1 | SUBROUTINE pbl_parameters(ngrid,nlay,ps,pplay,pz0, |
---|
2 | & pg,zzlay,zzlev,pu,pv,wstar_in,hfmax,zmax,pts,ph,z_out, |
---|
3 | & Teta_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
---|
4 | IMPLICIT NONE |
---|
5 | !======================================================================= |
---|
6 | ! |
---|
7 | ! Anlysis of the PBL from input temperature, wind field and thermals outputs. |
---|
8 | ! |
---|
9 | ! ------- |
---|
10 | ! |
---|
11 | ! Author: Arnaud Colaitis 09/01/12 |
---|
12 | ! ------- |
---|
13 | ! |
---|
14 | ! Arguments: |
---|
15 | ! ---------- |
---|
16 | ! |
---|
17 | ! inputs: |
---|
18 | ! ------ |
---|
19 | ! ngrid size of the horizontal grid |
---|
20 | ! nlay size of the vertical grid |
---|
21 | ! pz0(ngrid) surface roughness length |
---|
22 | ! pg gravity (m s -2) |
---|
23 | ! zzlay(ngrid,nlay) height of mid-layers |
---|
24 | ! zzlev(ngrid,nlay+1) height of layers interfaces |
---|
25 | ! pu(ngrid,nlay) u component of the wind |
---|
26 | ! pv(ngrid,nlay) v component of the wind |
---|
27 | ! wstar_in(ngrid) free convection velocity in thermals |
---|
28 | ! hfmax(ngrid) maximum vertical turbulent heat flux in thermals |
---|
29 | ! zmax(ngrid) height reached by the thermals (pbl height) |
---|
30 | ! pts(ngrid) surface temperature |
---|
31 | ! ph(ngrid,nlay) potential temperature T*(p/ps)^kappa |
---|
32 | ! z_out height of interpolation |
---|
33 | ! |
---|
34 | ! outputs: |
---|
35 | ! ------ |
---|
36 | ! |
---|
37 | ! Teta_out(ngrid) interpolated teta |
---|
38 | ! u_out(ngrid) interpolated u |
---|
39 | ! ustar(ngrid) friction velocity |
---|
40 | ! tstar(ngrid) friction temperature |
---|
41 | ! wstar(ngrid) free convection velocity |
---|
42 | ! L_mo(ngrid) monin_obukhov length |
---|
43 | ! |
---|
44 | ! |
---|
45 | !======================================================================= |
---|
46 | ! |
---|
47 | !----------------------------------------------------------------------- |
---|
48 | ! Declarations: |
---|
49 | ! ------------- |
---|
50 | |
---|
51 | #include "comcstfi.h" |
---|
52 | #include "callkeys.h" |
---|
53 | |
---|
54 | ! Arguments: |
---|
55 | ! ---------- |
---|
56 | |
---|
57 | INTEGER, INTENT(IN) :: ngrid,nlay |
---|
58 | REAL, INTENT(IN) :: pz0(ngrid),ps(ngrid),pplay(ngrid,nlay) |
---|
59 | REAL, INTENT(IN) :: pg,zzlay(ngrid,nlay),zzlev(ngrid,nlay) |
---|
60 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
---|
61 | REAL, INTENT(IN) :: wstar_in(ngrid),hfmax(ngrid),zmax(ngrid) |
---|
62 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) |
---|
63 | REAL, INTENT(IN) :: z_out |
---|
64 | |
---|
65 | ! Outputs: |
---|
66 | ! -------- |
---|
67 | |
---|
68 | REAL, INTENT(OUT) :: Teta_out(ngrid),u_out(ngrid) |
---|
69 | REAL T_out(ngrid) |
---|
70 | REAL, INTENT(OUT) :: ustar(ngrid), tstar(ngrid) |
---|
71 | REAL wstar(ngrid) |
---|
72 | REAL, INTENT(OUT) :: L_mo(ngrid) |
---|
73 | |
---|
74 | ! Local: |
---|
75 | ! ------ |
---|
76 | |
---|
77 | INTEGER ig,k |
---|
