospheric conditions ) which is then processed as a standard pre-mix in |
---|
230 | ! optci/v routines, but updated every time tracers on the ref P grid have varied > 1%. |
---|
231 | |
---|
232 | ! Extract tracers for variable radiative species |
---|
233 | ! Also find the nearest GCM layer under each ref pressure |
---|
234 | do ip=1,L_PINT |
---|
235 | |
---|
236 | ilay=0 |
---|
237 | found = .false. |
---|
238 | do l=1,nlayer |
---|
239 | if ( pplay(ig,l) .gt. 10.0**(pfgasref(ip)+2.0) ) then ! pfgasref=log(p[mbar]) |
---|
240 | found=.true. |
---|
241 | ilay=l |
---|
242 | endif |
---|
243 | enddo |
---|
244 | |
---|
245 | if (.not. found ) then ! set to min |
---|
246 | do iq=1,L_REFVAR |
---|
247 | if ( radvar_mask(iq) ) then |
---|
248 | pqr(ig,ip,iq) = pq(ig,1,radvar_indx(iq)) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol |
---|
249 | endif |
---|
250 | enddo |
---|
251 | else |
---|
252 | if (ilay==nlayer) then ! set to max |
---|
253 | do iq=1,L_REFVAR |
---|
254 | if ( radvar_mask(iq) ) then |
---|
255 | pqr(ig,ip,iq) = pq(ig,nlayer,radvar_indx(iq)) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol |
---|
256 | endif |
---|
257 | enddo |
---|
258 | else ! standard |
---|
259 | fact = ( 10.0**(pfgasref(ip)+2.0) - pplay(ig,ilay+1) ) / ( pplay(ig,ilay) - pplay(ig,ilay+1) ) ! pfgasref=log(p[mbar]) |
---|
260 | do iq=1,L_REFVAR |
---|
261 | if ( radvar_mask(iq) ) then |
---|
262 | pqr(ig,ip,iq) = pq(ig,ilay,radvar_indx(iq))**fact * pq(ig,ilay+1,radvar_indx(iq))**(1.0-fact) |
---|
263 | pqr(ig,ip,iq) = pqr(ig,ip,iq) / rat_mmol(radvar_indx(iq)-nmicro) ! mol/mol |
---|
264 | endif |
---|
265 | enddo |
---|
266 | endif ! if ilay==nlayer |
---|
267 | endif ! if not found |
---|
268 | |
---|
269 | inflay(ip) = ilay |
---|
270 | |
---|
271 | enddo ! ip=1,L_PINT |
---|
272 | |
---|
273 | ! NB : The following usept is a trick to call recombine only for the reference T-P |
---|
274 | ! grid points that are useful given the temperature range at this altitude |
---|
275 | ! It saves a looot of time - JVO 18 |
---|
276 | usept(:,:) = .true. |
---|
277 | do ip=1,L_PINT-1 |
---|
278 | if ( inflay(ip+1)==nlayer ) then |
---|
279 | usept(ip,:) = .false. |
---|
280 | endif |
---|
281 | if ( inflay(ip) == 0 ) then |
---|
282 | usept(ip+1:,:) = .false. |
---|
283 | endif |
---|
284 | if ( usept(ip,1) ) then ! if not all false |
---|
285 | tmin = minval(pt(ig,max(inflay(ip+1)+1,1):min(inflay(ip)+1,nlayer))) |
---|
286 | tmax = maxval(pt(ig,max(inflay(ip+1)+1,1):min(inflay(ip)+1,nlayer))) |
---|
287 | do it=1,L_NTREF-1 |
---|
288 | if ( tgasref(it+1) .lt. tmin ) then |
---|
289 | usept(ip,it) = .false. |
---|
290 | endif |
---|
291 | enddo |
---|
292 | do it=2,L_NTREF |
---|
293 | if ( tgasref(it-1) .gt. tmax ) then |
---|
294 | usept(ip,it) = .false. |
---|
295 | endif |
---|
296 | enddo |
---|
297 | ! in case of out-of-bounds |
---|
298 | if ( tgasref(1) .lt. tmin ) usept(ip,1) = .true. |
---|
299 | if ( tgasref(L_NTREF) .gt. tmax ) usept(ip,L_NTREF) = .true. |
---|
300 | endif |
---|
301 | enddo ! ip=1,L_PINT-1 |
---|
302 | ! deal with last bound |
---|
303 | if ( inflay(L_PINT-1).ne.0 ) usept(L_PINT,:) = usept(L_PINT-1,:) |
---|
304 | |
---|
305 | |
---|
306 | do ip=1,L_PINT |
---|
307 | |
---|
308 | ! Recombine k at (useful only!) reference T-P values if tracers or T have enough varied |
---|
309 | do it=1,L_NTREF |
---|
310 | |
---|
311 | if ( usept(ip,it) .eqv. .false. ) cycle |
---|
312 | |
---|
313 | do l=1,L_REFVAR |
---|
314 | if ( abs( (pqr(ig,ip,l) - pqrold(ip,l)) / max(1.0e-30,pqrold(ip,l))) .GT. 0.01 & ! +- 1% |
---|
315 | .or. ( useptold(ip,it) .eqv. .false. ) ) then ! in case T change but not the tracers |
---|
316 | call recombin_corrk( pqr(ig,ip,:),ip,it ) |
---|
317 | exit ! one is enough to trigger the update |
---|
318 | endif |
---|
319 | enddo |
---|
