1 | ! Copyright 2013-2015,2017 Université de Reims Champagne-Ardenne |
---|
2 | ! Contributor: J. Burgalat (GSMA, URCA) |
---|
3 | ! email of the author : jeremie.burgalat@univ-reims.fr |
---|
4 | ! |
---|
5 | ! This software is a computer program whose purpose is to compute |
---|
6 | ! microphysics processes using a two-moments scheme. |
---|
7 | ! |
---|
8 | ! This library is governed by the CeCILL-B license under French law and |
---|
9 | ! abiding by the rules of distribution of free software. You can use, |
---|
10 | ! modify and/ or redistribute the software under the terms of the CeCILL-B |
---|
11 | ! license as circulated by CEA, CNRS and INRIA at the following URL |
---|
12 | ! "http://www.cecill.info". |
---|
13 | ! |
---|
14 | ! As a counterpart to the access to the source code and rights to copy, |
---|
15 | ! modify and redistribute granted by the license, users are provided only |
---|
16 | ! with a limited warranty and the software's author, the holder of the |
---|
17 | ! economic rights, and the successive licensors have only limited |
---|
18 | ! liability. |
---|
19 | ! |
---|
20 | ! In this respect, the user's attention is drawn to the risks associated |
---|
21 | ! with loading, using, modifying and/or developing or reproducing the |
---|
22 | ! software by the user in light of its specific status of free software, |
---|
23 | ! that may mean that it is complicated to manipulate, and that also |
---|
24 | ! therefore means that it is reserved for developers and experienced |
---|
25 | ! professionals having in-depth computer knowledge. Users are therefore |
---|
26 | ! encouraged to load and test the software's suitability as regards their |
---|
27 | ! requirements in conditions enabling the security of their systems and/or |
---|
28 | ! data to be ensured and, more generally, to use and operate it in the |
---|
29 | ! same conditions as regards security. |
---|
30 | ! |
---|
31 | ! The fact that you are presently reading this means that you have had |
---|
32 | ! knowledge of the CeCILL-B license and that you accept its terms. |
---|
33 | |
---|
34 | !! file: mm_methods.f90 |
---|
35 | !! summary: Model miscellaneous methods module. |
---|
36 | !! author: J. Burgalat |
---|
37 | !! date: 2013-2015,2017 |
---|
38 | |
---|
39 | MODULE MM_METHODS |
---|
40 | !! Model miscellaneous methods module. |
---|
41 | !! |
---|
42 | !! The module contains miscellaneous methods used either in the haze and clouds parts of the model. |
---|
43 | !! |
---|
44 | !! All thermodynamic functions related to cloud microphysics (i.e. [[mm_methods(module):mm_lHeatX(interface)]], |
---|
45 | !! [[mm_methods(module):mm_sigX(interface)]] and [[mm_methods(module):mm_psatX(interface)]]) compute related equations |
---|
46 | !! from \cite{reid1986}. A version of the book is freely available [here](http://f3.tiera.ru/3/Chemistry/References/Poling%20B.E.,%20Prausnitz%20J.M.,%20O'Connell%20J.P.%20The%20Properties%20of%20Gases%20and%20Liquids%20(5ed.,%20MGH,%202000)(ISBN%200070116822)(803s).pdf). |
---|
47 | !! |
---|
48 | !! The module defines the following functions/subroutines/interfaces: |
---|
49 | !! |
---|
50 | !! | name | description |
---|
51 | !! | :---------: | :------------------------------------------------------------------------------------- |
---|