78 | REAL karman,nu |
---|
79 | DATA karman,nu/.41,0.001/ |
---|
80 | SAVE karman,nu |
---|
81 | |
---|
82 | ! Local(2): |
---|
83 | ! --------- |
---|
84 | |
---|
85 | REAL zout |
---|
86 | REAL rib(ngrid) ! Bulk Richardson number |
---|
87 | REAL fm(ngrid) ! stability function for momentum |
---|
88 | REAL fh(ngrid) ! stability function for heat |
---|
89 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
---|
90 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
---|
91 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
---|
92 | REAL betam, betah, alphah, bm, bh, lambda |
---|
93 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
---|
94 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient |
---|
95 | REAL pz0t ! initial thermal roughness length. (local) |
---|
96 | REAL ric ! critical richardson number |
---|
97 | REAL reynolds(ngrid) ! reynolds number for UBL |
---|
98 | REAL prandtl(ngrid) ! prandtl number for UBL |
---|
99 | REAL pz0tcomp(ngrid) ! computed z0t |
---|
100 | REAL ite |
---|
101 | REAL residual,zcd0,z1 |
---|
102 | REAL pcdv(ngrid),pcdh(ngrid) |
---|
103 | REAL zu2(ngrid) ! Large-scale wind at first layer |
---|
104 | REAL pbl_teta(ngrid) ! mixed-layer potential temperature |
---|
105 | INTEGER pbl_height_index(ngrid) ! index of nearest vertical grid point for zmax |
---|
106 | REAL dteta(ngrid,nlay),x(ngrid) ! potential temperature gradient and z/zi |
---|
107 | REAL dvhf(ngrid),dvvv(ngrid) ! dimensionless vertical heat flux and |
---|
108 | ! dimensionless vertical velocity variance |
---|
109 | REAL vhf(ngrid),vvv(ngrid) ! vertical heat flux and vertical velocity variance |
---|
110 | INTEGER ii(1) |
---|
111 | ! temporary |
---|
112 | INTEGER dimout |
---|
113 | |
---|
114 | !------------------------------------------------------------------------ |
---|
115 | !------------------------------------------------------------------------ |
---|
116 | ! PART I : RICHARDSON/REYNOLDS/THERMAL_ROUGHNESS/STABILITY_COEFFICIENTS |
---|
117 | !------------------------------------------------------------------------ |
---|
118 | !------------------------------------------------------------------------ |
---|
119 | |
---|
120 | c Initialisation : |
---|
121 | |
---|
122 | L_mo(:)=0. |
---|
123 | ustar(:)=0. |
---|
124 | tstar(:)=0. |
---|
125 | zout=z_out |
---|
126 | reynolds(:)=0. |
---|
127 | pz0t = 0. |
---|
128 | pz0tcomp(:) = 0.1*pz0(:) |
---|
129 | rib(:)=0. |
---|
130 | pcdv(:)=0. |
---|
131 | pcdh(:)=0. |
---|
132 | |
---|
133 | ! this formulation assumes alphah=1., implying betah=betam |
---|
134 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
---|
135 | |
---|
136 | bm=16. !UBL |
---|
137 | bh=16. !UBL |
---|
138 | alphah=1. |
---|
139 | betam=5. !SBL |
---|
140 | betah=5. !SBL |
---|
141 | lambda=(sqrt(bh/bm))/alphah |
---|
142 | ric=betah/(betam**2) |
---|
143 | |
---|
144 | DO ig=1,ngrid |
---|
145 | ite=0. |
---|
146 | residual=abs(pz0tcomp(ig)-pz0t) |
---|
147 | zu2(ig)=MAX(pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