320 | |
---|
321 | enddo |
---|
322 | |
---|
323 | enddo ! ip=1,L_PINT |
---|
324 | |
---|
325 | useptold(:,:)=usept(:,:) |
---|
326 | |
---|
327 | endif ! if corrk_recombin |
---|
328 | |
---|
329 | !======================================================================= |
---|
330 | ! II. Transformation of the GCM variables |
---|
331 | !======================================================================= |
---|
332 | |
---|
333 | |
---|
334 | ! Albedo and Emissivity. |
---|
335 | albi=1-emis(ig) ! Long Wave. |
---|
336 | DO nw=1,L_NSPECTV ! Short Wave loop. |
---|
337 | albv(nw)=albedo(ig,nw) |
---|
338 | ENDDO |
---|
339 | |
---|
340 | if ((ngrid.eq.1).and.(global1d)) then ! Fixed zenith angle 'szangle' in 1D simulations w/ globally-averaged sunlight. |
---|
341 | acosz = cos(pi*szangle/180.0) |
---|
342 | print*,'acosz=',acosz,', szangle=',szangle |
---|
343 | else |
---|
344 | acosz=mu0(ig) ! Cosine of sun incident angle : 3D simulations or local 1D simulations using latitude. |
---|
345 | endif |
---|
346 | |
---|
347 | !----------------------------------------------------------------------- |
---|
348 | ! Pressure and temperature |
---|
349 | !----------------------------------------------------------------------- |
---|
350 | |
---|
351 | DO l=1,nlayer |
---|
352 | plevrad(2*l) = pplay(ig,nlayer+1-l)/scalep |
---|
353 | plevrad(2*l+1) = pplev(ig,nlayer+1-l)/scalep |
---|
354 | tlevrad(2*l) = pt(ig,nlayer+1-l) |
---|
355 | tlevrad(2*l+1) = (pt(ig,nlayer+1-l)+pt(ig,max(nlayer-l,1)))/2 |
---|
356 | END DO |
---|
357 | |
---|
358 | plevrad(1) = 0. |
---|
359 | plevrad(2) = 0. !! Trick to have correct calculations of fluxes in gflux(i/v).F, but the pmid levels are not impacted by this change. |
---|
360 | |
---|
361 | tlevrad(1) = tlevrad(2) |
---|
362 | tlevrad(2*nlayer+1)=tsurf(ig) |
---|
363 | |
---|
364 | pmid(1) = max(pgasmin,0.0001*plevrad(3)) |
---|
365 | pmid(2) = pmid(1) |
---|
366 | |
---|
367 | tmid(1) = tlevrad(2) |
---|
368 | tmid(2) = tmid(1) |
---|
369 | |
---|
370 | DO l=1,L_NLAYRAD-1 |
---|
371 | tmid(2*l+1) = tlevrad(2*l+1) |
---|
372 | tmid(2*l+2) = tlevrad(2*l+1) |
---|
373 | pmid(2*l+1) = plevrad(2*l+1) |
---|
374 | pmid(2*l+2) = plevrad(2*l+1) |
---|
375 | END DO |
---|
376 | pmid(L_LEVELS) = plevrad(L_LEVELS) |
---|
377 | tmid(L_LEVELS) = tlevrad(L_LEVELS) |
---|
378 | |
---|
379 | !!Alternative interpolation: |
---|
380 | ! pmid(3) = pmid(1) |
---|
381 | ! pmid(4) = pmid(1) |
---|
382 | ! tmid(3) = tmid(1) |
---|
383 | ! tmid(4) = tmid(1) |
---|
384 | ! DO l=2,L_NLAYRAD-1 |
---|
385 | ! tmid(2*l+1) = tlevrad(2*l) |
---|
386 | ! tmid(2*l+2) = tlevrad(2*l) |
---|
387 | ! pmid(2*l+1) = plevrad(2*l) |
---|
388 | ! pmid(2*l+2) = plevrad(2*l) |
---|
389 | ! END DO |
---|
390 | ! pmid(L_LEVELS) = plevrad(L_LEVELS-1) |
---|
391 | ! tmid(L_LEVELS) = tlevrad(L_LEVELS-1) |
---|
392 | |
---|
393 | ! Test for out-of-bounds pressure. |
---|
394 | if(plevrad(3).lt.pgasmin)then |
---|
395 | print*,'Minimum pressure is outside the radiative' |
---|
396 | print*,'transfer kmatrix bounds, exiting.' |
---|
397 | call abort |
---|
398 | elseif(plevrad(L_LEVELS).gt.pgasmax)then |
---|
399 | print*,'Maximum pressure is outside the radiative' |
---|
400 | print*,'transfer kmatrix bounds, exiting.' |
---|
401 | call abort |
---|
402 | endif |
---|
403 | |
---|
404 | ! Test for out-of-bounds temperature. |
---|
405 | do k=1,L_LEVELS |
---|
406 | if(tlevrad(k).lt.tgasmin)then |
---|
407 | print*,'Minimum temperature is outside the radiative' |
---|
408 | print*,'transfer kmatrix bounds' |
---|
409 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
410 | print*,"tgasmin=",tgasmin |
---|
411 | if (strictboundcorrk) then |
---|
412 | call abort |
---|
413 | else |
---|
414 | print*,'***********************************************' |
---|
415 | print*,'we allow model to continue with tlevrad=tgasmin' |
