1 | subroutine simpleclouds(ngrid,nlay,ptimestep, |
---|
2 | & pplev,pplay,pzlev,pzlay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
4 | & nq,tau,rice,nuice,rsedcloud) |
---|
5 | implicit none |
---|
6 | c------------------------------------------------------------------ |
---|
7 | c This routine is used to form clouds when a parcel of the GCM is |
---|
8 | c saturated. It is a simplified scheme, and there is almost no |
---|
9 | c microphysics involved. When the air is saturated, water-ice |
---|
10 | c clouds form on a fraction of the dust particles, specified by |
---|
11 | c the constant called "ccn_factor". There is no supersaturation, |
---|
12 | c and no nucleation rates computed. A more accurate scheme can |
---|
13 | c be found in the routine called "improvedclouds.F". |
---|
14 | |
---|
15 | c Modif de zq si saturation dans l'atmosphere |
---|
16 | c si zq(ig,l)> zqsat(ig,l) -> zq(ig,l)=zqsat(ig,l) |
---|
17 | c Le test est effectue de bas en haut. L'eau condensee |
---|
18 | c (si saturation) est remise dans la couche en dessous. |
---|
19 | c L'eau condensee dans la couche du bas est deposee a la surface |
---|
20 | |
---|
21 | c Authors: Franck Montmessin (water ice scheme) |
---|
22 | c Francois Forget (changed nuclei density & outputs) |
---|
23 | c Ehouarn Millour (sept.2008, tracers are now handled |
---|
24 | c by name and not fixed index) |
---|
25 | c J.-B. Madeleine (developed a single routine called |
---|
26 | c simpleclouds.F, and corrected calculations |
---|
27 | c of the typical CCN profile, Oct. 2011) |
---|
28 | c------------------------------------------------------------------ |
---|
29 | #include "dimensions.h" |
---|
30 | #include "dimphys.h" |
---|
31 | #include "comcstfi.h" |
---|
32 | #include "callkeys.h" |
---|
33 | #include "tracer.h" |
---|
34 | #include "comgeomfi.h" |
---|
35 | #include "dimradmars.h" |
---|
36 | c------------------------------------------------------------------ |
---|
37 | c Arguments: |
---|
38 | c --------- |
---|
39 | c Inputs: |
---|
40 | INTEGER ngrid,nlay |
---|
41 | integer nq ! nombre de traceurs |
---|
42 | REAL ptimestep ! pas de temps physique (s) |
---|
43 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
44 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
45 | REAL pzlev(ngrid,nlay+1) ! altitude at layer boundaries |
---|
46 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
47 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
48 | ! layers (K) |
---|
49 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
50 | ! param. |
---|
51 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
52 | real pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
53 | ! (kg/kg.s-1) |
---|
54 | REAL tau(ngridmx,naerkind) ! Column dust optical depth at each point |
---|
55 | |
---|
56 | c Output: |
---|
57 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
58 | ! (r_c in montmessin_2004) |
---|
59 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
60 | ! of the size distribution |
---|
61 | real rsedcloud(ngridmx,nlayermx) ! Cloud sedimentation radius |
---|
62 | real pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
63 | ! H2O(kg/kg.s-1) |
---|
64 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
65 | ! a la chaleur latente |
---|
66 | |
---|
67 | c------------------------------------------------------------------ |