52 | !! | mm_lheatx | Compute latent heat released |
---|
53 | !! | mm_sigx | Compute surface tension |
---|
54 | !! | mm_psatx | Compute saturation vapor pressure |
---|
55 | !! | mm_qsatx | Compute saturation mass mixing ratio |
---|
56 | !! | mm_fshape | Compute shape factor |
---|
57 | !! | mm_lambda_g | Compute air mean free path |
---|
58 | !! | mm_eta_g | Compute air viscosity |
---|
59 | !! | mm_get_kfm | Compute the thermodynamic pre-factor of coagulation kernel in free-molecular regime |
---|
60 | !! | mm_get_kco | Compute the thermodynamic pre-factor of coagulation kernel in continuous regime |
---|
61 | USE MM_MPREC |
---|
62 | USE MM_GLOBALS |
---|
63 | USE MM_INTERFACES |
---|
64 | IMPLICIT NONE |
---|
65 | |
---|
66 | PRIVATE |
---|
67 | |
---|
68 | PUBLIC :: mm_sigX, mm_LheatX, mm_psatX, mm_qsatx, mm_fshape, & |
---|
69 | mm_get_kco, mm_get_kfm, mm_eta_g, mm_lambda_g |
---|
70 | |
---|
71 | ! ---- INTERFACES |
---|
72 | |
---|
73 | !> Interface to surface tension computation functions. |
---|
74 | !! |
---|
75 | !! The method computes the surface tension of a given specie at given temperature(s). |
---|
76 | !! |
---|
77 | !! ```fortran |
---|
78 | !! FUNCTION mm_sigX(temp,xESP) |
---|
79 | !! ``` |
---|
80 | !! |
---|
81 | !! __xESP__ must always be given as a scalar. If __temp__ is given as a vector, then the method |
---|
82 | !! computes the result for all the temperatures and returns a vector of same size than __temp__. |
---|
83 | INTERFACE mm_sigX |
---|
84 | MODULE PROCEDURE sigx_sc,sigx_ve |
---|
85 | END INTERFACE |
---|
86 | |
---|
87 | !> Interface to Latent heat computation functions. |
---|
88 | !! |
---|
89 | !! The method computes the latent heat released of a given specie at given temperature(s). |
---|
90 | !! |
---|
91 | !! ```fortran |
---|
92 | !! FUNCTION mm_lheatX(temp,xESP) |
---|
93 | !! ``` |
---|
94 | !! |
---|
95 | !! __xESP__ must always be given as a scalar. If __temp__ is given as a vector, then the method |
---|
96 | !! computes the result for all the temperatures and returns a vector of same size than __temp__. |
---|
97 | INTERFACE mm_LheatX |
---|
98 | MODULE PROCEDURE lheatx_sc,lheatx_ve |
---|
99 | END INTERFACE |
---|
100 | |
---|
101 | !> Interface to saturation vapor pressure computation functions. |
---|
102 | !! |
---|
103 | !! ```fortran |
---|
104 | !! FUNCTION mm_psatX(temp,xESP) |
---|
105 | !! ``` |
---|
106 | !! |
---|
107 | !! The method computes the saturation vapor pressure of a given specie at given temperature(s). |
---|
108 | !! |
---|
109 | !! __xESP__ must always be given as a scalar. If __temp__ is given as a vector, then the method |
---|
110 | !! computes the result for all the temperatures and returns a vector of same size than __temp__. |
---|
111 | INTERFACE mm_psatX |
---|
112 | MODULE PROCEDURE psatx_sc,psatx_ve |
---|
113 | END INTERFACE |
---|
114 | |
---|
115 | !! Interface to saturation mass mixing ratio computaiton functions. |
---|
116 | !! |
---|
117 | !! The method computes the mass mixing ratio at saturation of a given specie at given temperature(s) |
---|
118 | !! and pressure level(s). |
---|
119 | !! |
---|
120 | !! ```fortran |
---|
121 | !! FUNCTION mm_qsatX(temp,pres,xESP) |
---|
122 | !! ``` |
---|
123 | !! |
---|
124 | !! __xESP__ must always be given as a scalar. If __temp__ and __pres__ are given as a vector (of same |
