[1793] | 1 | ! Copyright 2013-2015 Université de Reims Champagne-Ardenne |
---|
| 2 | ! Contributor: J. Burgalat (GSMA, URCA) |
---|
| 3 | ! email of the author : jeremie.burgalat@univ-reims.fr |
---|
| 4 | ! |
---|
| 5 | ! This software is a computer program whose purpose is to compute |
---|
| 6 | ! microphysics processes using a two-moments scheme. |
---|
| 7 | ! |
---|
| 8 | ! This library is governed by the CeCILL-B license under French law and |
---|
| 9 | ! abiding by the rules of distribution of free software. You can use, |
---|
| 10 | ! modify and/ or redistribute the software under the terms of the CeCILL-B |
---|
| 11 | ! license as circulated by CEA, CNRS and INRIA at the following URL |
---|
| 12 | ! "http://www.cecill.info". |
---|
| 13 | ! |
---|
| 14 | ! As a counterpart to the access to the source code and rights to copy, |
---|
| 15 | ! modify and redistribute granted by the license, users are provided only |
---|
| 16 | ! with a limited warranty and the software's author, the holder of the |
---|
| 17 | ! economic rights, and the successive licensors have only limited |
---|
| 18 | ! liability. |
---|
| 19 | ! |
---|
| 20 | ! In this respect, the user's attention is drawn to the risks associated |
---|
| 21 | ! with loading, using, modifying and/or developing or reproducing the |
---|
| 22 | ! software by the user in light of its specific status of free software, |
---|
| 23 | ! that may mean that it is complicated to manipulate, and that also |
---|
| 24 | ! therefore means that it is reserved for developers and experienced |
---|
| 25 | ! professionals having in-depth computer knowledge. Users are therefore |
---|
| 26 | ! encouraged to load and test the software's suitability as regards their |
---|
| 27 | ! requirements in conditions enabling the security of their systems and/or |
---|
| 28 | ! data to be ensured and, more generally, to use and operate it in the |
---|
| 29 | ! same conditions as regards security. |
---|
| 30 | ! |
---|
| 31 | ! The fact that you are presently reading this means that you have had |
---|
| 32 | ! knowledge of the CeCILL-B license and that you accept its terms. |
---|
| 33 | |
---|
| 34 | !! file: mm_methods.f90 |
---|
| 35 | !! summary: Model miscellaneous methods module. |
---|
| 36 | !! author: J. Burgalat |
---|
| 37 | !! date: 2013-2015 |
---|
| 38 | |
---|
| 39 | MODULE MM_METHODS |
---|
| 40 | !! Model miscellaneous methods module. |
---|
| 41 | !! |
---|
| 42 | !! The module contains miscellaneous methods used either in the haze and clouds parts of the model. |
---|
| 43 | !! |
---|
| 44 | !! All thermodynamic functions related to cloud microphysics (i.e. [[mm_methods(module):mm_lHeatX(interface)]], |
---|
| 45 | !! [[mm_methods(module):mm_sigX(interface)]] and [[mm_methods(module):mm_psatX(interface)]]) compute related equations |
---|
