[358] | 1 | subroutine simpleclouds(ngrid,nlay,ptimestep, |
---|
[645] | 2 | & pplay,pzlay,pt,pdt, |
---|
[520] | 3 | & pq,pdq,pdqcloud,pdtcloud, |
---|
[633] | 4 | & nq,tau,rice) |
---|
[740] | 5 | USE updaterad |
---|
[1036] | 6 | use tracer_mod, only: igcm_h2o_vap, igcm_h2o_ice |
---|
[1226] | 7 | USE comcstfi_h |
---|
[358] | 8 | implicit none |
---|
| 9 | c------------------------------------------------------------------ |
---|
| 10 | c This routine is used to form clouds when a parcel of the GCM is |
---|
| 11 | c saturated. It is a simplified scheme, and there is almost no |
---|
| 12 | c microphysics involved. When the air is saturated, water-ice |
---|
| 13 | c clouds form on a fraction of the dust particles, specified by |
---|
| 14 | c the constant called "ccn_factor". There is no supersaturation, |
---|
| 15 | c and no nucleation rates computed. A more accurate scheme can |
---|
| 16 | c be found in the routine called "improvedclouds.F". |
---|
| 17 | |
---|
| 18 | c Modif de zq si saturation dans l'atmosphere |
---|
| 19 | c si zq(ig,l)> zqsat(ig,l) -> zq(ig,l)=zqsat(ig,l) |
---|
| 20 | c Le test est effectue de bas en haut. L'eau condensee |
---|
| 21 | c (si saturation) est remise dans la couche en dessous. |
---|
| 22 | c L'eau condensee dans la couche du bas est deposee a la surface |
---|
| 23 | |
---|
| 24 | c Authors: Franck Montmessin (water ice scheme) |
---|
| 25 | c Francois Forget (changed nuclei density & outputs) |
---|
| 26 | c Ehouarn Millour (sept.2008, tracers are now handled |
---|
| 27 | c by name and not fixed index) |
---|
| 28 | c J.-B. Madeleine (developed a single routine called |
---|
| 29 | c simpleclouds.F, and corrected calculations |
---|
| 30 | c of the typical CCN profile, Oct. 2011) |
---|
| 31 | c------------------------------------------------------------------ |
---|
[1047] | 32 | !#include "dimensions.h" |
---|
| 33 | !#include "dimphys.h" |
---|
[358] | 34 | #include "callkeys.h" |
---|
[1036] | 35 | !#include "tracer.h" |
---|
[1047] | 36 | !#include "comgeomfi.h" |
---|
| 37 | !#include "dimradmars.h" |
---|
| 38 | ! naerkind is set in scatterers.h (built when compiling with makegcm -s #) |
---|
| 39 | #include"scatterers.h" |
---|
| 40 | |
---|
[358] | 41 | c------------------------------------------------------------------ |
---|
| 42 | c Arguments: |
---|
| 43 | c --------- |
---|
| 44 | c Inputs: |
---|
| 45 | INTEGER ngrid,nlay |
---|
| 46 | integer nq ! nombre de traceurs |
---|
| 47 | REAL ptimestep ! pas de temps physique (s) |
---|
| 48 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 49 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 50 | REAL pt(ngrid,nlay) ! temperature at the middle of the |
---|
| 51 | ! layers (K) |
---|
| 52 | REAL pdt(ngrid,nlay) ! tendance temperature des autres |
---|
| 53 | ! param. |
---|
| 54 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 55 | real pdq(ngrid,nlay,nq) ! tendance avant condensation |
---|
| 56 | ! (kg/kg.s-1) |
---|
[1047] | 57 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
[358] | 58 | |
---|
| 59 | c Output: |
---|
| 60 | REAL rice(ngrid,nlay) ! Ice mass mean radius (m) |
---|
| 61 | ! (r_c in montmessin_2004) |
---|
| 62 | real pdqcloud(ngrid,nlay,nq) ! tendance de la condensation |
---|
| 63 | ! H2O(kg/kg.s-1) |
---|
| 64 | REAL pdtcloud(ngrid,nlay) ! tendance temperature due |
---|
| 65 | ! a la chaleur latente |
---|
| 66 | |
---|
| 67 | c------------------------------------------------------------------ |
---|
| 68 | c Local variables: |
---|
| 69 | |
---|
[1047] | 70 | LOGICAL,SAVE :: firstcall = .true. |
---|
[740] | 71 | |
---|
[1047] | 72 | REAL rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[358] | 73 | |
---|
| 74 | INTEGER ig,l |
---|
| 75 | |
---|
[1047] | 76 | REAL zq(ngrid,nlay,nq) ! local value of tracers |
---|
| 77 | REAL zq0(ngrid,nlay,nq) ! local initial value of tracers |
---|
| 78 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 79 | REAL zqsat(ngrid,nlay) ! saturation |