---|
125 | !! size !), then the method computes the result for each couple of (temperature, pressure) and returns |
---|
126 | !! a vector of same size than __temp__. |
---|
127 | INTERFACE mm_qsatx |
---|
128 | MODULE PROCEDURE qsatx_sc,qsatx_ve |
---|
129 | END INTERFACE |
---|
130 | |
---|
131 | !> Interface to shape factor computation functions. |
---|
132 | !! |
---|
133 | !! The method computes the shape factor for the heterogeneous nucleation. |
---|
134 | !! |
---|
135 | !! ```fortran |
---|
136 | !! FUNCTION mm_fshape(m,x) |
---|
137 | !! ``` |
---|
138 | !! |
---|
139 | !! Where __m__ is cosine of the contact angle and __x__ the curvature radius. __m__ must always be |
---|
140 | !! given as a scalar. If __x__ is given as a vector, then the method compute the result for each |
---|
141 | !! value of __x__ and and returns a vector of same size than __x__. |
---|
142 | INTERFACE mm_fshape |
---|
143 | MODULE PROCEDURE fshape_sc,fshape_ve |
---|
144 | END INTERFACE |
---|
145 | |
---|
146 | CONTAINS |
---|
147 | |
---|
148 | FUNCTION fshape_sc(cost,rap) RESULT(res) |
---|
149 | !! Get the shape factor of a ccn (scalar). |
---|
150 | !! |
---|
151 | !! The method computes the shape factor for the heterogeneous nucleation on a fractal particle. |
---|
152 | !! Details about the shape factor can be found in \cite{prup1978}. |
---|
153 | REAL(kind=mm_wp), INTENT(in) :: cost !! Cosine of the contact angle. |
---|
154 | REAL(kind=mm_wp), INTENT(in) :: rap !! Curvature radius (\(r_{particle}/r^{*}\)). |
---|
155 | REAL(kind=mm_wp) :: res !! Shape factor value. |
---|
156 | REAL(kind=mm_wp) :: phi,a,b,c |
---|
157 | IF (rap > 3000._mm_wp) THEN |
---|
158 | res = ((2._mm_wp+cost)*(1._mm_wp-cost)**2)/4._mm_wp |
---|
159 | ELSE |
---|
160 | phi = dsqrt(1._mm_wp-2._mm_wp*cost*rap+rap**2) |
---|
161 | a = 1._mm_wp + ( (1._mm_wp-cost*rap)/phi )**3 |
---|
162 | b = (rap**3) * (2._mm_wp-3._mm_wp*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
163 | c = 3._mm_wp * cost * (rap**2) * ((rap-cost)/phi-1._mm_wp) |
---|
164 | res = 0.5_mm_wp*(a+b+c) |
---|
165 | ENDIF |
---|
166 | RETURN |
---|
167 | END FUNCTION fshape_sc |
---|
168 | |
---|
169 | FUNCTION fshape_ve(cost,rap) RESULT(res) |
---|
170 | !! Get the shape factor of a ccn (vector). |
---|
171 | !! |
---|
172 | !! See [[mm_methods(module):fshape_sc(function)]]. |
---|
173 | REAL(kind=mm_wp), INTENT(in) :: cost !! Cosine of the contact angle. |
---|
174 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: rap !! Curvature radii (\(r_{particle}/r^{*}\)). |
---|
175 | REAL(kind=mm_wp), DIMENSION(SIZE(rap)) :: res !! Shape factor value. |
---|
176 | REAL(kind=mm_wp), DIMENSION(SIZE(rap)) :: phi,a,b,c |
---|
177 | WHERE(rap > 3000._mm_wp) |
---|
178 | res = ((2._mm_wp+cost)*(1._mm_wp-cost)**2)/4._mm_wp |
---|
179 | ELSEWHERE |
---|
180 | phi = dsqrt(1._mm_wp-2._mm_wp*cost*rap+rap**2) |
---|
181 | a = 1._mm_wp + ((1._mm_wp-cost*rap)/phi )**3 |
---|
182 | b = (rap**3)*(2._mm_wp-3._mm_wp*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
183 | c = 3._mm_wp*cost*(rap**2)*((rap-cost)/phi-1._mm_wp) |
---|
184 | res = 0.5_mm_wp*(a+b+c) |
---|
185 | ENDWHERE |
---|
186 | RETURN |
---|
187 | END FUNCTION fshape_ve |
---|
188 | |
---|
189 | FUNCTION LHeatX_sc(temp,xESP) RESULT(res) |