| 46 | !! from \cite{reid1986}. A version of the book is freely available [here](http://f3.tiera.ru/3/Chemistry/References/Poling%20B.E.,%20Prausnitz%20J.M.,%20O'Connell%20J.P.%20The%20Properties%20of%20Gases%20and%20Liquids%20(5ed.,%20MGH,%202000)(ISBN%200070116822)(803s).pdf). |
---|
| 47 | !! |
---|
| 48 | !! The module defines the following functions/subroutines/interfaces: |
---|
| 49 | !! |
---|
| 50 | !! | name | description |
---|
| 51 | !! | :---------: | :------------------------------------------------------------------------------------- |
---|
| 52 | !! | mm_lheatx | Compute latent heat released |
---|
| 53 | !! | mm_sigx | Compute surface tension |
---|
| 54 | !! | mm_psatx | Compute saturation vapor pressure |
---|
| 55 | !! | mm_qsatx | Compute saturation mass mixing ratio |
---|
| 56 | !! | mm_fshape | Compute shape factor |
---|
| 57 | !! | mm_lambda_g | Compute air mean free path |
---|
| 58 | !! | mm_eta_g | Compute air viscosity |
---|
| 59 | !! | mm_get_kfm | Compute the thermodynamic pre-factor of coagulation kernel in free-molecular regime |
---|
| 60 | !! | mm_get_kco | Compute the thermodynamic pre-factor of coagulation kernel in continuous regime |
---|
| 61 | USE MM_MPREC |
---|
| 62 | USE MM_GLOBALS |
---|
| 63 | USE MM_INTERFACES |
---|
| 64 | IMPLICIT NONE |
---|
| 65 | |
---|
| 66 | PRIVATE |
---|
| 67 | |
---|
| 68 | PUBLIC :: mm_sigX, mm_LheatX, mm_psatX, mm_qsatx, mm_fshape, & |
---|
| 69 | mm_get_kco, mm_get_kfm, mm_eta_g, mm_lambda_g |
---|
| 70 | |
---|
| 71 | ! ---- INTERFACES |
---|
| 72 | |
---|
| 73 | !> Interface to surface tension computation functions. |
---|
| 74 | !! |
---|
| 75 | !! The method computes the surface tension of a given specie at given temperature(s). |
---|
| 76 | !! |
---|
| 77 | !! ```fortran |
---|
| 78 | !! FUNCTION mm_sigX(temp,xESP) |
---|
| 79 | !! ``` |
---|
| 80 | !! |
---|
| 81 | !! __xESP__ must always be given as a scalar. If __temp__ is given as a vector, then the method |
---|
| 82 | !! computes the result for all the temperatures and returns a vector of same size than __temp__. |
---|
| 83 | INTERFACE mm_sigX |
---|
| 84 | MODULE PROCEDURE sigx_sc,sigx_ve |
---|
| 85 | END INTERFACE |
---|
| 86 | |
---|
| 87 | !> Interface to Latent heat computation functions. |
---|
| 88 | !! |
---|
| 89 | !! The method computes the latent heat released of a given specie at given temperature(s). |
---|
| 90 | !! |
---|
| 91 | !! ```fortran |
---|
| 92 | !! FUNCTION mm_lheatX(temp,xESP) |
---|
| 93 | !! ``` |
---|
| 94 | !! |
---|
| 95 | !! __xESP__ must always be given as a scalar. If __temp__ is given as a vector, then the method |
---|
| 96 | !! computes the result for all the temperatures and returns a vector of same size than __temp__. |
---|
| 97 | INTERFACE mm_LheatX |
---|
| 98 | MODULE PROCEDURE lheatx_sc,lheatx_ve |
---|
| 99 | END INTERFACE |
---|
| 100 | |
---|
| 101 | !> Interface to saturation vapor pressure computation functions. |
---|
| 102 | !! |
---|
| 103 | !! ```fortran |
---|
| 104 | !! FUNCTION mm_psatX(temp,xESP) |