---|
148 | & ,(0.3*wstar_in(ig))**2) |
---|
149 | |
---|
150 | DO WHILE((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) |
---|
151 | |
---|
152 | pz0t=pz0tcomp(ig) |
---|
153 | IF (zu2(ig) .ne. 0.) THEN |
---|
154 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
---|
155 | rib(ig) = (pg/ph(ig,1)) |
---|
156 | & *sqrt(zzlev(ig,2)*pz0(ig)) |
---|
157 | & *(((log(zzlev(ig,2)/pz0(ig)))**2)/(log(zzlev(ig,2)/pz0t))) |
---|
158 | & *(ph(ig,1)-pts(ig))/zu2(ig) |
---|
159 | ELSE |
---|
160 | print*,'warning, infinite Richardson at surface' |
---|
161 | print*,pu(ig,1),pv(ig,1) |
---|
162 | rib(ig) = ric |
---|
163 | ENDIF |
---|
164 | |
---|
165 | z1z0=zzlev(ig,2)/pz0(ig) |
---|
166 | z1z0t=zzlev(ig,2)/pz0t |
---|
167 | |
---|
168 | cdn(ig)=karman/log(z1z0) |
---|
169 | cdn(ig)=cdn(ig)*cdn(ig) |
---|
170 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
---|
171 | |
---|
172 | ! STABLE BOUNDARY LAYER : |
---|
173 | IF (rib(ig) .gt. 0.) THEN |
---|
174 | ! From D.E. England et al. (95) |
---|
175 | prandtl(ig)=1. |
---|
176 | if(rib(ig) .lt. ric) then |
---|
177 | ! Assuming alphah=1. and bh=bm for stable conditions : |
---|
178 | fm(ig)=((ric-rib(ig))/ric)**2 |
---|
179 | fh(ig)=((ric-rib(ig))/ric)**2 |
---|
180 | else |
---|
181 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
---|
182 | fm(ig)=0. |
---|
183 | fh(ig)=0. |
---|
184 | endif |
---|
185 | ! UNSTABLE BOUNDARY LAYER : |
---|
186 | ELSE |
---|
187 | ! From D.E. England et al. (95) |
---|
188 | fm(ig)=sqrt(1.-lambda*bm*rib(ig)) |
---|
189 | fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* |
---|
190 | & (1.-lambda*bm*rib(ig))**0.25 |
---|
191 | prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ |
---|
192 | & ((1.-lambda*bh*rib(ig))**0.5) |
---|
193 | ENDIF |
---|
194 | |
---|
195 | reynolds(ig)=karman*sqrt(fm(ig)) |
---|
196 | & *sqrt(zu2(ig)) |
---|
197 | & *pz0(ig)/(log(z1z0)*nu) |
---|
198 | pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* |
---|
199 | & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)) |
---|
200 | residual = abs(pz0t-pz0tcomp(ig)) |
---|
201 | ite = ite+1 |
---|
202 | |
---|
203 | ENDDO ! of while |
---|
204 | pz0t=0. |
---|
205 | |
---|
206 | ! Drag computation: |
---|
207 | |
---|
208 | pcdv(ig)=cdn(ig)*fm(ig) |
---|
209 | pcdh(ig)=chn(ig)*fh(ig) |
---|
210 | |
---|
211 | ENDDO ! of ngrid |
---|
212 | |
---|
213 | !------------------------------------------------------------------------ |
---|
214 | !------------------------------------------------------------------------ |
---|
215 | ! PART II : USTAR/TSTAR/U_OUT/TETA_OUT COMPUTATIONS |
---|
216 | !------------------------------------------------------------------------ |
---|
217 | !------------------------------------------------------------------------ |
---|
218 | |
---|
219 | |
---|
220 | ! Large-scale wind at first layer (without gustiness) and |
---|
221 | ! u* theta* computation |
---|
222 | |
---|
223 | DO ig=1,ngrid |
---|
224 | IF (rib(ig) .ge. ric) THEN |
