| 1 | SUBROUTINE pbl_parameters(ngrid,nlay,ps,pplay,pz0, |
|---|
| 2 | & pg,zzlay,zzlev,pu,pv,wstar_in,hfmax,zmax,pts,ph,z_out,n_out, |
|---|
| 3 | & Teta_out,u_out,ustar,tstar,L_mo,vhf,vvv) |
|---|
| 4 | IMPLICIT NONE |
|---|
| 5 | !======================================================================= |
|---|
| 6 | ! |
|---|
| 7 | ! Anlysis of the PBL from input temperature, wind field and thermals outputs. |
|---|
| 8 | ! |
|---|
| 9 | ! ------- |
|---|
| 10 | ! |
|---|
| 11 | ! Author: Arnaud Colaitis 09/01/12 |
|---|
| 12 | ! ------- |
|---|
| 13 | ! |
|---|
| 14 | ! Arguments: |
|---|
| 15 | ! ---------- |
|---|
| 16 | ! |
|---|
| 17 | ! inputs: |
|---|
| 18 | ! ------ |
|---|
| 19 | ! ngrid size of the horizontal grid |
|---|
| 20 | ! nlay size of the vertical grid |
|---|
| 21 | ! pz0(ngrid) surface roughness length |
|---|
| 22 | ! pg gravity (m s -2) |
|---|
| 23 | ! zzlay(ngrid,nlay) height of mid-layers |
|---|
| 24 | ! zzlev(ngrid,nlay+1) height of layers interfaces |
|---|
| 25 | ! pu(ngrid,nlay) u component of the wind |
|---|
| 26 | ! pv(ngrid,nlay) v component of the wind |
|---|
| 27 | ! wstar_in(ngrid) free convection velocity in thermals |
|---|
| 28 | ! hfmax(ngrid) maximum vertical turbulent heat flux in thermals |
|---|
| 29 | ! zmax(ngrid) height reached by the thermals (pbl height) |
|---|
| 30 | ! pts(ngrid) surface temperature |
|---|
| 31 | ! ph(ngrid,nlay) potential temperature T*(p/ps)^kappa |
|---|
| 32 | ! z_out(n_out) heights of interpolation |
|---|
| 33 | ! n_out number of points for interpolation |
|---|
| 34 | ! |
|---|
| 35 | ! outputs: |
|---|
| 36 | ! ------ |
|---|
| 37 | ! |
|---|
| 38 | ! Teta_out(ngrid,n_out) interpolated teta |
|---|
| 39 | ! u_out(ngrid,n_out) interpolated u |
|---|
| 40 | ! ustar(ngrid) friction velocity |
|---|
| 41 | ! tstar(ngrid) friction temperature |
|---|
| 42 | ! wstar(ngrid) free convection velocity |
|---|
| 43 | ! L_mo(ngrid) monin_obukhov length |
|---|
| 44 | ! |
|---|
| 45 | ! |
|---|
| 46 | !======================================================================= |
|---|
| 47 | ! |
|---|
| 48 | !----------------------------------------------------------------------- |
|---|
| 49 | ! Declarations: |
|---|
| 50 | ! ------------- |
|---|
| 51 | |
|---|
| 52 | #include "comcstfi.h" |
|---|
| 53 | #include "callkeys.h" |
|---|
| 54 | |
|---|
| 55 | ! Arguments: |
|---|
| 56 | ! ---------- |
|---|
| 57 | |
|---|
| 58 | INTEGER, INTENT(IN) :: ngrid,nlay,n_out |
|---|
| 59 | REAL, INTENT(IN) :: pz0(ngrid),ps(ngrid),pplay(ngrid,nlay) |