---|
190 | !! Compute latent heat of a given specie at given temperature (scalar). |
---|
191 | !! |
---|
192 | !! The method computes the latent heat equation as given in \cite{reid1986} p. 220 (eq. 7-9.4). |
---|
193 | IMPLICIT NONE |
---|
194 | ! - DUMMY |
---|
195 | REAL(kind=mm_wp), INTENT(in) :: temp !! temperature (K). |
---|
196 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
197 | REAL(kind=mm_wp) :: res !! Latent heat of given specie at given temperature (\(J.kg^{-1}\)). |
---|
198 | REAL(kind=mm_wp) :: ftm |
---|
199 | ftm=MIN(1._mm_wp-temp/xESP%tc,1.e-3_mm_wp) |
---|
200 | res = mm_rgas*xESP%tc*(7.08_mm_wp*ftm**0.354_mm_wp+10.95_mm_wp*xESP%w*ftm**0.456_mm_wp)/xESP%masmol |
---|
201 | END FUNCTION LHeatX_sc |
---|
202 | |
---|
203 | FUNCTION LHeatX_ve(temp,xESP) RESULT(res) |
---|
204 | !! Compute latent heat of a given specie at given temperature (vector). |
---|
205 | !! |
---|
206 | !! See [[mm_methods(module):lheatx_sc(function)]]. |
---|
207 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! temperatures (K). |
---|
208 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
209 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Latent heat of given specie at given temperatures (\(J.kg^{-1}\)). |
---|
210 | REAL(kind=mm_wp) :: ftm |
---|
211 | INTEGER :: i |
---|
212 | DO i=1,SIZE(temp) |
---|
213 | ftm=MIN(1._mm_wp-temp(i)/xESP%tc,1.e-3_mm_wp) |
---|
214 | res(i) = mm_rgas*xESP%tc*(7.08_mm_wp*ftm**0.354_mm_wp+10.95_mm_wp*xESP%w*ftm**0.456_mm_wp) / & |
---|
215 | xESP%masmol |
---|
216 | ENDDO |
---|
217 | END FUNCTION LHeatX_ve |
---|
218 | |
---|
219 | FUNCTION sigX_sc(temp,xESP) RESULT(res) |
---|
220 | !! Get the surface tension between a given specie and the air (scalar). |
---|
221 | !! |
---|
222 | !! The method computes the surface tension equation as given in \cite{reid1986} p. 637 (eq. 12-3.6). |
---|
223 | REAL(kind=mm_wp), INTENT(in) :: temp !! temperature (K). |
---|
224 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
225 | REAL(kind=mm_wp) :: res !! Surface tension (\(N.m^{-1}\)). |
---|
226 | REAL(kind=mm_wp) :: tr,tbr,sig |
---|
227 | tr=MIN(temp/xESP%tc,0.99_mm_wp) |
---|
228 | tbr=xESP%tb/xESP%tc |
---|
229 | sig = 0.1196_mm_wp*(1._mm_wp+(tbr*dlog(xESP%pc/1.01325_mm_wp))/(1._mm_wp-tbr))-0.279_mm_wp |
---|
230 | sig = xESP%pc**(2._mm_wp/3._mm_wp)*xESP%tc**(1._mm_wp/3._mm_wp)*sig*(1._mm_wp-tr)**(11._mm_wp/9._mm_wp) |
---|
231 | res = sig*1e3_mm_wp ! dyn/cm2 -> N/m |
---|
232 | END FUNCTION sigX_sc |
---|
233 | |
---|
234 | FUNCTION sigX_ve(temp,xESP) RESULT(res) |
---|
235 | !! Get the surface tension between a given specie and the air (vector). |
---|
236 | !! |
---|
237 | !! See [[mm_methods(module):sigx_sc(function)]]. |
---|
238 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! temperatures (K). |
---|
239 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
240 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Surface tensions (\(N.m^{-1}\)). |
---|
241 | INTEGER :: i |
---|
242 | REAL(kind=mm_wp) :: tr,tbr,sig |
---|
243 | tbr = xESP%tb/xESP%tc |
---|
244 | sig = 0.1196_mm_wp*(1._mm_wp+(tbr*dlog(xESP%pc/1.01325_mm_wp))/(1._mm_wp-tbr))-0.279_mm_wp |
---|
245 | DO i=1,SIZE(temp) |
---|
246 | tr = MIN(temp(i)/xESP%tc,0.99_mm_wp) |
---|
247 | sig = xESP%pc**(2._mm_wp/3._mm_wp)*xESP%tc**(1._mm_wp/3._mm_wp)*sig*(1._mm_wp-tr)**(11._mm_wp/9._mm_wp) |