---|
225 | ustar(ig)=0. |
---|
226 | tstar(ig)=0. |
---|
227 | ELSE |
---|
228 | ustar(ig)=sqrt(pcdv(ig)) |
---|
229 | & *sqrt(pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1)) |
---|
230 | tstar(ig)=-pcdh(ig)*(pts(ig)-ph(ig,1)) |
---|
231 | & /sqrt(pcdv(ig)) |
---|
232 | ENDIF |
---|
233 | ENDDO |
---|
234 | |
---|
235 | ! Monin Obukhov length: |
---|
236 | |
---|
237 | DO ig=1,ngrid |
---|
238 | IF (rib(ig) .gt. ric) THEN |
---|
239 | L_mo(ig)=0. |
---|
240 | ELSE |
---|
241 | L_mo(ig)=pts(ig)*(ustar(ig)**2)/(pg*karman*tstar(ig)) !as defined here, L is positive for SBL, negative for UBL |
---|
242 | ENDIF |
---|
243 | ENDDO |
---|
244 | |
---|
245 | ! Interpolation: |
---|
246 | |
---|
247 | DO ig=1,ngrid |
---|
248 | IF(zout .lt. pz0tcomp(ig)) THEN |
---|
249 | u_out(ig)=0. |
---|
250 | Teta_out(ig)=pts(ig) |
---|
251 | ELSEIF (L_mo(ig) .gt. 0.) THEN |
---|
252 | u_out(ig)=(ustar(ig)/karman)*log(zout/pz0(ig)) + |
---|
253 | & 5.*(ustar(ig)/(karman*L_mo(ig)))*(zout-pz0(ig)) |
---|
254 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman)) |
---|
255 | & *log(zout/pz0tcomp(ig)) + |
---|
256 | & 5.*(tstar(ig)/(prandtl(ig)*karman*L_mo(ig))) |
---|
257 | & *(zout-pz0tcomp(ig)) |
---|
258 | ELSEIF (L_mo(ig) .lt. 0.) THEN |
---|
259 | |
---|
260 | IF(L_mo(ig) .gt. -1000.) THEN |
---|
261 | |
---|
262 | u_out(ig)=(ustar(ig)/karman)*( |
---|
263 | & 2.*atan((1.-16.*zout/L_mo(ig))**0.25) |
---|
264 | & -2.*atan((1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
265 | & -2.*log(1.+(1.-16.*zout/L_mo(ig))**0.25) |
---|
266 | & +2.*log(1.+(1.-16.*pz0(ig)/L_mo(ig))**0.25) |
---|
267 | & - log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
---|
268 | & + log(1.+sqrt(1.-16.*pz0(ig)/L_mo(ig))) |
---|
269 | & + log(zout/pz0(ig)) |
---|
270 | & ) |
---|
271 | |
---|
272 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
273 | & 2.*log(1.+sqrt(1.-16.*pz0tcomp(ig)/L_mo(ig))) |
---|
274 | & -2.*log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
---|
275 | & + log(zout/pz0tcomp(ig)) |
---|
276 | & ) |
---|
277 | |
---|
278 | ELSE |
---|
279 | |
---|
280 | ! We have to treat the case where L is very large and negative, |
---|
281 | ! corresponding to a very nearly stable atmosphere (but not quite !) |
---|
282 | ! i.e. teta* <0 and almost zero. We choose the cutoff |
---|
283 | ! corresponding to L_mo < -1000 and use a 3rd order taylor expansion. The difference |
---|
284 | ! between the two expression for z/L = -1/1000 is -1.54324*10^-9 |
---|
285 | ! (we do that to avoid using r*4 precision, otherwise, we get -inf values) |
---|
286 | |
---|
287 | u_out(ig)=(ustar(ig)/karman)*( |
---|
288 | & (4./L_mo(ig))*(zout-pz0(ig)) |
---|
289 | & + (20./(L_mo(ig))**2)*(zout**2-pz0(ig)**2) |
---|
290 | & + (160./(L_mo(ig))**3)*(zout**3-pz0(ig)**3) |
---|
291 | & + log(zout/pz0(ig)) |
---|
292 | & ) |
---|
293 | |
---|
294 | Teta_out(ig)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
---|
295 | & (8./L_mo(ig))*(zout-pz0tcomp(ig)) |