|---|
| 60 | REAL, INTENT(IN) :: pg,zzlay(ngrid,nlay),zzlev(ngrid,nlay) |
|---|
| 61 | REAL, INTENT(IN) :: pu(ngrid,nlay),pv(ngrid,nlay) |
|---|
| 62 | REAL, INTENT(IN) :: wstar_in(ngrid),hfmax(ngrid),zmax(ngrid) |
|---|
| 63 | REAL, INTENT(IN) :: pts(ngrid),ph(ngrid,nlay) |
|---|
| 64 | REAL, INTENT(IN) :: z_out(n_out) |
|---|
| 65 | |
|---|
| 66 | ! Outputs: |
|---|
| 67 | ! -------- |
|---|
| 68 | |
|---|
| 69 | REAL, INTENT(OUT) :: Teta_out(ngrid,n_out),u_out(ngrid,n_out) |
|---|
| 70 | REAL T_out(ngrid,n_out) |
|---|
| 71 | REAL, INTENT(OUT) :: ustar(ngrid), tstar(ngrid) |
|---|
| 72 | REAL wstar(ngrid) |
|---|
| 73 | REAL, INTENT(OUT) :: L_mo(ngrid) |
|---|
| 74 | |
|---|
| 75 | ! Local: |
|---|
| 76 | ! ------ |
|---|
| 77 | |
|---|
| 78 | INTEGER ig,k,n |
|---|
| 79 | REAL karman,nu |
|---|
| 80 | DATA karman,nu/.41,0.001/ |
|---|
| 81 | SAVE karman,nu |
|---|
| 82 | |
|---|
| 83 | ! Local(2): |
|---|
| 84 | ! --------- |
|---|
| 85 | |
|---|
| 86 | REAL zout |
|---|
| 87 | REAL rib(ngrid) ! Bulk Richardson number |
|---|
| 88 | REAL fm(ngrid) ! stability function for momentum |
|---|
| 89 | REAL fh(ngrid) ! stability function for heat |
|---|
| 90 | REAL z1z0,z1z0t ! ratios z1/z0 and z1/z0T |
|---|
| 91 | ! phim = 1+betam*zeta or (1-bm*zeta)**am |
|---|
| 92 | ! phih = alphah + betah*zeta or alphah(1.-bh*zeta)**ah |
|---|
| 93 | REAL betam, betah, alphah, bm, bh, lambda |
|---|
| 94 | ! ah and am are assumed to be -0.25 and -0.5 respectively |
|---|
| 95 | REAL cdn(ngrid),chn(ngrid) ! neutral momentum and heat drag coefficient |
|---|
| 96 | REAL pz0t ! initial thermal roughness length. (local) |
|---|
| 97 | REAL ric ! critical richardson number |
|---|
| 98 | REAL reynolds(ngrid) ! reynolds number for UBL |
|---|
| 99 | REAL prandtl(ngrid) ! prandtl number for UBL |
|---|
| 100 | REAL pz0tcomp(ngrid) ! computed z0t |
|---|
| 101 | REAL ite |
|---|
| 102 | REAL residual,zcd0,z1 |
|---|
| 103 | REAL pcdv(ngrid),pcdh(ngrid) |
|---|
| 104 | REAL zu2(ngrid) ! Large-scale wind at first layer |
|---|
| 105 | REAL pbl_teta(ngrid) ! mixed-layer potential temperature |
|---|
| 106 | INTEGER pbl_height_index(ngrid) ! index of nearest vertical grid point for zmax |
|---|
| 107 | REAL dteta(ngrid,nlay),x(ngrid) ! potential temperature gradient and z/zi |
|---|
| 108 | REAL dvhf(ngrid),dvvv(ngrid) ! dimensionless vertical heat flux and |
|---|
| 109 | ! dimensionless vertical velocity variance |
|---|
| 110 | REAL vhf(ngrid),vvv(ngrid) ! vertical heat flux and vertical velocity variance |
|---|