---|
416 | print*,' ... we assume we know what you are doing ... ' |
---|
417 | print*,' ... but do not let this happen too often ... ' |
---|
418 | print*,'***********************************************' |
---|
419 | !tlevrad(k)=tgasmin |
---|
420 | endif |
---|
421 | elseif(tlevrad(k).gt.tgasmax)then |
---|
422 | ! print*,'Maximum temperature is outside the radiative' |
---|
423 | ! print*,'transfer kmatrix bounds, exiting.' |
---|
424 | ! print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
425 | ! print*,"tgasmax=",tgasmax |
---|
426 | if (strictboundcorrk) then |
---|
427 | call abort |
---|
428 | else |
---|
429 | ! print*,'***********************************************' |
---|
430 | ! print*,'we allow model to continue with tlevrad=tgasmax' |
---|
431 | ! print*,' ... we assume we know what you are doing ... ' |
---|
432 | ! print*,' ... but do not let this happen too often ... ' |
---|
433 | ! print*,'***********************************************' |
---|
434 | !tlevrad(k)=tgasmax |
---|
435 | endif |
---|
436 | endif |
---|
437 | |
---|
438 | if (tlevrad(k).lt.tplanckmin) then |
---|
439 | print*,'Minimum temperature is outside the boundaries for' |
---|
440 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
441 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
442 | print*,"tplanckmin=",tplanckmin |
---|
443 | message="Minimum temperature outside Planck function bounds - Change tplanckmin in callphys.def" |
---|
444 | call abort_physic(subname,message,1) |
---|
445 | else if (tlevrad(k).gt.tplanckmax) then |
---|
446 | print*,'Maximum temperature is outside the boundaries for' |
---|
447 | print*,'Planck function integration set in callphys.def, aborting.' |
---|
448 | print*,"k=",k," tlevrad(k)=",tlevrad(k) |
---|
449 | print*,"tplanckmax=",tplanckmax |
---|
450 | message="Maximum temperature outside Planck function bounds - Change tplanckmax in callphys.def" |
---|
451 | call abort_physic(subname,message,1) |
---|
452 | endif |
---|
453 | |
---|
454 | enddo |
---|
455 | |
---|
456 | do k=1,L_NLAYRAD+1 |
---|
457 | if(tmid(k).lt.tgasmin)then |
---|
458 | print*,'Minimum temperature is outside the radiative' |
---|
459 | print*,'transfer kmatrix bounds, exiting.' |
---|
460 | print*,"k=",k," tmid(k)=",tmid(k) |
---|
461 | print*,"tgasmin=",tgasmin |
---|
462 | if (strictboundcorrk) then |
---|
463 | call abort |
---|
464 | else |
---|
465 | print*,'***********************************************' |
---|
466 | print*,'we allow model to continue with tmid=tgasmin' |
---|
467 | print*,' ... we assume we know what you are doing ... ' |
---|
468 | print*,' ... but do not let this happen too often ... ' |
---|
469 | print*,'***********************************************' |
---|
470 | tmid(k)=tgasmin |
---|
471 | endif |
---|
472 | elseif(tmid(k).gt.tgasmax)then |
---|
473 | ! print*,'Maximum temperature is outside the radiative' |
---|
474 | ! print*,'transfer kmatrix bounds, exiting.' |
---|
475 | ! print*,"k=",k," tmid(k)=",tmid(k) |
---|
476 | ! print*,"tgasmax=",tgasmax |
---|
477 | if (strictboundcorrk) then |
---|
478 | call abort |
---|
479 | else |
---|
480 | ! print*,'***********************************************' |
---|
481 | ! print*,'we allow model to continue with tmid=tgasmin' |
---|
482 | ! print*,' ... we assume we know what you are doing ... ' |
---|
483 | ! print*,' ... but do not let this happen too often ... ' |
---|
484 | ! print*,'***********************************************' |
---|
485 | tmid(k)=tgasmax |
---|
486 | endif |
---|
487 | endif |
---|
488 | enddo |
---|
489 | |
---|
490 | !======================================================================= |
---|
491 | ! III. Calling the main radiative transfer subroutines |
---|
492 | !======================================================================= |