---|
296 | & + (48./(L_mo(ig))**2)*(zout**2-pz0tcomp(ig)**2) |
---|
297 | & + (1280./(3.*(L_mo(ig))**3))*(zout**3-pz0tcomp(ig)**3) |
---|
298 | & + log(zout/pz0tcomp(ig)) |
---|
299 | & ) |
---|
300 | |
---|
301 | ENDIF |
---|
302 | ELSE |
---|
303 | u_out(ig)=0. |
---|
304 | Teta_out(ig)=pts(ig) |
---|
305 | ENDIF |
---|
306 | IF(zout .lt. pz0(ig)) THEN |
---|
307 | u_out(ig)=0. |
---|
308 | ENDIF |
---|
309 | ENDDO |
---|
310 | |
---|
311 | ! when using convective adjustment without thermals, a vertical potential temperature |
---|
312 | ! profile is assumed up to the thermal roughness length. Hence, theoretically, theta |
---|
313 | ! interpolated at any height in the surface layer is theta at the first level. |
---|
314 | |
---|
315 | IF ((.not.calltherm).and.(calladj)) THEN |
---|
316 | Teta_out(:)=ph(:,1) |
---|
317 | ENDIF |
---|
318 | |
---|
319 | T_out(:) = Teta_out(:)*(exp( |
---|
320 | & (zout/zzlay(:,1))*(log(pplay(:,1)/ps)) |
---|
321 | & ) |
---|
322 | & )**rcp |
---|
323 | |
---|
324 | |
---|
325 | !------------------------------------------------------------------------ |
---|
326 | !------------------------------------------------------------------------ |
---|
327 | ! PART III : WSTAR COMPUTATION |
---|
328 | !------------------------------------------------------------------------ |
---|
329 | !------------------------------------------------------------------------ |
---|
330 | |
---|
331 | ! Detection of the mixed-layer potential temperature |
---|
332 | ! ------------ |
---|
333 | |
---|
334 | ! Nearest index for the pbl height |
---|
335 | |
---|
336 | pbl_height_index(:)=1 |
---|
337 | |
---|
338 | DO k=1,nlay-1 |
---|
339 | DO ig=1, ngrid |
---|
340 | IF (abs(zmax(ig)-zzlay(ig,k)) .lt. |
---|
341 | & abs(zmax(ig)-zzlay(ig,pbl_height_index(ig)))) THEN |
---|
342 | pbl_height_index(ig)=k |
---|
343 | ENDIF |
---|
344 | ENDDO |
---|
345 | ENDDO |
---|
346 | |
---|
347 | ! Potential temperature gradient |
---|
348 | |
---|
349 | dteta(:,nlay)=0. |
---|
350 | DO k=1,nlay-1 |
---|
351 | DO ig=1, ngrid |
---|
352 | dteta(ig,k) = (ph(ig,k+1)-ph(ig,k))/(zzlay(ig,k+1)-zzlay(ig,k)) |
---|
353 | ENDDO |
---|
354 | ENDDO |
---|
355 | |
---|
356 | ! Computation of the pbl mixed layer temperature |
---|
357 | |
---|
358 | DO ig=1, ngrid |
---|
359 | ii=MINLOC(abs(dteta(ig,1:pbl_height_index(ig)))) |
---|
360 | pbl_teta(ig) = ph(ig,ii(1)) |
---|
361 | ENDDO |
---|
362 | |
---|
363 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
364 | ! ------------ |
---|
365 | |
---|
366 | DO ig=1, ngrid |
---|
367 | IF (zmax(ig) .gt. 0.) THEN |
---|
368 | wstar(ig)=(pg*zmax(ig)*hfmax(ig)/pbl_teta(ig))**(1./3.) |
---|
369 | ELSE |
---|
370 | wstar(ig)=0. |
---|
371 | ENDIF |
---|
372 | ENDDO |
---|
373 | |
---|
374 | !------------------------------------------------------------------------ |
---|
375 | !------------------------------------------------------------------------ |
---|
376 | ! PART IV : VERTICAL_VELOCITY_VARIANCE/VERTICAL_TURBULENT_FLUX PROFILES |