---|
| 105 | !! ``` |
---|
| 106 | !! |
---|
| 107 | !! The method computes the saturation vapor pressure of a given specie at given temperature(s). |
---|
| 108 | !! |
---|
| 109 | !! __xESP__ must always be given as a scalar. If __temp__ is given as a vector, then the method |
---|
| 110 | !! computes the result for all the temperatures and returns a vector of same size than __temp__. |
---|
| 111 | INTERFACE mm_psatX |
---|
| 112 | MODULE PROCEDURE psatx_sc,psatx_ve |
---|
| 113 | END INTERFACE |
---|
| 114 | |
---|
| 115 | !! Interface to saturation mass mixing ratio computaiton functions. |
---|
| 116 | !! |
---|
| 117 | !! The method computes the mass mixing ratio at saturation of a given specie at given temperature(s) |
---|
| 118 | !! and pressure level(s). |
---|
| 119 | !! |
---|
| 120 | !! ```fortran |
---|
| 121 | !! FUNCTION mm_qsatX(temp,pres,xESP) |
---|
| 122 | !! ``` |
---|
| 123 | !! |
---|
| 124 | !! __xESP__ must always be given as a scalar. If __temp__ and __pres__ are given as a vector (of same |
---|
| 125 | !! size !), then the method computes the result for each couple of (temperature, pressure) and returns |
---|
| 126 | !! a vector of same size than __temp__. |
---|
| 127 | INTERFACE mm_qsatx |
---|
| 128 | MODULE PROCEDURE qsatx_sc,qsatx_ve |
---|
| 129 | END INTERFACE |
---|
| 130 | |
---|
| 131 | !> Interface to shape factor computation functions. |
---|
| 132 | !! |
---|
| 133 | !! The method computes the shape factor for the heterogeneous nucleation. |
---|
| 134 | !! |
---|
| 135 | !! ```fortran |
---|
| 136 | !! FUNCTION mm_fshape(m,x) |
---|
| 137 | !! ``` |
---|
| 138 | !! |
---|
| 139 | !! Where __m__ is cosine of the contact angle and __x__ the curvature radius. __m__ must always be |
---|
| 140 | !! given as a scalar. If __x__ is given as a vector, then the method compute the result for each |
---|
| 141 | !! value of __x__ and and returns a vector of same size than __x__. |
---|
| 142 | INTERFACE mm_fshape |
---|
| 143 | MODULE PROCEDURE fshape_sc,fshape_ve |
---|
| 144 | END INTERFACE |
---|
| 145 | |
---|
| 146 | CONTAINS |
---|
| 147 | |
---|
| 148 | FUNCTION fshape_sc(cost,rap) RESULT(res) |
---|
| 149 | !! Get the shape factor of a ccn (scalar). |
---|
| 150 | !! |
---|
| 151 | !! The method computes the shape factor for the heterogeneous nucleation on a fractal particle. |
---|
| 152 | !! Details about the shape factor can be found in \cite{prup1978}. |
---|
| 153 | REAL(kind=mm_wp), INTENT(in) :: cost !! Cosine of the contact angle. |
---|
| 154 | REAL(kind=mm_wp), INTENT(in) :: rap !! Curvature radius (\(r_{particle}/r^{*}\)). |
---|
| 155 | REAL(kind=mm_wp) :: res !! Shape factor value. |
---|
| 156 | REAL(kind=mm_wp) :: phi,a,b,c |
---|
| 157 | IF (rap > 3000._mm_wp) THEN |
---|
| 158 | res = ((2._mm_wp+cost)*(1._mm_wp-cost)**2)/4._mm_wp |
---|
| 159 | ELSE |
---|
| 160 | phi = dsqrt(1._mm_wp-2._mm_wp*cost*rap+rap**2) |
---|
