1 | subroutine simpleclouds(ngrid,nlay,ptimestep, |
---|
2 | & pplay,pzlay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
4 | & nq,tau,rice) |
---|
5 | USE updaterad |
---|
6 | USE watersat_mod, ONLY: watersat |
---|
7 | use tracer_mod, only: igcm_h2o_vap, igcm_h2o_ice, |
---|
8 | & igcm_hdo_vap, igcm_hdo_ice, |
---|
9 | & qperemin |
---|
10 | USE comcstfi_h |
---|
11 | use dimradmars_mod, only: naerkind |
---|
12 | |
---|
13 | implicit none |
---|
14 | c------------------------------------------------------------------ |
---|
15 | c This routine is used to form clouds when a parcel of the GCM is |
---|
16 | c saturated. It is a simplified scheme, and there is almost no |
---|
17 | c microphysics involved. When the air is saturated, water-ice |
---|
18 | c clouds form on a fraction of the dust particles, specified by |
---|
19 | c the constant called "ccn_factor". There is no supersaturation, |
---|
20 | c and no nucleation rates computed. A more accurate scheme can |
---|
21 | c be found in the routine called "improvedclouds.F". |
---|
22 | |
---|
23 | c Modif de zq si saturation dans l'atmosphere |
---|
24 | c si zq(ig,l)> zqsat(ig,l) -> zq(ig,l)=zqsat(ig,l) |
---|
25 | c Le test est effectue de bas en haut. L'eau condensee |
---|
26 | c (si saturation) est remise dans la couche en dessous. |
---|
27 | c L'eau condensee dans la couche du bas est deposee a la surface |
---|
28 | |
---|
29 | c Authors: Franck Montmessin (water ice scheme) |
---|
30 | c Francois Forget (changed nuclei density & outputs) |
---|
31 | c Ehouarn Millour (sept.2008, tracers are now handled |
---|
32 | c by name and not fixed index) |
---|
33 | c J.-B. Madeleine (developed a single routine called |
---|
34 | c simpleclouds.F, and corrected calculations |
---|
35 | c of the typical CCN profile, Oct. 2011) |
---|
36 | c------------------------------------------------------------------ |
---|
37 | #include "callkeys.h" |
---|
38 | |
---|
39 | c------------------------------------------------------------------ |
---|
40 | c Arguments: |
---|
41 | c --------- |
---|
42 | c Inputs: |
---|
43 | INTEGER ngrid,nlay |
---|
44 | integer nq ! nombre de traceurs |
---|
45 | REAL ptimestep ! pas de temps physique (s) |
---|
46 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
47 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
48 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
49 | ! layers (K) |
---|
50 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
51 | ! param. |
---|
52 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
53 | real pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
54 | ! (kg/kg.s-1) |
---|
55 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
56 | |
---|
57 | c Output: |
---|
58 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
59 | ! (r_c in montmessin_2004) |
---|
60 | real pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
61 | ! H2O(kg/kg.s-1) |
---|
62 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
63 | ! a la chaleur latente |
---|
64 | |
---|
65 | c------------------------------------------------------------------ |
---|
66 | c Local variables: |
---|
67 | |
---|
68 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
69 | |
---|
70 | INTEGER ig,l |
---|
71 | |
---|
72 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