---|
248 | res(i) = sig*1e3_mm_wp ! dyn/cm2 -> N/m |
---|
249 | ENDDO |
---|
250 | END FUNCTION sigX_ve |
---|
251 | |
---|
252 | FUNCTION psatX_sc(temp,xESP) RESULT(res) |
---|
253 | !! Get saturation vapor pressure for a given specie at given temperature (scalar). |
---|
254 | !! |
---|
255 | !! The method computes the saturation vapor pressure equation given in \cite{reid1986} p. 657 (eq. 1). |
---|
256 | !! |
---|
257 | !! @warning |
---|
258 | !! This subroutine accounts for a specific Titan feature: |
---|
259 | !! If __xESP__ corresponds to \(CH_{4}\), the saturation vapor presure is multiplied by 0.85 |
---|
260 | !! to take into account its dissolution in \(N_{2}\). |
---|
261 | REAL(kind=mm_wp), INTENT(in) :: temp !! Temperature (K). |
---|
262 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
263 | REAL(kind=mm_wp) :: res !! Saturation vapor pressure (Pa). |
---|
264 | REAL(kind=mm_wp) :: x,qsat |
---|
265 | x = 1._mm_wp-temp/xESP%tc |
---|
266 | IF (x > 0._mm_wp) THEN |
---|
267 | qsat = (1._mm_wp-x)**(-1) * & |
---|
268 | (xESP%a_sat*x + xESP%b_sat*x**1.5_mm_wp + xESP%c_sat*x**3 + xESP%d_sat*x**6) |
---|
269 | ELSE |
---|
270 | qsat = XESP%a_sat*x/abs(1._mm_wp-x) ! approx for t > tc |
---|
271 | ENDIF |
---|
272 | ! Special case : ch4 : x0.85 (dissolution in N2) |
---|
273 | IF (xESP%name == "ch4") THEN |
---|
274 | res = xESP%pc*dexp(qsat)*0.85_mm_wp |
---|
275 | ELSE |
---|
276 | res = xESP%pc*dexp(qsat) |
---|
277 | ENDIF |
---|
278 | ! now convert bar to Pa |
---|
279 | res = res * 1e5_mm_wp |
---|
280 | END FUNCTION psatX_sc |
---|
281 | |
---|
282 | FUNCTION psatX_ve(temp,xESP) RESULT(res) |
---|
283 | !! Get saturation vapor pressure for a given specie at given temperature (vector). |
---|
284 | !! |
---|
285 | !! See [[mm_methods(module):psatX_sc(function)]]. |
---|
286 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! Temperatures (K). |
---|
287 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
288 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Saturation vapor pressures (Pa). |
---|
289 | INTEGER :: i |
---|
290 | REAL(kind=mm_wp) :: x,qsat |
---|
291 | DO i=1, SIZE(temp) |
---|
292 | x = 1._mm_wp-temp(i)/xESP%tc |
---|
293 | IF (x > 0._mm_wp) THEN |
---|
294 | qsat = (1._mm_wp-x)**(-1) * & |
---|
295 | (xESP%a_sat*x + xESP%b_sat*x**1.5_mm_wp + xESP%c_sat*x**3 + xESP%d_sat*x**6) |
---|
296 | ELSE |
---|
297 | qsat = XESP%a_sat*x/abs(1._mm_wp-x) ! approx for t > tc |
---|
298 | ENDIF |
---|
299 | res(i) = xESP%pc*dexp(qsat) |
---|
300 | ! Peculiar case : ch4 : x0.85 (dissolution in N2) |
---|
301 | IF (xESP%name == "ch4") res(i) = res(i)* 0.85_mm_wp |
---|
302 | ENDDO |
---|
303 | res = res * 1e5_mm_wp ! bar -> Pa |
---|
304 | END FUNCTION psatX_ve |
---|
305 | |
---|
306 | FUNCTION qsatX_sc(temp,pres,xESP) RESULT(res) |
---|
307 | !! Get the mass mixing ratio of a given specie at saturation (scalar). |
---|
308 | REAL(kind=mm_wp), INTENT(in) :: temp !! Temperature (K). |
---|
309 | REAL(kind=mm_wp), INTENT(in) :: pres !! Pressure level (Pa). |
---|
310 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
311 | REAL(kind=mm_wp) :: res !! Mass mixing ratio of the specie. |
---|
312 | REAL(kind=mm_wp) :: x,psat |
---|
313 | psat = mm_psatX(temp,xESP) |
---|
314 | res = (psat / pres) * xESP%fmol2fmas |