| 161 | a = 1._mm_wp + ( (1._mm_wp-cost*rap)/phi )**3 |
---|
| 162 | b = (rap**3) * (2._mm_wp-3._mm_wp*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
| 163 | c = 3._mm_wp * cost * (rap**2) * ((rap-cost)/phi-1._mm_wp) |
---|
| 164 | res = 0.5_mm_wp*(a+b+c) |
---|
| 165 | ENDIF |
---|
| 166 | RETURN |
---|
| 167 | END FUNCTION fshape_sc |
---|
| 168 | |
---|
| 169 | FUNCTION fshape_ve(cost,rap) RESULT(res) |
---|
| 170 | !! Get the shape factor of a ccn (vector). |
---|
| 171 | !! |
---|
| 172 | !! See [[mm_methods(module):fshape_sc(function)]]. |
---|
| 173 | REAL(kind=mm_wp), INTENT(in) :: cost !! Cosine of the contact angle. |
---|
| 174 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: rap !! Curvature radii (\(r_{particle}/r^{*}\)). |
---|
| 175 | REAL(kind=mm_wp), DIMENSION(SIZE(rap)) :: res !! Shape factor value. |
---|
| 176 | REAL(kind=mm_wp), DIMENSION(SIZE(rap)) :: phi,a,b,c |
---|
| 177 | WHERE(rap > 3000._mm_wp) |
---|
| 178 | res = ((2._mm_wp+cost)*(1._mm_wp-cost)**2)/4._mm_wp |
---|
| 179 | ELSEWHERE |
---|
| 180 | phi = dsqrt(1._mm_wp-2._mm_wp*cost*rap+rap**2) |
---|
| 181 | a = 1._mm_wp + ((1._mm_wp-cost*rap)/phi )**3 |
---|
| 182 | b = (rap**3)*(2._mm_wp-3._mm_wp*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
| 183 | c = 3._mm_wp*cost*(rap**2)*((rap-cost)/phi-1._mm_wp) |
---|
| 184 | res = 0.5_mm_wp*(a+b+c) |
---|
| 185 | ENDWHERE |
---|
| 186 | RETURN |
---|
| 187 | END FUNCTION fshape_ve |
---|
| 188 | |
---|
| 189 | FUNCTION LHeatX_sc(temp,xESP) RESULT(res) |
---|
| 190 | !! Compute latent heat of a given specie at given temperature (scalar). |
---|
| 191 | !! |
---|
| 192 | !! The method computes the latent heat equation as given in \cite{reid1986} p. 220 (eq. 7-9.4). |
---|
| 193 | IMPLICIT NONE |
---|
| 194 | ! - DUMMY |
---|
| 195 | REAL(kind=mm_wp), INTENT(in) :: temp !! temperature (K). |
---|
| 196 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 197 | REAL(kind=mm_wp) :: res !! Latent heat of given specie at given temperature (\(J.kg^{-1}\)). |
---|
| 198 | REAL(kind=mm_wp) :: ftm |
---|
| 199 | ftm=MIN(1._mm_wp-temp/xESP%tc,1.e-3_mm_wp) |
---|
| 200 | res = mm_rgas*xESP%tc*(7.08_mm_wp*ftm**0.354_mm_wp+10.95_mm_wp*xESP%w*ftm**0.456_mm_wp)/xESP%masmol |
---|
| 201 | END FUNCTION LHeatX_sc |
---|
| 202 | |
---|
| 203 | FUNCTION LHeatX_ve(temp,xESP) RESULT(res) |
---|
| 204 | !! Compute latent heat of a given specie at given temperature (vector). |
---|
| 205 | !! |
---|
| 206 | !! See [[mm_methods(module):lheatx_sc(function)]]. |
---|
| 207 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! temperatures (K). |
---|
| 208 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 209 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Latent heat of given specie at given temperatures (\(J.kg^{-1}\)). |
---|
| 210 | REAL(kind=mm_wp) :: ftm |
---|
| 211 | INTEGER :: i |
---|
| 212 | DO i=1,SIZE(temp) |
---|
| 213 | ftm=MIN(1._mm_wp-temp(i)/xESP%tc,1.e-3_mm_wp) |
---|