---|
73 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
---|
74 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
75 | REAL zqsat(ngrid,nlay) ! saturation |
---|
76 | REAL*8 dzq ! masse de glace echangee (kg/kg) |
---|
77 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
78 | REAL,PARAMETER :: To=273.15 ! reference temperature, T=273.15 K |
---|
79 | real rdusttyp(ngrid,nlay) ! Typical dust geom. mean radius (m) |
---|
80 | REAL ccntyp(ngrid,nlay) |
---|
81 | ! Typical dust number density (#/kg) |
---|
82 | REAL alpha_c(ngrid,nlay) !!MARGAUX: alpha_c as a spatial variable |
---|
83 | |
---|
84 | c CCN reduction factor |
---|
85 | c REAL, PARAMETER :: ccn_factor = 4.5 !! comme TESTS_JB // 1. avant |
---|
86 | REAL DoH_vap(ngrid,nlay) |
---|
87 | REAL DoH_ice(ngrid,nlay) |
---|
88 | c----------------------------------------------------------------------- |
---|
89 | c 1. initialisation |
---|
90 | c ----------------- |
---|
91 | |
---|
92 | c On "update" la valeur de q(nq) (water vapor) et temperature. |
---|
93 | c On effectue qqes calculs preliminaires sur les couches : |
---|
94 | |
---|
95 | do l=1,nlay |
---|
96 | do ig=1,ngrid |
---|
97 | zq(ig,l,igcm_h2o_vap)= |
---|
98 | & pq(ig,l,igcm_h2o_vap)+pdq(ig,l,igcm_h2o_vap)*ptimestep |
---|
99 | zq(ig,l,igcm_h2o_vap)=max(zq(ig,l,igcm_h2o_vap),1.E-30) ! FF 12/2004 |
---|
100 | zq0(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap) |
---|
101 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
102 | |
---|
103 | zq(ig,l,igcm_h2o_ice)= |
---|
104 | & pq(ig,l,igcm_h2o_ice)+pdq(ig,l,igcm_h2o_ice)*ptimestep |
---|
105 | zq(ig,l,igcm_h2o_ice)=max(zq(ig,l,igcm_h2o_ice),0.) ! FF 12/2004 |
---|
106 | zq0(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
107 | |
---|
108 | if (hdo) then |
---|
109 | zq(ig,l,igcm_hdo_vap)= |
---|
110 | & pq(ig,l,igcm_hdo_vap)+pdq(ig,l,igcm_hdo_vap)*ptimestep |
---|
111 | zq(ig,l,igcm_hdo_vap)=max(zq(ig,l,igcm_hdo_vap),1e-30) ! FF 12/2004 |
---|
112 | zq0(ig,l,igcm_hdo_vap)=zq(ig,l,igcm_hdo_vap) |
---|
113 | |
---|
114 | zq(ig,l,igcm_hdo_ice)= |
---|
115 | & pq(ig,l,igcm_hdo_ice)+pdq(ig,l,igcm_hdo_ice)*ptimestep |
---|
116 | zq(ig,l,igcm_hdo_ice)=max(zq(ig,l,igcm_hdo_ice),1e-30) ! FF 12/2004 |
---|
117 | zq0(ig,l,igcm_hdo_ice)=zq(ig,l,igcm_hdo_ice) |
---|
118 | |
---|
119 | endif !hdo |
---|
120 | enddo |
---|
121 | enddo |
---|
122 | |
---|
123 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
124 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
125 | |
---|
126 | alpha_c(1:ngrid,1:nlay)=0. |
---|
127 | |
---|
128 | c ---------------------------------------------- |
---|
129 | c |
---|
130 | c Rapport de melange a saturation dans la couche l : ------- |
---|
131 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
132 | |
---|
133 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
134 | |
---|
135 | c taux de condensation (kg/kg/s-1) dans les differentes couches |
---|
136 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
137 | |
---|
138 | do l=1,nlay |
---|
139 | do ig=1,ngrid |
---|
140 | |
---|
141 | if (zq(ig,l,igcm_h2o_vap).ge.zqsat(ig,l))then ! Condensation |
---|
142 | dzq=zq(ig,l,igcm_h2o_vap)-zqsat(ig,l) |
---|
143 | |
---|
144 | elseif(zq(ig,l,igcm_h2o_vap).lt.zqsat(ig,l))then ! Sublimation |
---|