---|
68 | c Local variables: |
---|
69 | |
---|
70 | LOGICAL firstcall |
---|
71 | DATA firstcall/.true./ |
---|
72 | SAVE firstcall |
---|
73 | |
---|
74 | REAL CBRT |
---|
75 | EXTERNAL CBRT |
---|
76 | |
---|
77 | INTEGER ig,l |
---|
78 | |
---|
79 | REAL zq(ngridmx,nlayermx,nqmx) ! local value of tracers |
---|
80 | REAL zq0(ngridmx,nlayermx,nqmx) ! local initial value of tracers |
---|
81 | REAL zt(ngridmx,nlayermx) ! local value of temperature |
---|
82 | REAL zqsat(ngridmx,nlayermx) ! saturation |
---|
83 | REAL*8 dzq ! masse de glace echangee (kg/kg) |
---|
84 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
85 | REAL,PARAMETER :: To=273.15 ! reference temperature, T=273.15 K |
---|
86 | real rdusttyp(ngridmx,nlayermx) ! Typical dust geom. mean radius (m) |
---|
87 | REAL ccntyp(ngridmx,nlayermx) |
---|
88 | ! Typical dust number density (#/kg) |
---|
89 | c CCN reduction factor |
---|
90 | c REAL, PARAMETER :: ccn_factor = 4.5 !! comme TESTS_JB // 1. avant |
---|
91 | |
---|
92 | REAL Mcon_out(ngridmx,nlayermx) ! mass to be condensed (not dMice !!) |
---|
93 | |
---|
94 | c----------------------------------------------------------------------- |
---|
95 | c 1. initialisation |
---|
96 | c ----------------- |
---|
97 | |
---|
98 | c On "update" la valeur de q(nqmx) (water vapor) et temperature. |
---|
99 | c On effectue qqes calculs preliminaires sur les couches : |
---|
100 | |
---|
101 | do l=1,nlay |
---|
102 | do ig=1,ngrid |
---|
103 | zq(ig,l,igcm_h2o_vap)= |
---|
104 | & pq(ig,l,igcm_h2o_vap)+pdq(ig,l,igcm_h2o_vap)*ptimestep |
---|
105 | zq(ig,l,igcm_h2o_vap)=max(zq(ig,l,igcm_h2o_vap),1.E-30) ! FF 12/2004 |
---|
106 | zq0(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap) |
---|
107 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
108 | |
---|
109 | zq(ig,l,igcm_h2o_ice)= |
---|
110 | & pq(ig,l,igcm_h2o_ice)+pdq(ig,l,igcm_h2o_ice)*ptimestep |
---|
111 | zq(ig,l,igcm_h2o_ice)=max(zq(ig,l,igcm_h2o_ice),0.) ! FF 12/2004 |
---|
112 | zq0(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
113 | enddo |
---|
114 | enddo |
---|
115 | |
---|
116 | do l=1,nlay |
---|
117 | do ig=1,ngrid |
---|
118 | |
---|
119 | c Typical dust radius profile: |
---|
120 | rdusttyp(ig,l)= max(.8e-6*exp(-pzlay(ig,l)/18000.),1.e-9) |
---|
121 | |
---|
122 | c Typical CCN profile: |
---|
123 | c Corrected equation, following Montmessin et al. 2004 |
---|
124 | c (N0=2e6 m-3 has been converted into N0=1.3e8 kg-1, otherwise |
---|
125 | c the equation for rice is not homogeneous...) |
---|
126 | ccntyp(ig,l)= |
---|
127 | & 1.3e+8*max(tau(ig,1),0.001)/0.1*exp(-pzlay(ig,l)/10000.) |
---|
128 | c The previously used profile was not correct: |
---|
129 | c ccntyp(ig,l)=( epaisseur(ig,l)/masse(ig,l) ) * |
---|
130 | c & 2.e+6/0.1*max(tau(ig,1),0.001)*exp(-pzlay(ig,l)/10000.) |
---|
131 | |
---|
132 | c Reduce number of nuclei |
---|
133 | ! TEMPORAIRE : decrease the number of CCNs FF 04/200 |
---|
134 | ! reduction facteur 3 |
---|
135 | ! ccntyp(ig,l) = ccntyp(ig,l) / 27. |
---|
136 | ! reduction facteur 2 |
---|
137 | ! ccntyp(ig,l) = ccntyp(ig,l) / 8. |
---|
138 | c ----------------------------------------------------------------- |
---|
139 | ccntyp(ig,l) = ccntyp(ig,l) / ccn_factor |
---|
140 | |
---|
141 | enddo ! of do ig=1,ngrid |
---|
142 | enddo ! of do l=1,nlay |