---|
377 | !------------------------------------------------------------------------ |
---|
378 | !------------------------------------------------------------------------ |
---|
379 | |
---|
380 | ! We follow Spiga et. al 2010 (QJRMS) |
---|
381 | ! ------------ |
---|
382 | |
---|
383 | DO ig=1, ngrid |
---|
384 | IF (zmax(ig) .gt. 0.) THEN |
---|
385 | x(ig) = zout/zmax(ig) |
---|
386 | ELSE |
---|
387 | x(ig) = 999. |
---|
388 | ENDIF |
---|
389 | ENDDO |
---|
390 | |
---|
391 | DO ig=1, ngrid |
---|
392 | ! dimensionless vertical heat flux |
---|
393 | IF (x(ig) .le. 0.3) THEN |
---|
394 | dvhf(ig) = ((-3.85/log(x(ig)))+0.07*log(x(ig))) |
---|
395 | & *exp(-4.61*x(ig)) |
---|
396 | ELSEIF (x(ig) .le. 1.) THEN |
---|
397 | dvhf(ig) = -1.52*x(ig) + 1.24 |
---|
398 | ELSE |
---|
399 | dvhf(ig) = 0. |
---|
400 | ENDIF |
---|
401 | ! dimensionless vertical velocity variance |
---|
402 | IF (x(ig) .le. 1.) THEN |
---|
403 | dvvv(ig) = 2.05*(x(ig)**(2./3.))*(1.-0.64*x(ig))**2 |
---|
404 | ELSE |
---|
405 | dvvv(ig) = 0. |
---|
406 | ENDIF |
---|
407 | ENDDO |
---|
408 | |
---|
409 | vhf(:) = dvhf(:)*hfmax(:) |
---|
410 | vvv(:) = dvvv(:)*(wstar(:))**2 |
---|
411 | |
---|
412 | !------------------------------------------------------------------------ |
---|
413 | !------------------------------------------------------------------------ |
---|
414 | ! OUTPUTS |
---|
415 | !------------------------------------------------------------------------ |
---|
416 | !------------------------------------------------------------------------ |
---|
417 | |
---|
418 | IF (ngrid .eq. 1) THEN |
---|
419 | dimout=0 |
---|
420 | ELSE |
---|
421 | dimout=2 |
---|
422 | ENDIF |
---|
423 | |
---|
424 | call WRITEDIAGFI(ngrid,'Teta_out', |
---|
425 | & 'potential temperature at z_out','K', |
---|
426 | & dimout,Teta_out) |
---|
427 | call WRITEDIAGFI(ngrid,'u_out', |
---|
428 | & 'horizontal velocity norm at z_out','m/s', |
---|
429 | & dimout,u_out) |
---|
430 | call WRITEDIAGFI(ngrid,'u_star', |
---|
431 | & 'friction velocity','m/s', |
---|
432 | & dimout,ustar) |
---|
433 | call WRITEDIAGFI(ngrid,'teta_star', |
---|
434 | & 'friction potential temperature','K', |
---|
435 | & dimout,tstar) |
---|
436 | call WRITEDIAGFI(ngrid,'L', |
---|
437 | & 'Monin Obukhov length','m', |
---|
438 | & dimout,L_mo) |
---|
439 | ! call WRITEDIAGFI(ngrid,'w_star', |
---|
440 | ! & 'Free convection velocity','m', |
---|
441 | ! & dimout,wstar) |
---|
442 | ! call WRITEDIAGFI(ngrid,'z_i', |
---|
443 | ! & 'PBL height','m', |
---|
444 | ! & dimout,zmax) |
---|
445 | ! call WRITEDIAGFI(ngrid,'hf_max', |
---|
446 | ! & 'Maximum vertical heat flux','m', |
---|
447 | ! & dimout,hfmax) |
---|
448 | call WRITEDIAGFI(ngrid,'vvv', |
---|
449 | & 'Vertical velocity variance at zout','m', |
---|
450 | & dimout,vvv) |
---|
451 | call WRITEDIAGFI(ngrid,'vhf', |
---|
452 | & 'Vertical heat flux at zout','m', |
---|
453 | & dimout,vhf) |
---|
454 | |
---|
455 | RETURN |
---|
456 | END |
---|