145 | dzq=-min(zqsat(ig,l)-zq(ig,l,igcm_h2o_vap), |
---|
146 | & zq(ig,l,igcm_h2o_ice)) |
---|
147 | endif |
---|
148 | |
---|
149 | c Water Mass change |
---|
150 | c ~~~~~~~~~~~~~~~~~ |
---|
151 | zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice)+dzq |
---|
152 | zq(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap)-dzq |
---|
153 | |
---|
154 | enddo ! of do ig=1,ngrid |
---|
155 | enddo ! of do l=1,nlay |
---|
156 | |
---|
157 | |
---|
158 | c Tendance finale |
---|
159 | c ~~~~~~~~~~~~~~~ |
---|
160 | do l=1, nlay |
---|
161 | do ig=1,ngrid |
---|
162 | pdqcloud(ig,l,igcm_h2o_vap)=(zq(ig,l,igcm_h2o_vap) |
---|
163 | & -zq0(ig,l,igcm_h2o_vap))/ptimestep |
---|
164 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
165 | & (zq(ig,l,igcm_h2o_ice) - zq0(ig,l,igcm_h2o_ice))/ptimestep |
---|
166 | |
---|
167 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)**2)*1.e+3 |
---|
168 | pdtcloud(ig,l)=-pdqcloud(ig,l,igcm_h2o_vap)*lw/cpp |
---|
169 | |
---|
170 | if (hdo) then |
---|
171 | if (pdqcloud(ig,l,igcm_h2o_ice).gt.0.0) then !condens |
---|
172 | |
---|
173 | if (hdofrac) then ! do we use fractionation? |
---|
174 | c alpha_c(ig,l) = exp(16288./zt(ig,l)**2.-9.34d-2) |
---|
175 | alpha_c(ig,l) = exp(13525./zt(ig,l)**2.-5.59d-2) !Lamb |
---|
176 | else |
---|
177 | alpha_c(ig,l) = 1.d0 |
---|
178 | endif |
---|
179 | |
---|
180 | if (zq0(ig,l,igcm_h2o_vap).gt.qperemin) then |
---|
181 | pdqcloud(ig,l,igcm_hdo_ice)= |
---|
182 | & pdqcloud(ig,l,igcm_h2o_ice)*alpha_c(ig,l)* |
---|
183 | & ( zq0(ig,l,igcm_hdo_vap) |
---|
184 | & /zq0(ig,l,igcm_h2o_vap) ) |
---|
185 | else |
---|
186 | pdqcloud(ig,l,igcm_hdo_ice)= 0.0 |
---|
187 | endif |
---|
188 | |
---|
189 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
190 | & min(pdqcloud(ig,l,igcm_hdo_ice), |
---|
191 | & zq0(ig,l,igcm_hdo_vap)/ptimestep) |
---|
192 | |
---|
193 | pdqcloud(ig,l,igcm_hdo_vap)= |
---|
194 | & -pdqcloud(ig,l,igcm_hdo_ice) |
---|
195 | |
---|
196 | else ! sublimation |
---|
197 | |
---|
198 | if (zq0(ig,l,igcm_h2o_ice).gt.qperemin) then |
---|
199 | pdqcloud(ig,l,igcm_hdo_ice)= |
---|
200 | & pdqcloud(ig,l,igcm_h2o_ice)* |
---|
201 | & ( zq0(ig,l,igcm_hdo_ice) |
---|
202 | & /zq0(ig,l,igcm_h2o_ice) ) |
---|
203 | else |
---|
204 | pdqcloud(ig,l,igcm_hdo_ice)= 0. |
---|
205 | endif |
---|
206 | |
---|
207 | pdqcloud(ig,l,igcm_hdo_ice) = |
---|
208 | & max(pdqcloud(ig,l,igcm_hdo_ice), |
---|
209 | & -zq0(ig,l,igcm_hdo_ice)/ptimestep) |
---|
210 | |
---|
211 | pdqcloud(ig,l,igcm_hdo_vap)= |
---|
212 | & -pdqcloud(ig,l,igcm_hdo_ice) |
---|
213 | |
---|
214 | endif ! condensation/sublimation |
---|
215 | |
---|
216 | endif ! hdo |
---|
217 | |
---|
218 | enddo ! of do ig=1,ngrid |
---|
219 | enddo ! of do l=1,nlay |
---|
220 | |
---|
221 | c ice crystal radius |
---|
222 | do l=1, nlay |
---|
223 | do ig=1,ngrid |
---|
224 | call updaterice_typ(zq(ig,l,igcm_h2o_ice), |
---|
225 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
226 | end do |
---|
227 | end do |
---|
228 | |
---|
229 | c if (hdo) then |
---|
230 | c CALL WRITEDIAGFI(ngrid,'alpha_c', |
---|
231 | c & 'alpha_c', |
---|
232 | c & ' ',3,alpha_c) |
---|
233 | c endif !hdo |
---|
234 | c------------------------------------------------------------------ |
---|
235 | return |
---|
236 | end |
---|