---|
[358] | 80 | REAL*8 dzq ! masse de glace echangee (kg/kg) |
---|
| 81 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
| 82 | REAL,PARAMETER :: To=273.15 ! reference temperature, T=273.15 K |
---|
[1047] | 83 | real rdusttyp(ngrid,nlay) ! Typical dust geom. mean radius (m) |
---|
| 84 | REAL ccntyp(ngrid,nlay) |
---|
[358] | 85 | ! Typical dust number density (#/kg) |
---|
| 86 | c CCN reduction factor |
---|
[420] | 87 | c REAL, PARAMETER :: ccn_factor = 4.5 !! comme TESTS_JB // 1. avant |
---|
[358] | 88 | |
---|
| 89 | |
---|
| 90 | c----------------------------------------------------------------------- |
---|
| 91 | c 1. initialisation |
---|
| 92 | c ----------------- |
---|
| 93 | |
---|
[1036] | 94 | c On "update" la valeur de q(nq) (water vapor) et temperature. |
---|
[358] | 95 | c On effectue qqes calculs preliminaires sur les couches : |
---|
| 96 | |
---|
| 97 | do l=1,nlay |
---|
| 98 | do ig=1,ngrid |
---|
| 99 | zq(ig,l,igcm_h2o_vap)= |
---|
| 100 | & pq(ig,l,igcm_h2o_vap)+pdq(ig,l,igcm_h2o_vap)*ptimestep |
---|
| 101 | zq(ig,l,igcm_h2o_vap)=max(zq(ig,l,igcm_h2o_vap),1.E-30) ! FF 12/2004 |
---|
| 102 | zq0(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap) |
---|
| 103 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 104 | |
---|
| 105 | zq(ig,l,igcm_h2o_ice)= |
---|
| 106 | & pq(ig,l,igcm_h2o_ice)+pdq(ig,l,igcm_h2o_ice)*ptimestep |
---|
| 107 | zq(ig,l,igcm_h2o_ice)=max(zq(ig,l,igcm_h2o_ice),0.) ! FF 12/2004 |
---|
| 108 | zq0(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice) |
---|
| 109 | enddo |
---|
| 110 | enddo |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | pdqcloud(1:ngrid,1:nlay,1:nq)=0 |
---|
| 114 | pdtcloud(1:ngrid,1:nlay)=0 |
---|
| 115 | |
---|
| 116 | c ---------------------------------------------- |
---|
| 117 | c |
---|
| 118 | c |
---|
| 119 | c Rapport de melange a saturation dans la couche l : ------- |
---|
| 120 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 121 | |
---|
[1047] | 122 | call watersat(ngrid*nlay,zt,pplay,zqsat) |
---|
[358] | 123 | |
---|
| 124 | c taux de condensation (kg/kg/s-1) dans les differentes couches |
---|
| 125 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 126 | |
---|
| 127 | do l=1,nlay |
---|
| 128 | do ig=1,ngrid |
---|
| 129 | |
---|
| 130 | if (zq(ig,l,igcm_h2o_vap).ge.zqsat(ig,l))then ! Condensation |
---|
| 131 | dzq=zq(ig,l,igcm_h2o_vap)-zqsat(ig,l) |
---|
| 132 | elseif(zq(ig,l,igcm_h2o_vap).lt.zqsat(ig,l))then ! Sublimation |
---|
| 133 | dzq=-min(zqsat(ig,l)-zq(ig,l,igcm_h2o_vap), |
---|
| 134 | & zq(ig,l,igcm_h2o_ice)) |
---|
| 135 | endif |
---|
| 136 | |
---|
| 137 | c Water Mass change |
---|
| 138 | c ~~~~~~~~~~~~~~~~~ |
---|
| 139 | zq(ig,l,igcm_h2o_ice)=zq(ig,l,igcm_h2o_ice)+dzq |
---|
| 140 | zq(ig,l,igcm_h2o_vap)=zq(ig,l,igcm_h2o_vap)-dzq |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | enddo ! of do ig=1,ngrid |
---|
| 144 | enddo ! of do l=1,nlay |
---|
| 145 | |
---|
| 146 | c Tendance finale |
---|
| 147 | c ~~~~~~~~~~~~~~~ |
---|
| 148 | do l=1, nlay |
---|
[1047] | 149 | do ig=1,ngrid |
---|
[358] | 150 | pdqcloud(ig,l,igcm_h2o_vap)=(zq(ig,l,igcm_h2o_vap) |
---|
| 151 | & -zq0(ig,l,igcm_h2o_vap))/ptimestep |
---|
| 152 | pdqcloud(ig,l,igcm_h2o_ice) = |
---|
| 153 | & (zq(ig,l,igcm_h2o_ice) - zq0(ig,l,igcm_h2o_ice))/ptimestep |
---|
| 154 | lw=(2834.3-0.28*(zt(ig,l)-To)-0.004*(zt(ig,l)-To)**2)*1.e+3 |
---|
| 155 | pdtcloud(ig,l)=-pdqcloud(ig,l,igcm_h2o_vap)*lw/cpp |
---|
| 156 | end do |
---|
| 157 | end do |
---|
| 158 | |
---|
[740] | 159 | c ice crystal radius |
---|
| 160 | do l=1, nlay |
---|
[1047] | 161 | do ig=1,ngrid |
---|
[740] | 162 | call updaterice_typ(zq(ig,l,igcm_h2o_ice), |
---|
| 163 | & tau(ig,1),pzlay(ig,l),rice(ig,l)) |
---|
| 164 | end do |
---|
| 165 | end do |
---|
| 166 | |
---|
[358] | 167 | c------------------------------------------------------------------ |
---|
| 168 | return |
---|
| 169 | end |
---|