| 214 | res(i) = mm_rgas*xESP%tc*(7.08_mm_wp*ftm**0.354_mm_wp+10.95_mm_wp*xESP%w*ftm**0.456_mm_wp) / & |
---|
| 215 | xESP%masmol |
---|
| 216 | ENDDO |
---|
| 217 | END FUNCTION LHeatX_ve |
---|
| 218 | |
---|
| 219 | FUNCTION sigX_sc(temp,xESP) RESULT(res) |
---|
| 220 | !! Get the surface tension between a given specie and the air (scalar). |
---|
| 221 | !! |
---|
| 222 | !! The method computes the surface tension equation as given in \cite{reid1986} p. 637 (eq. 12-3.6). |
---|
| 223 | REAL(kind=mm_wp), INTENT(in) :: temp !! temperature (K). |
---|
| 224 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 225 | REAL(kind=mm_wp) :: res !! Surface tension (\(N.m^{-1}\)). |
---|
| 226 | REAL(kind=mm_wp) :: tr,tbr,sig |
---|
| 227 | tr=MIN(temp/xESP%tc,0.99_mm_wp) |
---|
| 228 | tbr=xESP%tb/xESP%tc |
---|
| 229 | sig = 0.1196_mm_wp*(1._mm_wp+(tbr*dlog(xESP%pc/1.01325_mm_wp))/(1._mm_wp-tbr))-0.279_mm_wp |
---|
| 230 | sig = xESP%pc**(2._mm_wp/3._mm_wp)*xESP%tc**(1._mm_wp/3._mm_wp)*sig*(1._mm_wp-tr)**(11._mm_wp/9._mm_wp) |
---|
| 231 | res = sig*1e3_mm_wp ! dyn/cm2 -> N/m |
---|
| 232 | END FUNCTION sigX_sc |
---|
| 233 | |
---|
| 234 | FUNCTION sigX_ve(temp,xESP) RESULT(res) |
---|
| 235 | !! Get the surface tension between a given specie and the air (vector). |
---|
| 236 | !! |
---|
| 237 | !! See [[mm_methods(module):sigx_sc(function)]]. |
---|
| 238 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! temperatures (K). |
---|
| 239 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 240 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Surface tensions (\(N.m^{-1}\)). |
---|
| 241 | INTEGER :: i |
---|
| 242 | REAL(kind=mm_wp) :: tr,tbr,sig |
---|
| 243 | tbr = xESP%tb/xESP%tc |
---|
| 244 | sig = 0.1196_mm_wp*(1._mm_wp+(tbr*dlog(xESP%pc/1.01325_mm_wp))/(1._mm_wp-tbr))-0.279_mm_wp |
---|
| 245 | DO i=1,SIZE(temp) |
---|
| 246 | tr = MIN(temp(i)/xESP%tc,0.99_mm_wp) |
---|
| 247 | sig = xESP%pc**(2._mm_wp/3._mm_wp)*xESP%tc**(1._mm_wp/3._mm_wp)*sig*(1._mm_wp-tr)**(11._mm_wp/9._mm_wp) |
---|
| 248 | res(i) = sig*1e3_mm_wp ! dyn/cm2 -> N/m |
---|
| 249 | ENDDO |
---|
| 250 | END FUNCTION sigX_ve |
---|
| 251 | |
---|
| 252 | FUNCTION psatX_sc(temp,xESP) RESULT(res) |
---|
| 253 | !! Get saturation vapor pressure for a given specie at given temperature (scalar). |
---|
| 254 | !! |
---|
| 255 | !! The method computes the saturation vapor pressure equation given in \cite{reid1986} p. 657 (eq. 1). |
---|
| 256 | !! |
---|
| 257 | !! @warning |
---|
| 258 | !! This subroutine accounts for a specific Titan feature: |
---|
| 259 | !! If __xESP__ corresponds to \(CH_{4}\), the saturation vapor presure is multiplied by 0.85 |
---|
| 260 | !! to take into account its dissolution in \(N_{2}\). |
---|
| 261 | REAL(kind=mm_wp), INTENT(in) :: temp !! Temperature (K). |
---|
| 262 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 263 | REAL(kind=mm_wp) :: res !! Saturation vapor pressure (Pa). |
---|