| 111 | INTEGER ii(1) |
|---|
| 112 | ! temporary |
|---|
| 113 | INTEGER dimout |
|---|
| 114 | |
|---|
| 115 | !------------------------------------------------------------------------ |
|---|
| 116 | !------------------------------------------------------------------------ |
|---|
| 117 | ! PART I : RICHARDSON/REYNOLDS/THERMAL_ROUGHNESS/STABILITY_COEFFICIENTS |
|---|
| 118 | !------------------------------------------------------------------------ |
|---|
| 119 | !------------------------------------------------------------------------ |
|---|
| 120 | |
|---|
| 121 | DO n=1,n_out |
|---|
| 122 | |
|---|
| 123 | c Initialisation : |
|---|
| 124 | |
|---|
| 125 | L_mo(:)=0. |
|---|
| 126 | ustar(:)=0. |
|---|
| 127 | tstar(:)=0. |
|---|
| 128 | zout=z_out(n) |
|---|
| 129 | reynolds(:)=0. |
|---|
| 130 | pz0t = 0. |
|---|
| 131 | pz0tcomp(:) = 0.1*pz0(:) |
|---|
| 132 | rib(:)=0. |
|---|
| 133 | pcdv(:)=0. |
|---|
| 134 | pcdh(:)=0. |
|---|
| 135 | |
|---|
| 136 | ! this formulation assumes alphah=1., implying betah=betam |
|---|
| 137 | ! We use Dyer et al. parameters, as they cover a broad range of Richardson numbers : |
|---|
| 138 | |
|---|
| 139 | bm=16. !UBL |
|---|
| 140 | bh=16. !UBL |
|---|
| 141 | alphah=1. |
|---|
| 142 | betam=5. !SBL |
|---|
| 143 | betah=5. !SBL |
|---|
| 144 | lambda=(sqrt(bh/bm))/alphah |
|---|
| 145 | ric=betah/(betam**2) |
|---|
| 146 | |
|---|
| 147 | DO ig=1,ngrid |
|---|
| 148 | ite=0. |
|---|
| 149 | residual=abs(pz0tcomp(ig)-pz0t) |
|---|
| 150 | zu2(ig)=MAX(pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1) |
|---|
| 151 | & ,(0.3*wstar_in(ig))**2) |
|---|
| 152 | |
|---|
| 153 | DO WHILE((residual .gt. 0.01*pz0(ig)) .and. (ite .lt. 10.)) |
|---|
| 154 | |
|---|
| 155 | pz0t=pz0tcomp(ig) |
|---|
| 156 | IF (zu2(ig) .ne. 0.) THEN |
|---|
| 157 | ! Richardson number formulation proposed by D.E. England et al. (1995) |
|---|
| 158 | rib(ig) = (pg/ph(ig,1)) |
|---|
| 159 | & *sqrt(zzlev(ig,2)*pz0(ig)) |
|---|
| 160 | & *(((log(zzlev(ig,2)/pz0(ig)))**2)/(log(zzlev(ig,2)/pz0t))) |
|---|
| 161 | & *(ph(ig,1)-pts(ig))/zu2(ig) |
|---|
| 162 | ELSE |
|---|
| 163 | print*,'warning, infinite Richardson at surface' |
|---|
| 164 | print*,pu(ig,1),pv(ig,1) |
|---|
| 165 | rib(ig) = ric |
|---|
| 166 | ENDIF |
|---|
| 167 | |
|---|
| 168 | z1z0=zzlev(ig,2)/pz0(ig) |
|---|
| 169 | z1z0t=zzlev(ig,2)/pz0t |
|---|
| 170 | |
|---|
| 171 | cdn(ig)=karman/log(z1z0) |
|---|
| 172 | cdn(ig)=cdn(ig)*cdn(ig) |
|---|
| 173 | chn(ig)=cdn(ig)*log(z1z0)/log(z1z0t) |
|---|
| 174 | |
|---|