---|
315 | END FUNCTION qsatX_sc |
---|
316 | |
---|
317 | FUNCTION qsatX_ve(temp,pres,xESP) RESULT(res) |
---|
318 | !! Get the mass mixing ratio of a given specie at saturation (vector). |
---|
319 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: temp !! Temperatures (K). |
---|
320 | REAL(kind=mm_wp), INTENT(in), DIMENSION(:) :: pres !! Pressure levels (Pa). |
---|
321 | TYPE(mm_esp), INTENT(in) :: xESP !! Specie properties. |
---|
322 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: res !! Mass mixing ratios of the specie. |
---|
323 | REAL(kind=mm_wp), DIMENSION(SIZE(temp)) :: psat |
---|
324 | psat = mm_psatX(temp,xESP) |
---|
325 | res = (psat / pres) * xESP%fmol2fmas |
---|
326 | END FUNCTION qsatX_ve |
---|
327 | |
---|
328 | ELEMENTAL FUNCTION mm_get_kco(t) RESULT(res) |
---|
329 | !! Get the Continuous regime thermodynamics pre-factor of the coagulation kernel. |
---|
330 | REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
331 | REAL(kind=mm_wp) :: res !! Continuous regime thermodynamics pre-factor (\(m^{3}.s^{-1}\)). |
---|
332 | res = 2._mm_wp*mm_kboltz*t / (3._mm_wp*mm_eta_g(t)) |
---|
333 | RETURN |
---|
334 | END FUNCTION mm_get_kco |
---|
335 | |
---|
336 | ELEMENTAL FUNCTION mm_get_kfm(t) RESULT(res) |
---|
337 | !! Get the Free Molecular regime thermodynamics pre-factor of the coagulation kernel. |
---|
338 | REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
339 | REAL(kind=mm_wp) :: res !! Free Molecular regime thermodynamics pre-factor (\(m^{5/2}.s^{-1}\)). |
---|
340 | res = (6._mm_wp*mm_kboltz*t/mm_rhoaer)**(0.5_mm_wp) |
---|
341 | RETURN |
---|
342 | END FUNCTION mm_get_kfm |
---|
343 | |
---|
344 | ! ELEMENTAL FUNCTION mm_eta_g(t) RESULT (res) |
---|
345 | ! !! Get the air viscosity at a given temperature. |
---|
346 | ! !! |
---|
347 | ! !! The function computes the air viscosity at temperature __t__ using Sutherland method. |
---|
348 | ! REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
349 | ! REAL(kind=mm_wp) :: res !! Air viscosity at given temperature (\(Pa.s^{-1}\)). |
---|
350 | ! REAL (kind=mm_wp), PARAMETER :: eta0 = 1.75e-5_mm_wp, & |
---|
351 | ! tsut = 109._mm_wp, & |
---|
352 | ! tref = 293._mm_wp |
---|
353 | ! res = eta0 *dsqrt(t/tref)*(1._mm_wp+tsut/tref)/(1._mm_wp+tsut/t) |
---|
354 | ! RETURN |
---|
355 | ! END FUNCTION mm_eta_g |
---|
356 | ! |
---|
357 | ! ELEMENTAL FUNCTION mm_lambda_g(t,p) RESULT(res) |
---|
358 | ! !! Get the air mean free path at given temperature and pressure. |
---|
359 | ! !! |
---|
360 | ! !! The method computes the air mean free path: |
---|
361 | ! !! |
---|
362 | ! !! $$ \lambda_{g} = \dfrac{k_{b}T}{4\sqrt{2}\pi r_{a}^2 P} $$ |
---|
363 | ! !! |
---|
364 | ! !! Where \(\lambda_{g}\), is the air mean free path, \(k_{b}\) the Boltzmann constant, T the |
---|
365 | ! !! temperature, P the pressure level and \(r_{a}\) the radius of an _air molecule_. |
---|
366 | ! REAL(kind=mm_wp), INTENT(in) :: t !! Temperature (K). |
---|
367 | ! REAL(kind=mm_wp), INTENT(in) :: p !! Pressure level (Pa). |
---|
368 | ! REAL(kind=mm_wp) :: res !! Air mean free path (m). |
---|
369 | ! res = mm_kboltz*t/(4._mm_wp*dsqrt(2._mm_wp)*mm_pi*(mm_air_rad**2)*p) |
---|
370 | ! RETURN |
---|
371 | ! END FUNCTION mm_lambda_g |
---|
372 | |
---|
373 | END MODULE MM_METHODS |
---|