| 264 | REAL(kind=mm_wp) :: x,qsat |
---|
| 265 | x = 1._mm_wp-temp/xESP%tc |
---|
| 266 | IF (x > 0._mm_wp) THEN |
---|
| 267 | qsat = (1._mm_wp-x)**(-1) * & |
---|
| 268 | (xESP%a_sat*x + xESP%b_sat*x**1.5_mm_wp + xESP%c_sat*x**3 + xESP%d_sat*x**6) |
---|
| 269 | ELSE |
---|
| 270 | qsat = XESP%a_sat*x/abs(1._mm_wp-x) ! approx for t > tc |
---|
| 271 | ENDIF |
---|
| 272 | ! Special case : ch4 : x0.85 (dissolution in N2) |
---|
| 273 | IF (xESP%name == "ch4") THEN |
---|
| 274 | res = xESP%pc*dexp(qsat)*0.85_mm_wp |
---|
| 275 | ELSE |
---|
| 276 | res = xESP%pc*dexp(qsat) |
---|
| 277 | ENDIF |
---|
| 278 | ! now convert bar to Pa |
---|
| 279 | res = res * 1e5_mm_wp |
---|
| 280 | END FUNCTION psatX_sc |
---|
| 281 | |
---|
| 282 | FUNCTION psatX_ve(temp,xESP) RESULT(res) |
---|
| 283 | !! Get saturation vapor pressure for a given specie at given temperature (vector). |
---|
| 284 | !! |
---|
| 285 | !! See [[mm_methods(module):psatX_sc(function)]]. |
---|
| 286 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! Temperatures (K). |
---|
| 287 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 288 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Saturation vapor pressures (Pa). |
---|
| 289 | INTEGER :: i |
---|
| 290 | REAL(kind=mm_wp) :: x,qsat |
---|
| 291 | DO i=1, SIZE(temp) |
---|
| 292 | x = 1._mm_wp-temp(i)/xESP%tc |
---|
| 293 | IF (x > 0._mm_wp) THEN |
---|
| 294 | qsat = (1._mm_wp-x)**(-1) * & |
---|
| 295 | (xESP%a_sat*x + xESP%b_sat*x**1.5_mm_wp + xESP%c_sat*x**3 + xESP%d_sat*x**6) |
---|
| 296 | ELSE |
---|
| 297 | qsat = XESP%a_sat*x/abs(1._mm_wp-x) ! approx for t > tc |
---|
| 298 | ENDIF |
---|
| 299 | res(i) = xESP%pc*dexp(qsat) |
---|
| 300 | ! Peculiar case : ch4 : x0.85 (dissolution in N2) |
---|
| 301 | IF (xESP%name == "ch4") res(i) = res(i)* 0.85_mm_wp |
---|
| 302 | ENDDO |
---|
| 303 | res = res * 1e5_mm_wp ! bar -> Pa |
---|
| 304 | END FUNCTION psatX_ve |
---|
| 305 | |
---|
| 306 | FUNCTION qsatX_sc(temp,pres,xESP) RESULT(res) |
---|
| 307 | !! Get the mass mixing ratio of a given specie at saturation (scalar). |
---|
| 308 | REAL(kind=mm_wp), INTENT(in) :: temp !! Temperature (K). |
---|
| 309 | REAL(kind=mm_wp), INTENT(in) :: pres !! Pressure level (Pa). |
---|
| 310 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 311 | REAL(kind=mm_wp) :: res !! Mass mixing ratio of the specie. |
---|
| 312 | REAL(kind=mm_wp) :: x,psat |
---|
| 313 | psat = mm_psatX(temp,xESP) |
---|
| 314 | res = (psat / pres) * xESP%fmol2fmas |
---|
| 315 | END FUNCTION qsatX_sc |
---|
| 316 | |
---|
| 317 | FUNCTION qsatX_ve(temp,pres,xESP) RESULT(res) |
---|
| 318 | !! Get the mass mixing ratio of a given specie at saturation (vector). |
---|
| 319 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! Temperatures (K). |
---|
| 320 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: pres !! Pressure levels (Pa). |
---|
| 321 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