---|
493 | |
---|
494 | Cmk(:) = 0.01 * 1.0 / (gzlat(ig,:) * mugaz * 1.672621e-27) ! q_main=1.0 assumed. |
---|
495 | gzlat_ig(:) = gzlat(ig,:) |
---|
496 | |
---|
497 | ! Compute the haze seasonal modulation factor |
---|
498 | if (seashaze) call season_haze(zday,latitude(ig),plevrad,seashazefact) |
---|
499 | |
---|
500 | !----------------------------------------------------------------------- |
---|
501 | ! Short Wave Part |
---|
502 | !----------------------------------------------------------------------- |
---|
503 | |
---|
504 | ! Clear column : |
---|
505 | cdcolumn = 0 |
---|
506 | call optcv(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tmid,pmid, & |
---|
507 | dtauv_cc,tauv_cc,taucumv_cc,wbarv_cc,cosbv_cc,tauray,taugsurf,seashazefact,& |
---|
508 | diag_opthv,diag_opttv_cc,cdcolumn) |
---|
509 | ! Dark column : |
---|
510 | cdcolumn = 1 |
---|
511 | call optcv(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tmid,pmid, & |
---|
512 | dtauv_dc,tauv_dc,taucumv_dc,wbarv_dc,cosbv_dc,tauray,taugsurf,seashazefact,& |
---|
513 | diag_opthv,diag_opttv_dc,cdcolumn) |
---|
514 | |
---|
515 | ! Mean opacity, ssa and asf : |
---|
516 | where ((exp(-dtauv_cc(:,:,:)).ge.1.d-40) .and. (exp(-dtauv_dc(:,:,:)).ge.1.d-40)) |
---|
517 | dtauv(:,:,:) = -log((1-Fcloudy)*exp(-dtauv_cc(:,:,:)) + Fcloudy*exp(-dtauv_dc(:,:,:))) |
---|
518 | elsewhere |
---|
519 | dtauv(:,:,:) = dtauv_dc(:,:,:) ! No need to average... |
---|
520 | endwhere |
---|
521 | do ng = 1, L_NGAUSS |
---|
522 | do nw = 1, L_NSPECTV |
---|
523 | taucumv(1,nw,ng) = 0.0d0 |
---|
524 | do k = 2, L_LEVELS |
---|
525 | if ((exp(-taucumv_cc(k,nw,ng)).ge.1.d-40) .and. (exp(-taucumv_dc(k,nw,ng)).ge.1.d-40)) then |
---|
526 | taucumv(k,nw,ng) = taucumv(k-1,nw,ng) - log((1-Fcloudy)*exp(-taucumv_cc(k,nw,ng)) + Fcloudy*exp(-taucumv_dc(k,nw,ng))) |
---|
527 | else |
---|
528 | taucumv(k,nw,ng) = taucumv(k-1,nw,ng) + taucumv_dc(k,nw,ng) ! No need to average... |
---|
529 | end if |
---|
530 | end do |
---|
531 | do l = 1, L_NLAYRAD |
---|
532 | tauv(l,nw,ng) = taucumv(2*l,nw,ng) |
---|
533 | end do |
---|
534 | tauv(l,nw,ng) = taucumv(2*L_NLAYRAD+1,nw,ng) |
---|
535 | end do |
---|
536 | end do |
---|
537 | wbarv = (1-Fcloudy) * wbarv_cc + Fcloudy * wbarv_dc |
---|
538 | cosbv = (1-Fcloudy) * cosbv_cc + Fcloudy * cosbv_dc |
---|
539 | |
---|
540 | ! Diagnostics for clouds : |
---|
541 | if (callclouds) then |
---|
542 | where (diag_opttv_cc(:,:,1) .lt. 1.d-30) |
---|
543 | diag_opttv_cc(:,:,1) = 1.d-30 |
---|
544 | endwhere |
---|
545 | where (diag_opttv_dc(:,:,1) .lt. 1.d-30) |
---|
546 | diag_opttv_dc(:,:,1) = 1.d-30 |
---|
547 | endwhere |
---|
548 | diag_opttv(:,:,1) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,1)) + Fcloudy*exp(-diag_opttv_dc(:,:,1)) ) |
---|
549 | diag_opttv(:,:,2) = (1-Fcloudy) * diag_opttv_cc(:,:,2) + Fcloudy * diag_opttv_dc(:,:,2) |
---|
550 | diag_opttv(:,:,3) = (1-Fcloudy) * diag_opttv_cc(:,:,3) + Fcloudy * diag_opttv_dc(:,:,3) |
---|
551 | diag_opttv(:,:,4) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,4)) + Fcloudy*exp(-diag_opttv_dc(:,:,4)) ) |
---|
552 | diag_opttv(:,:,5) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,5)) + Fcloudy*exp(-diag_opttv_dc(:,:,5)) ) |
---|
553 | diag_opttv(:,:,6) = -log( (1-Fcloudy)*exp(-diag_opttv_cc(:,:,6)) + Fcloudy*exp(-diag_opttv_dc(:,:,6)) ) |
---|
554 | endif |
---|
555 | |
---|
556 | if(fract(ig) .ge. 1.0e-4) then ! Only during daylight. |
---|
557 | if((ngrid.eq.1).and.(global1d))then |
---|
558 | do nw=1,L_NSPECTV |
---|
559 | stel_fract(nw)= stel(nw)* 0.25 / acosz ! globally averaged = divide by 4, and we correct for solar zenith angle |
---|
560 | end do |
---|
561 | else |
---|
562 | do nw=1,L_NSPECTV |
---|
563 | stel_fract(nw)= stel(nw) * fract(ig) |
---|
564 | end do |
---|
565 | endif |
---|