| 175 | ! STABLE BOUNDARY LAYER : |
|---|
| 176 | IF (rib(ig) .gt. 0.) THEN |
|---|
| 177 | ! From D.E. England et al. (95) |
|---|
| 178 | prandtl(ig)=1. |
|---|
| 179 | if(rib(ig) .lt. ric) then |
|---|
| 180 | ! Assuming alphah=1. and bh=bm for stable conditions : |
|---|
| 181 | fm(ig)=((ric-rib(ig))/ric)**2 |
|---|
| 182 | fh(ig)=((ric-rib(ig))/ric)**2 |
|---|
| 183 | else |
|---|
| 184 | ! For Ri>Ric, we consider Ri->Infinity => no turbulent mixing at surface |
|---|
| 185 | fm(ig)=0. |
|---|
| 186 | fh(ig)=0. |
|---|
| 187 | endif |
|---|
| 188 | ! UNSTABLE BOUNDARY LAYER : |
|---|
| 189 | ELSE |
|---|
| 190 | ! From D.E. England et al. (95) |
|---|
| 191 | fm(ig)=sqrt(1.-lambda*bm*rib(ig)) |
|---|
| 192 | fh(ig)=(1./alphah)*((1.-lambda*bh*rib(ig))**0.5)* |
|---|
| 193 | & (1.-lambda*bm*rib(ig))**0.25 |
|---|
| 194 | prandtl(ig)=alphah*((1.-lambda*bm*rib(ig))**0.25)/ |
|---|
| 195 | & ((1.-lambda*bh*rib(ig))**0.5) |
|---|
| 196 | ENDIF |
|---|
| 197 | |
|---|
| 198 | reynolds(ig)=karman*sqrt(fm(ig)) |
|---|
| 199 | & *sqrt(zu2(ig)) |
|---|
| 200 | & *pz0(ig)/(log(z1z0)*nu) |
|---|
| 201 | pz0tcomp(ig)=pz0(ig)*exp(-karman*7.3* |
|---|
| 202 | & (reynolds(ig)**0.25)*(prandtl(ig)**0.5)) |
|---|
| 203 | residual = abs(pz0t-pz0tcomp(ig)) |
|---|
| 204 | ite = ite+1 |
|---|
| 205 | |
|---|
| 206 | ENDDO ! of while |
|---|
| 207 | pz0t=0. |
|---|
| 208 | |
|---|
| 209 | ! Drag computation: |
|---|
| 210 | |
|---|
| 211 | pcdv(ig)=cdn(ig)*fm(ig) |
|---|
| 212 | pcdh(ig)=chn(ig)*fh(ig) |
|---|
| 213 | |
|---|
| 214 | ENDDO ! of ngrid |
|---|
| 215 | |
|---|
| 216 | !------------------------------------------------------------------------ |
|---|
| 217 | !------------------------------------------------------------------------ |
|---|
| 218 | ! PART II : USTAR/TSTAR/U_OUT/TETA_OUT COMPUTATIONS |
|---|
| 219 | !------------------------------------------------------------------------ |
|---|
| 220 | !------------------------------------------------------------------------ |
|---|
| 221 | |
|---|
| 222 | |
|---|
| 223 | ! Large-scale wind at first layer (without gustiness) and |
|---|
| 224 | ! u* theta* computation |
|---|
| 225 | |
|---|
| 226 | DO ig=1,ngrid |
|---|
| 227 | IF (rib(ig) .ge. ric) THEN |
|---|
| 228 | ustar(ig)=0. |
|---|
| 229 | tstar(ig)=0. |
|---|
| 230 | ELSE |
|---|
| 231 | ustar(ig)=sqrt(pcdv(ig)) |
|---|
| 232 | & *sqrt(pu(ig,1)*pu(ig,1)+pv(ig,1)*pv(ig,1)) |
|---|
| 233 | tstar(ig)=-pcdh(ig)*(pts(ig)-ph(ig,1)) |
|---|
| 234 | & /sqrt(pcdv(ig)) |
|---|
| 235 | ENDIF |
|---|
| 236 | ENDDO |
|---|