---|
143 | |
---|
144 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
145 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
146 | |
---|
147 | c ---------------------------------------------- |
---|
148 | c |
---|
149 | c |
---|
150 | c Rapport de melange a saturation dans la couche l : ------- |
---|
151 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
152 | |
---|
153 | call watersat(ngridmx*nlayermx,zt,pplay,zqsat) |
---|
154 | |
---|
155 | c taux de condensation (kg/kg/s-1) dans les differentes couches |
---|
156 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
157 | |
---|
158 | do l=1,nlay |
---|
159 | do ig=1,ngrid |
---|
160 | |
---|
161 | if (zq(ig,l,igcm_h2o_vap).ge.zqsat(ig,l))then ! Condensation |
---|
162 | dzq=zq(ig,l,igcm_h2o_vap)-zqsat(ig,l) |
---|
163 | elseif(zq(ig,l,igcm_h2o_vap).lt.zqsat(ig,l))then ! Sublimation |
---|
164 | dzq=-min(zqsat(ig,l)-zq(ig,l,igcm_h2o_vap), |
---|
165 | & zq(ig,l,igcm_h2o_ice)) |
---|
166 | endif |
---|
167 | |
---|
168 | c Water Mass change |
---|
169 | c ~~~~~~~~~~~~~~~~~ |
---|
170 | zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice)+dzq |
---|
171 | zq(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap)-dzq |
---|
172 | |
---|
173 | Mcon_out(ig,l) = dzq |
---|
174 | |
---|
175 | c Calcul du rayon moyen des particules de glace. |
---|
176 | c Hypothese : Dans une couche, la glace presente se |
---|
177 | c repartit uniformement autour du nbre de poussieres |
---|
178 | c dont le rayon moyen est prescrit par rdusttyp. |
---|
179 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
180 | rice(ig,l)=max( CBRT ( (zq(ig,l,igcm_h2o_ice)/rho_ice |
---|
181 | & +ccntyp(ig,l)*(4./3.)*pi*rdusttyp(ig,l)**3.) |
---|
182 | & /(ccntyp(ig,l)*4./3.*pi) ), rdusttyp(ig,l)) |
---|
183 | c Effective variance of the size distribution |
---|
184 | nuice(ig,l)=nuice_ref |
---|
185 | |
---|
186 | c Sedimentation radius: |
---|
187 | c ~~~~~~~~~~~~~~~~~~~~ |
---|
188 | |
---|
189 | rsedcloud(ig,l)=max( rice(ig,l)*(1.+nuice_sed)**3., |
---|
190 | & rdusttyp(ig,l) ) |
---|
191 | rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
192 | |
---|
193 | enddo ! of do ig=1,ngrid |
---|
194 | enddo ! of do l=1,nlay |
---|
195 | |
---|
196 | c Tendance finale |
---|
197 | c ~~~~~~~~~~~~~~~ |
---|
198 | do l=1, nlay |
---|
199 | do ig=1,ngridmx |
---|
200 | pdqcloud(ig,l,igcm_h2o_vap)=(zq(ig,l,igcm_h2o_vap) |
---|
201 | & -zq0(ig,l,igcm_h2o_vap))/ptimestep |
---|
202 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
203 | & (zq(ig,l,igcm_h2o_ice) - zq0(ig,l,igcm_h2o_ice))/ptimestep |
---|
204 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)**2)*1.e+3 |
---|
205 | pdtcloud(ig,l)=-pdqcloud(ig,l,igcm_h2o_vap)*lw/cpp |
---|
206 | end do |
---|
207 | end do |
---|
208 | |
---|
209 | c------------------------------------------------------------------ |
---|
210 | c TEST_JBM |
---|
211 | ! IF (ngrid.eq.1) THEN |
---|
212 | ! call WRITEDIAGFI(ngrid,"mcond","h2o condensed mass","kg",1, |
---|
213 | ! & Mcon_out) |
---|
214 | ! call WRITEDIAGFI(ngrid,"rdusttyp","rdusttyp","m",1, |
---|
215 | ! & rdusttyp) |
---|
216 | ! call WRITEDIAGFI(ngrid,"ccntyp","ccntyp","kg-1",1, |
---|
217 | ! & ccntyp) |
---|
218 | ! ENDIF |
---|
219 | c------------------------------------------------------------------ |
---|
220 | return |
---|
221 | end |
---|