566 | call sfluxv(dtauv,tauv,taucumv,albv,dwnv,wbarv,cosbv, & |
---|
567 | acosz,stel_fract, & |
---|
568 | nfluxtopv,fluxtopvdn,nfluxoutv_nu,nfluxgndv_nu, & |
---|
569 | fmnetv,fluxupv,fluxdnv,fzerov,taugsurf) |
---|
570 | |
---|
571 | else ! During the night, fluxes = 0. |
---|
572 | nfluxtopv = 0.0d0 |
---|
573 | fluxtopvdn = 0.0d0 |
---|
574 | nfluxoutv_nu(:) = 0.0d0 |
---|
575 | nfluxgndv_nu(:) = 0.0d0 |
---|
576 | do l=1,L_NLAYRAD |
---|
577 | fmnetv(l)=0.0d0 |
---|
578 | fluxupv(l)=0.0d0 |
---|
579 | fluxdnv(l)=0.0d0 |
---|
580 | end do |
---|
581 | end if |
---|
582 | |
---|
583 | |
---|
584 | ! Equivalent Albedo Calculation (for OUTPUT). MT2015 |
---|
585 | if(fract(ig) .ge. 1.0e-4) then ! equivalent albedo makes sense only during daylight. |
---|
586 | surface_stellar_flux=sum(nfluxgndv_nu(1:L_NSPECTV)) |
---|
587 | if(surface_stellar_flux .gt. 1.0e-3) then ! equivalent albedo makes sense only if the stellar flux received by the surface is positive. |
---|
588 | DO nw=1,L_NSPECTV |
---|
589 | albedo_temp(nw)=albedo(ig,nw)*nfluxgndv_nu(nw) |
---|
590 | ENDDO |
---|
591 | albedo_temp(1:L_NSPECTV)=albedo_temp(1:L_NSPECTV)/surface_stellar_flux |
---|
592 | albedo_equivalent(ig)=sum(albedo_temp(1:L_NSPECTV)) |
---|
593 | else |
---|
594 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
595 | endif |
---|
596 | else |
---|
597 | albedo_equivalent(ig)=0.0 ! Spectrally Integrated Albedo not defined for non-irradiated grid points. So we arbitrary set the equivalent albedo to 0. |
---|
598 | endif |
---|
599 | |
---|
600 | |
---|
601 | !----------------------------------------------------------------------- |
---|
602 | ! Long Wave Part |
---|
603 | !----------------------------------------------------------------------- |
---|
604 | |
---|
605 | |
---|
606 | ! Clear column : |
---|
607 | cdcolumn = 0 |
---|
608 | call optci(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tlevrad,tmid,pmid,& |
---|
609 | dtaui_cc,taucumi_cc,cosbi_cc,wbari_cc,taugsurfi,seashazefact, & |
---|
610 | diag_opthi,diag_optti_cc,cdcolumn) |
---|
611 | ! Dark column : |
---|
612 | cdcolumn = 1 |
---|
613 | call optci(pqmo(ig,:,:),nlayer,zzlev(ig,:),plevrad,tlevrad,tmid,pmid,& |
---|
614 | dtaui_dc,taucumi_dc,cosbi_dc,wbari_dc,taugsurfi,seashazefact, & |
---|
615 | diag_opthi,diag_optti_dc,cdcolumn) |
---|
616 | |
---|
617 | ! Mean opacity, ssa and asf : |
---|
618 | where ((exp(-dtaui_cc(:,:,:)).ge.1.d-40) .and. (exp(-dtaui_dc(:,:,:)).ge.1.d-40)) |
---|
619 | dtaui(:,:,:) = -log((1-Fcloudy)*exp(-dtaui_cc(:,:,:)) + Fcloudy*exp(-dtaui_dc(:,:,:))) |
---|
620 | elsewhere |
---|
621 | dtaui(:,:,:) = dtaui_dc(:,:,:) ! No need to average... |
---|
622 | endwhere |
---|
623 | do ng = 1, L_NGAUSS |
---|
624 | do nw = 1, L_NSPECTI |
---|
625 | taucumi(1,nw,ng) = 0.0d0 |
---|
626 | do k = 2, L_LEVELS |
---|
627 | if ((exp(-taucumi_cc(k,nw,ng)).ge.1.d-40) .and. (exp(-taucumi_dc(k,nw,ng)).ge.1.d-40)) then |
---|
628 | taucumi(k,nw,ng) = taucumi(k-1,nw,ng) - log((1-Fcloudy)*exp(-taucumi_cc(k,nw,ng)) + Fcloudy*exp(-taucumi_dc(k,nw,ng))) |
---|
629 | else |
---|
630 | taucumi(k,nw,ng) = taucumi(k-1,nw,ng) + taucumi_dc(k,nw,ng) ! No need to average... |
---|
631 | end if |
---|
632 | end do |
---|
633 | end do |
---|
634 | end do |
---|
635 | wbari = (1-Fcloudy) * wbari_cc + Fcloudy * wbari_dc |
---|
636 | cosbi = (1-Fcloudy) * cosbi_cc + Fcloudy * cosbi_dc |
---|
637 | |
---|
638 | ! Diagnostics for clouds : |
---|
639 | if (callclouds) then |
---|
640 | where (diag_optti_cc(:,:,1) .lt. 1.d-30) |
---|
641 | diag_optti_cc(:,:,1) = 1.d-30 |
---|
642 | endwhere |
---|
643 | where (diag_optti_dc(:,:,1) .lt. 1.d-30) |
---|
644 | diag_optti_dc(:,:,1) = 1.d-30 |
---|
645 | endwhere |
---|
646 | diag_optti(:,:,1) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,1)) + Fcloudy*exp(-diag_optti_dc(:,:,1)) ) |
---|