| 237 | |
|---|
| 238 | ! Monin Obukhov length: |
|---|
| 239 | |
|---|
| 240 | DO ig=1,ngrid |
|---|
| 241 | IF (rib(ig) .gt. ric) THEN |
|---|
| 242 | L_mo(ig)=0. |
|---|
| 243 | ELSE |
|---|
| 244 | L_mo(ig)=pts(ig)*(ustar(ig)**2)/(pg*karman*tstar(ig)) !as defined here, L is positive for SBL, negative for UBL |
|---|
| 245 | ENDIF |
|---|
| 246 | ENDDO |
|---|
| 247 | |
|---|
| 248 | ! Interpolation: |
|---|
| 249 | |
|---|
| 250 | DO ig=1,ngrid |
|---|
| 251 | IF(zout .lt. pz0tcomp(ig)) THEN |
|---|
| 252 | u_out(ig,n)=0. |
|---|
| 253 | Teta_out(ig,n)=pts(ig) |
|---|
| 254 | ELSEIF (L_mo(ig) .gt. 0.) THEN |
|---|
| 255 | u_out(ig,n)=(ustar(ig)/karman)*log(zout/pz0(ig)) + |
|---|
| 256 | & 5.*(ustar(ig)/(karman*L_mo(ig)))*(zout-pz0(ig)) |
|---|
| 257 | Teta_out(ig,n)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman)) |
|---|
| 258 | & *log(zout/pz0tcomp(ig)) + |
|---|
| 259 | & 5.*(tstar(ig)/(prandtl(ig)*karman*L_mo(ig))) |
|---|
| 260 | & *(zout-pz0tcomp(ig)) |
|---|
| 261 | ELSEIF (L_mo(ig) .lt. 0.) THEN |
|---|
| 262 | |
|---|
| 263 | IF(L_mo(ig) .gt. -1000.) THEN |
|---|
| 264 | |
|---|
| 265 | u_out(ig,n)=(ustar(ig)/karman)*( |
|---|
| 266 | & 2.*atan((1.-16.*zout/L_mo(ig))**0.25) |
|---|
| 267 | & -2.*atan((1.-16.*pz0(ig)/L_mo(ig))**0.25) |
|---|
| 268 | & -2.*log(1.+(1.-16.*zout/L_mo(ig))**0.25) |
|---|
| 269 | & +2.*log(1.+(1.-16.*pz0(ig)/L_mo(ig))**0.25) |
|---|
| 270 | & - log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
|---|
| 271 | & + log(1.+sqrt(1.-16.*pz0(ig)/L_mo(ig))) |
|---|
| 272 | & + log(zout/pz0(ig)) |
|---|
| 273 | & ) |
|---|
| 274 | |
|---|
| 275 | Teta_out(ig,n)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
|---|
| 276 | & 2.*log(1.+sqrt(1.-16.*pz0tcomp(ig)/L_mo(ig))) |
|---|
| 277 | & -2.*log(1.+sqrt(1.-16.*zout/L_mo(ig))) |
|---|
| 278 | & + log(zout/pz0tcomp(ig)) |
|---|
| 279 | & ) |
|---|
| 280 | |
|---|
| 281 | ELSE |
|---|
| 282 | |
|---|
| 283 | ! We have to treat the case where L is very large and negative, |
|---|
| 284 | ! corresponding to a very nearly stable atmosphere (but not quite !) |
|---|
| 285 | ! i.e. teta* <0 and almost zero. We choose the cutoff |
|---|
| 286 | ! corresponding to L_mo < -1000 and use a 3rd order taylor expansion. The difference |
|---|
| 287 | ! between the two expression for z/L = -1/1000 is -1.54324*10^-9 |
|---|
| 288 | ! (we do that to avoid using r*4 precision, otherwise, we get -inf values) |
|---|
| 289 | |
|---|
| 290 | u_out(ig,n)=(ustar(ig)/karman)*( |
|---|
| 291 | & (4./L_mo(ig))*(zout-pz0(ig)) |