| 322 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Mass mixing ratios of the specie. |
---|
| 323 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: psat |
---|
| 324 | psat = mm_psatX(temp,xESP) |
---|
| 325 | res = (psat / pres) * xESP%fmol2fmas |
---|
| 326 | END FUNCTION qsatX_ve |
---|
| 327 | |
---|
| 328 | ELEMENTAL FUNCTION mm_get_kco(t) RESULT(res) |
---|
| 329 | !! Get the Continuous regime thermodynamics pre-factor of the coagulation kernel. |
---|
| 330 | REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
| 331 | REAL(kind=mm_wp) :: res !! Continuous regime thermodynamics pre-factor (\(m^{3}.s^{-1}\)). |
---|
| 332 | res = 2._mm_wp*mm_kboltz*t / (3._mm_wp*mm_eta_g(t)) |
---|
| 333 | RETURN |
---|
| 334 | END FUNCTION mm_get_kco |
---|
| 335 | |
---|
| 336 | ELEMENTAL FUNCTION mm_get_kfm(t) RESULT(res) |
---|
| 337 | !! Get the Free Molecular regime thermodynamics pre-factor of the coagulation kernel. |
---|
| 338 | REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
| 339 | REAL(kind=mm_wp) :: res !! Free Molecular regime thermodynamics pre-factor (\(m^{5/2}.s^{-1}\)). |
---|
| 340 | res = (6._mm_wp*mm_kboltz*t/mm_rhoaer)**(0.5_mm_wp) |
---|
| 341 | RETURN |
---|
| 342 | END FUNCTION mm_get_kfm |
---|
| 343 | |
---|
| 344 | ! ELEMENTAL FUNCTION mm_eta_g(t) RESULT (res) |
---|
| 345 | ! !! Get the air viscosity at a given temperature. |
---|
| 346 | ! !! |
---|
| 347 | ! !! The function computes the air viscosity at temperature __t__ using Sutherland method. |
---|
| 348 | ! REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
| 349 | ! REAL(kind=mm_wp) :: res !! Air viscosity at given temperature (\(Pa.s^{-1}\)). |
---|
| 350 | ! REAL (kind=mm_wp), PARAMETER :: eta0 = 1.75e-5_mm_wp, & |
---|
| 351 | ! tsut = 109._mm_wp, & |
---|
| 352 | ! tref = 293._mm_wp |
---|
| 353 | ! res = eta0 *dsqrt(t/tref)*(1._mm_wp+tsut/tref)/(1._mm_wp+tsut/t) |
---|
| 354 | ! RETURN |
---|
| 355 | ! END FUNCTION mm_eta_g |
---|
| 356 | ! |
---|
| 357 | ! ELEMENTAL FUNCTION mm_lambda_g(t,p) RESULT(res) |
---|
| 358 | ! !! Get the air mean free path at given temperature and pressure. |
---|
| 359 | ! !! |
---|
| 360 | ! !! The method computes the air mean free path: |
---|
| 361 | ! !! |
---|
| 362 | ! !! $$ \lambda_{g} = \dfrac{k_{b}T}{4\sqrt{2}\pi r_{a}^2 P} $$ |
---|
| 363 | ! !! |
---|
| 364 | ! !! Where \(\lambda_{g}\), is the air mean free path, \(k_{b}\) the Boltzmann constant, T the |
---|
| 365 | ! !! temperature, P the pressure level and \(r_{a}\) the radius of an _air molecule_. |
---|
| 366 | ! REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
| 367 | ! REAL(kind=mm_wp), INTENT(in) :: p !! Pressure level (Pa). |
---|
| 368 | ! REAL(kind=mm_wp) :: res !! Air mean free path (m). |
---|
| 369 | ! res = mm_kboltz*t/(4._mm_wp*dsqrt(2._mm_wp)*mm_pi*(mm_air_rad**2)*p) |
---|
| 370 | ! RETURN |
---|
| 371 | ! END FUNCTION mm_lambda_g |
---|
| 372 | |
---|
| 373 | END MODULE MM_METHODS |
---|