647 | diag_optti(:,:,2) = (1-Fcloudy) * diag_optti_cc(:,:,2) + Fcloudy * diag_optti_dc(:,:,2) |
---|
648 | diag_optti(:,:,3) = (1-Fcloudy) * diag_optti_cc(:,:,3) + Fcloudy * diag_optti_dc(:,:,3) |
---|
649 | diag_optti(:,:,4) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,4)) + Fcloudy*exp(-diag_optti_dc(:,:,4)) ) |
---|
650 | diag_optti(:,:,5) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,5)) + Fcloudy*exp(-diag_optti_dc(:,:,5)) ) |
---|
651 | diag_optti(:,:,6) = -log( (1-Fcloudy)*exp(-diag_optti_cc(:,:,6)) + Fcloudy*exp(-diag_optti_dc(:,:,6)) ) |
---|
652 | endif |
---|
653 | |
---|
654 | call sfluxi(plevrad,tlevrad,dtaui,taucumi,ubari,albi, & |
---|
655 | wnoi,dwni,cosbi,wbari,nfluxtopi,nfluxtopi_nu, & |
---|
656 | fmneti,fluxupi,fluxdni,fluxupi_nu,fzeroi,taugsurfi) |
---|
657 | |
---|
658 | !----------------------------------------------------------------------- |
---|
659 | ! Transformation of the correlated-k code outputs |
---|
660 | ! (into dtlw, dtsw, fluxsurf_lw, fluxsurf_sw, fluxtop_lw, fluxtop_sw) |
---|
661 | |
---|
662 | ! Flux incident at the top of the atmosphere |
---|
663 | fluxtop_dn(ig)=fluxtopvdn |
---|
664 | |
---|
665 | fluxtop_lw(ig) = real(nfluxtopi) |
---|
666 | fluxabs_sw(ig) = real(-nfluxtopv) |
---|
667 | fluxsurf_lw(ig) = real(fluxdni(L_NLAYRAD)) |
---|
668 | fluxsurf_sw(ig) = real(fluxdnv(L_NLAYRAD)) |
---|
669 | |
---|
670 | ! Flux absorbed by the surface. By MT2015. |
---|
671 | fluxsurfabs_sw(ig) = fluxsurf_sw(ig)*(1.-albedo_equivalent(ig)) |
---|
672 | |
---|
673 | if(fluxtop_dn(ig).lt.0.0)then |
---|
674 | print*,'Achtung! fluxtop_dn has lost the plot!' |
---|
675 | print*,'fluxtop_dn=',fluxtop_dn(ig) |
---|
676 | print*,'acosz=',acosz |
---|
677 | print*,'temp= ',pt(ig,:) |
---|
678 | print*,'pplay= ',pplay(ig,:) |
---|
679 | call abort |
---|
680 | endif |
---|
681 | |
---|
682 | ! Spectral output, for exoplanet observational comparison |
---|
683 | if(specOLR)then |
---|
684 | do nw=1,L_NSPECTI |
---|
685 | OLR_nu(ig,nw)=nfluxtopi_nu(nw)/DWNI(nw) !JL Normalize to the bandwidth |
---|
686 | end do |
---|
687 | do nw=1,L_NSPECTV |
---|
688 | !GSR_nu(ig,nw)=nfluxgndv_nu(nw) |
---|
689 | OSR_nu(ig,nw)=nfluxoutv_nu(nw)/DWNV(nw) !JL Normalize to the bandwidth |
---|
690 | end do |
---|
691 | endif |
---|
692 | |
---|
693 | ! Finally, the heating rates |
---|
694 | |
---|
695 | DO l=2,L_NLAYRAD |
---|
696 | dtsw(ig,L_NLAYRAD+1-l)=(fmnetv(l)-fmnetv(l-1)) & |
---|
697 | *gzlat(ig,L_NLAYRAD+1-l)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
698 | dtlw(ig,L_NLAYRAD+1-l)=(fmneti(l)-fmneti(l-1)) & |
---|
699 | *gzlat(ig,L_NLAYRAD+1-l)/(cpp*scalep*(plevrad(2*l+1)-plevrad(2*l-1))) |
---|
700 | END DO |
---|
701 | |
---|
702 | ! These are values at top of atmosphere |
---|
703 | dtsw(ig,L_NLAYRAD)=(fmnetv(1)-nfluxtopv) & |
---|
704 | *gzlat(ig,L_NLAYRAD)/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
705 | dtlw(ig,L_NLAYRAD)=(fmneti(1)-nfluxtopi) & |
---|
706 | *gzlat(ig,L_NLAYRAD)/(cpp*scalep*(plevrad(3)-plevrad(1))) |
---|
707 | |
---|
708 | |
---|
709 | ! Optical thickness diagnostics (added by JVO) |
---|
710 | if (diagdtau) then |
---|
711 | do l=1,L_NLAYRAD |
---|
712 | do nw=1,L_NSPECTV |
---|
713 | int_dtauv(ig,l,nw) = 0.0d0 |
---|
714 | DO k=1,L_NGAUSS |
---|
715 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
716 | int_dtauv(ig,l,nw)= int_dtauv(ig,l,nw) + exp(-dtauv(l,nw,k))*gweight(k) |
---|
717 | ENDDO |
---|
718 | enddo |
---|
719 | do nw=1,L_NSPECTI |
---|
720 | int_dtaui(ig,l,nw) = 0.0d0 |
---|
721 | DO k=1,L_NGAUSS |
---|
722 | ! Output exp(-tau) because gweight ponderates exp and not tau itself |
---|
723 | int_dtaui(ig,l,nw)= int_dtaui(ig,l,nw) + exp(-dtaui(l,nw,k))*gweight(k) |
---|
724 | ENDDO |
---|
725 | enddo |
---|
726 | enddo |
---|
727 | endif |
---|
728 | |
---|
729 | |
---|
730 | ! Diagnostics : optical properties of haze and clouds (dtau, tau, k, w, g) : |