|---|
| 292 | & + (20./(L_mo(ig))**2)*(zout**2-pz0(ig)**2) |
|---|
| 293 | & + (160./(L_mo(ig))**3)*(zout**3-pz0(ig)**3) |
|---|
| 294 | & + log(zout/pz0(ig)) |
|---|
| 295 | & ) |
|---|
| 296 | |
|---|
| 297 | Teta_out(ig,n)=pts(ig)+(tstar(ig)/(prandtl(ig)*karman))*( |
|---|
| 298 | & (8./L_mo(ig))*(zout-pz0tcomp(ig)) |
|---|
| 299 | & + (48./(L_mo(ig))**2)*(zout**2-pz0tcomp(ig)**2) |
|---|
| 300 | & + (1280./(3.*(L_mo(ig))**3))*(zout**3-pz0tcomp(ig)**3) |
|---|
| 301 | & + log(zout/pz0tcomp(ig)) |
|---|
| 302 | & ) |
|---|
| 303 | |
|---|
| 304 | ENDIF |
|---|
| 305 | ELSE |
|---|
| 306 | u_out(ig,n)=0. |
|---|
| 307 | Teta_out(ig,n)=pts(ig) |
|---|
| 308 | ENDIF |
|---|
| 309 | IF(zout .lt. pz0(ig)) THEN |
|---|
| 310 | u_out(ig,n)=0. |
|---|
| 311 | ENDIF |
|---|
| 312 | ENDDO |
|---|
| 313 | |
|---|
| 314 | ! when using convective adjustment without thermals, a vertical potential temperature |
|---|
| 315 | ! profile is assumed up to the thermal roughness length. Hence, theoretically, theta |
|---|
| 316 | ! interpolated at any height in the surface layer is theta at the first level. |
|---|
| 317 | |
|---|
| 318 | IF ((.not.calltherm).and.(calladj)) THEN |
|---|
| 319 | Teta_out(:,n)=ph(:,1) |
|---|
| 320 | ENDIF |
|---|
| 321 | |
|---|
| 322 | T_out(:,n) = Teta_out(:,n)*(exp( |
|---|
| 323 | & (zout/zzlay(:,1))*(log(pplay(:,1)/ps)) |
|---|
| 324 | & ) |
|---|
| 325 | & )**rcp |
|---|
| 326 | |
|---|
| 327 | ENDDO !of n=1,n_out |
|---|
| 328 | |
|---|
| 329 | !------------------------------------------------------------------------ |
|---|
| 330 | !------------------------------------------------------------------------ |
|---|
| 331 | ! PART III : WSTAR COMPUTATION |
|---|
| 332 | !------------------------------------------------------------------------ |
|---|
| 333 | !------------------------------------------------------------------------ |
|---|
| 334 | |
|---|
| 335 | ! Detection of the mixed-layer potential temperature |
|---|
| 336 | ! ------------ |
|---|
| 337 | |
|---|
| 338 | ! Nearest index for the pbl height |
|---|
| 339 | |
|---|
| 340 | IF (calltherm) THEN |
|---|
| 341 | |
|---|
| 342 | pbl_height_index(:)=1 |
|---|
| 343 | |
|---|
| 344 | DO k=1,nlay-1 |
|---|
| 345 | DO ig=1, ngrid |
|---|
| 346 | IF (abs(zmax(ig)-zzlay(ig,k)) .lt. |
|---|
| 347 | & abs(zmax(ig)-zzlay(ig,pbl_height_index(ig)))) THEN |
|---|
| 348 | pbl_height_index(ig)=k |
|---|
| 349 | ENDIF |
|---|
| 350 | ENDDO |
|---|
| 351 | ENDDO |
|---|
| 352 | |
|---|
| 353 | ! Potential temperature gradient |
|---|
| 354 | |
|---|
| 355 | dteta(:,nlay)=0. |
|---|
| 356 | DO k=1,nlay-1 |
|---|
| 357 | DO ig=1, ngrid |
|---|
| 358 | dteta(ig,k) = (ph(ig,k+1)-ph(ig,k))/(zzlay(ig,k+1)-zzlay(ig,k)) |
|---|
| 359 | ENDDO |
|---|
| 360 | ENDDO |
|---|
| 361 | |
|---|
| 362 | ! Computation of the pbl mixed layer temperature |
|---|
| 363 | |
|---|
| 364 | DO ig=1, ngrid |
|---|
| 365 | ii=MINLOC(abs(dteta(ig,1:pbl_height_index(ig)))) |
|---|
| 366 | pbl_teta(ig) = ph(ig,ii(1)) |
|---|
| 367 | ENDDO |
|---|
| 368 | |
|---|
| 369 | ! Recompute wstar |
|---|
| 370 | ! We follow Spiga et. al 2010 (QJRMS) |
|---|
| 371 | ! ------------ |
|---|
| 372 | |
|---|
| 373 | DO ig=1, ngrid |
|---|
| 374 | IF (zmax(ig) .gt. 0.) THEN |
|---|
| 375 | wstar(ig)=(pg*zmax(ig)*hfmax(ig)/pbl_teta(ig))**(1./3.) |
|---|
| 376 | ELSE |
|---|
| 377 | wstar(ig)=0. |
|---|
| 378 | ENDIF |
|---|
| 379 | ENDDO |
|---|
| 380 | |
|---|
| 381 | !------------------------------------------------------------------------ |
|---|
| 382 | !------------------------------------------------------------------------ |
|---|
| 383 | ! PART IV : VERTICAL_VELOCITY_VARIANCE/VERTICAL_TURBULENT_FLUX PROFILES |
|---|
| 384 | !------------------------------------------------------------------------ |
|---|
| 385 | !------------------------------------------------------------------------ |
|---|
| 386 | |
|---|
| 387 | ! We follow Spiga et. al 2010 (QJRMS) |
|---|
| 388 | ! ------------ |
|---|
| 389 | |
|---|
| 390 | DO ig=1, ngrid |
|---|
| 391 | IF (zmax(ig) .gt. 0.) THEN |
|---|
| 392 | x(ig) = zout/zmax(ig) |
|---|
| 393 | ELSE |
|---|
| 394 | x(ig) = 999. |
|---|
| 395 | ENDIF |
|---|
| 396 | ENDDO |
|---|
| 397 | |
|---|
| 398 | DO ig=1, ngrid |
|---|
| 399 | ! dimensionless vertical heat flux |
|---|
| 400 | IF (x(ig) .le. 0.3) THEN |
|---|
| 401 | dvhf(ig) = ((-3.85/log(x(ig)))+0.07*log(x(ig))) |
|---|
| 402 | & *exp(-4.61*x(ig)) |
|---|
| 403 | ELSEIF (x(ig) .le. 1.) THEN |
|---|
| 404 | dvhf(ig) = -1.52*x(ig) + 1.24 |
|---|
| 405 | ELSE |
|---|
| 406 | dvhf(ig) = 0. |
|---|
| 407 | ENDIF |
|---|
| 408 | ! dimensionless vertical velocity variance |
|---|
| 409 | IF (x(ig) .le. 1.) THEN |
|---|
| 410 | dvvv(ig) = 2.05*(x(ig)**(2./3.))*(1.-0.64*x(ig))**2 |
|---|
| 411 | ELSE |
|---|
| 412 | dvvv(ig) = 0. |
|---|
| 413 | ENDIF |
|---|
| 414 | ENDDO |
|---|
| 415 | |
|---|
| 416 | vhf(:) = dvhf(:)*hfmax(:) |
|---|
| 417 | vvv(:) = dvvv(:)*(wstar(:))**2 |
|---|
| 418 | |
|---|
| 419 | ENDIF ! of if calltherm |
|---|
| 420 | |
|---|
| 421 | RETURN |
|---|
| 422 | END |
|---|