---|
731 | do l = 2, L_LEVELS, 2 |
---|
732 | lev2lay = L_NLAYRAD+1 - l/2 |
---|
733 | ! Visible : |
---|
734 | do nw = 1, L_NSPECTV |
---|
735 | popthv(ig,lev2lay,nw,:) = 0.0d0 |
---|
736 | popttv(ig,lev2lay,nw,:) = 0.0d0 |
---|
737 | ! Optical thickness (dtau) : |
---|
738 | popthv(ig,lev2lay,nw,1) = (diag_opthv(l,nw,1) + diag_opthv(l+1,nw,1)) / 2.0 |
---|
739 | if (callclouds) then |
---|
740 | popttv(ig,lev2lay,nw,1) = (diag_opttv(l,nw,1) + diag_opttv(l+1,nw,1)) / 2.0 |
---|
741 | endif |
---|
742 | ! Opacity (tau) : |
---|
743 | do k = L_NLAYRAD, lev2lay, -1 |
---|
744 | popthv(ig,lev2lay,nw,2) = popthv(ig,lev2lay,nw,2) + popthv(ig,k,nw,1) |
---|
745 | if (callclouds) then |
---|
746 | popttv(ig,lev2lay,nw,2) = popttv(ig,lev2lay,nw,2) + popttv(ig,k,nw,1) |
---|
747 | endif |
---|
748 | enddo |
---|
749 | ! Extinction (k) : |
---|
750 | popthv(ig,lev2lay,nw,3) = popthv(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
751 | if (callclouds) then |
---|
752 | popttv(ig,lev2lay,nw,3) = popttv(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
753 | endif |
---|
754 | ! Simple Scattering Albedo (w) and Asymmetry Parameter (g) : |
---|
755 | popthv(ig,lev2lay,nw,4) = (diag_opthv(l,nw,2) + diag_opthv(l+1,nw,2)) / 2.0 |
---|
756 | popthv(ig,lev2lay,nw,5) = (diag_opthv(l,nw,3) + diag_opthv(l+1,nw,3)) / 2.0 |
---|
757 | if (callclouds) then |
---|
758 | popttv(ig,lev2lay,nw,4) = (diag_opttv(l,nw,2) + diag_opttv(l+1,nw,2)) / 2.0 |
---|
759 | popttv(ig,lev2lay,nw,5) = (diag_opttv(l,nw,3) + diag_opttv(l+1,nw,3)) / 2.0 |
---|
760 | endif |
---|
761 | ! DRAYAER, TAUGAS, DCONT : |
---|
762 | popthv(ig,lev2lay,nw,6) = (diag_opthv(l,nw,4) + diag_opthv(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
763 | popthv(ig,lev2lay,nw,7) = (diag_opthv(l,nw,5) + diag_opthv(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
764 | popthv(ig,lev2lay,nw,8) = (diag_opthv(l,nw,6) + diag_opthv(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
765 | if (callclouds) then |
---|
766 | popttv(ig,lev2lay,nw,6) = (diag_opttv(l,nw,4) + diag_opttv(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
767 | popttv(ig,lev2lay,nw,7) = (diag_opttv(l,nw,5) + diag_opttv(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
768 | popttv(ig,lev2lay,nw,8) = (diag_opttv(l,nw,6) + diag_opttv(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
769 | endif |
---|
770 | enddo |
---|
771 | ! Infra-Red |
---|
772 | do nw=1,L_NSPECTI |
---|
773 | popthi(ig,lev2lay,nw,:) = 0.0d0 |
---|
774 | poptti(ig,lev2lay,nw,:) = 0.0d0 |
---|
775 | ! Optical thickness (dtau) : |
---|
776 | popthi(ig,lev2lay,nw,1) = (diag_opthi(l,nw,1) + diag_opthi(l+1,nw,1)) / 2.0 |
---|
777 | if (callclouds) then |
---|
778 | poptti(ig,lev2lay,nw,1) = (diag_optti(l,nw,1) + diag_optti(l+1,nw,1)) / 2.0 |
---|
779 | endif |
---|
780 | ! Opacity (tau) : |
---|
781 | do k = L_NLAYRAD, lev2lay, -1 |
---|
782 | popthi(ig,lev2lay,nw,2) = popthi(ig,lev2lay,nw,2) + popthi(ig,k,nw,1) |
---|
783 | if (callclouds) then |
---|
784 | poptti(ig,lev2lay,nw,2) = poptti(ig,lev2lay,nw,2) + poptti(ig,k,nw,1) |
---|
785 | endif |
---|
786 | enddo |
---|
787 | ! Extinction (k) : |
---|
788 | popthi(ig,lev2lay,nw,3) = popthi(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
789 | if (callclouds) then |
---|
790 | poptti(ig,lev2lay,nw,3) = poptti(ig,lev2lay,nw,1) / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
791 | endif |
---|
792 | ! Simple Scattering Albedo (w) and Asymmetry Parameter (g) : |
---|
793 | popthi(ig,lev2lay,nw,4) = (diag_opthi(l,nw,2) + diag_opthi(l+1,nw,2)) / 2.0 |
---|
794 | popthi(ig,lev2lay,nw,5) = (diag_opthi(l,nw,3) + diag_opthi(l+1,nw,3)) / 2.0 |
---|
795 | if (callclouds) then |
---|
796 | poptti(ig,lev2lay,nw,4) = (diag_optti(l,nw,2) + diag_optti(l+1,nw,2)) / 2.0 |
---|
797 | poptti(ig,lev2lay,nw,5) = (diag_optti(l,nw,3) + diag_optti(l+1,nw,3)) / 2.0 |
---|
798 | endif |
---|
799 | ! DRAYAER, TAUGAS, DCONT : |
---|
800 | popthi(ig,lev2lay,nw,6) = (diag_opthi(l,nw,4) + diag_opthi(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
801 | popthi(ig,lev2lay,nw,7) = (diag_opthi(l,nw,5) + diag_opthi(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
802 | popthi(ig,lev2lay,nw,8) = (diag_opthi(l,nw,6) + diag_opthi(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
803 | if (callclouds) then |
---|
804 | poptti(ig,lev2lay,nw,6) = (diag_optti(l,nw,4) + diag_optti(l+1,nw,4)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
805 | poptti(ig,lev2lay,nw,7) = (diag_optti(l,nw,5) + diag_optti(l+1,nw,5)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
806 | poptti(ig,lev2lay,nw,8) = (diag_optti(l,nw,6) + diag_optti(l+1,nw,6)) / 2.0 / (zzlev(ig,lev2lay+1) - zzlev(ig,lev2lay)) |
---|
807 | endif |
---|
808 | enddo |
---|
809 | enddo |
---|
810 | |
---|
811 | |
---|
812 | !----------------------------------------------------------------------- |
---|
813 | end do ! End of big loop over every GCM column. |
---|
814 | !----------------------------------------------------------------------- |
---|
815 | |
---|
816 | |
---|
817 | !----------------------------------------------------------------------- |
---|
818 | ! Additional diagnostics |
---|
819 | !----------------------------------------------------------------------- |
---|
820 | |
---|
821 | ! IR spectral output, for exoplanet observational comparison |
---|
822 | if(lastcall.and.(ngrid.eq.1))then ! could disable the 1D output, they are in the diagfi and diagspec... JL12 |
---|
823 | |
---|
824 | print*,'Saving scalar quantities in surf_vals.out...' |
---|
825 | print*,'psurf = ', pplev(1,1),' Pa' |
---|
826 | open(116,file='surf_vals.out') |
---|
827 | write(116,*) tsurf(1),pplev(1,1),fluxtop_dn(1), & |
---|
828 | real(-nfluxtopv),real(nfluxtopi) |
---|
829 | close(116) |
---|
830 | |
---|
831 | ! USEFUL COMMENT - Do Not Remove. |
---|
832 | ! |
---|
833 | ! if(specOLR)then |
---|
834 | ! open(117,file='OLRnu.out') |
---|
835 | ! do nw=1,L_NSPECTI |
---|
836 | ! write(117,*) OLR_nu(1,nw) |
---|
837 | ! enddo |
---|
838 | ! close(117) |
---|
839 | ! |
---|
840 | ! open(127,file='OSRnu.out') |
---|
841 | ! do nw=1,L_NSPECTV |
---|
842 | ! write(127,*) OSR_nu(1,nw) |
---|
843 | ! enddo |
---|
844 | ! close(127) |
---|
845 | ! endif |
---|
846 | |
---|
847 | ! OLR vs altitude: do it as a .txt file. |
---|
848 | OLRz=.false. |
---|
849 | if(OLRz)then |
---|
850 | print*,'saving IR vertical flux for OLRz...' |
---|
851 | open(118,file='OLRz_plevs.out') |
---|
852 | open(119,file='OLRz.out') |
---|
853 | do l=1,L_NLAYRAD |
---|
854 | write(118,*) plevrad(2*l) |
---|
855 | do nw=1,L_NSPECTI |
---|
856 | write(119,*) fluxupi_nu(l,nw) |
---|
857 | enddo |
---|
858 | enddo |
---|
859 | close(118) |
---|
860 | close(119) |
---|
861 | endif |
---|
862 | |
---|
863 | endif |
---|
864 | |
---|
865 | if (lastcall) then |
---|
866 | IF( ALLOCATED( gasi ) ) DEALLOCATE( gasi ) |
---|
867 | IF( ALLOCATED( gasv ) ) DEALLOCATE( gasv ) |
---|
868 | IF( ALLOCATED( gasi_recomb ) ) DEALLOCATE( gasi_recomb ) |
---|
869 | IF( ALLOCATED( gasv_recomb ) ) DEALLOCATE( gasv_recomb ) |
---|
870 | IF( ALLOCATED( pqrold ) ) DEALLOCATE( pqrold ) |
---|
871 | IF( ALLOCATED( useptold ) ) DEALLOCATE( useptold ) |
---|
872 | !$OMP BARRIER |
---|
873 | !$OMP MASTER |
---|
874 | IF( ALLOCATED( pgasref ) ) DEALLOCATE( pgasref ) |
---|
875 | IF( ALLOCATED( tgasref ) ) DEALLOCATE( tgasref ) |
---|
876 | IF( ALLOCATED( pfgasref ) ) DEALLOCATE( pfgasref ) |
---|
877 | IF( ALLOCATED( gweight ) ) DEALLOCATE( gweight ) |
---|
878 | !$OMP END MASTER |
---|
879 | !$OMP BARRIER |
---|
880 | endif |
---|
881 | |
---|
882 | |
---|
883 | end subroutine callcorrk |
---|