1 | ******************************************************* |
---|
2 | * * |
---|
3 | subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) |
---|
4 | implicit none |
---|
5 | * * |
---|
6 | * This subroutine computes the nucleation rate * |
---|
7 | * as given in Pruppacher & Klett (1978) in the * |
---|
8 | * case of water ice forming on a solid substrate. * |
---|
9 | * Definition refined by Keese (jgr,1989) * |
---|
10 | * Authors: F. Montmessin * |
---|
11 | * Adapted for the LMD/GCM by J.-B. Madeleine * |
---|
12 | * (October 2011) * |
---|
13 | ******************************************************* |
---|
14 | |
---|
15 | #include "dimensions.h" |
---|
16 | #include "dimphys.h" |
---|
17 | #include "comcstfi.h" |
---|
18 | #include "tracer.h" |
---|
19 | #include "microphys.h" |
---|
20 | |
---|
21 | c Inputs |
---|
22 | DOUBLE PRECISION ph2o,sat |
---|
23 | DOUBLE PRECISION n_ccn(nbin_cld) |
---|
24 | REAL temp |
---|
25 | |
---|
26 | c Output |
---|
27 | DOUBLE PRECISION nucrate(nbin_cld) |
---|
28 | |
---|
29 | c Local variables |
---|
30 | DOUBLE PRECISION nh2o |
---|
31 | DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) |
---|
32 | external sig |
---|
33 | DOUBLE PRECISION rstar ! Radius of the critical germ (m) |
---|
34 | DOUBLE PRECISION gstar ! # of molecules forming a critical embryo |
---|
35 | DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) |
---|
36 | DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) |
---|
37 | DOUBLE PRECISION fshape ! function defined at the end of the file |
---|
38 | DOUBLE PRECISION deltaf |
---|
39 | |
---|
40 | c Ratio rstar/radius of the nucleating dust particle |
---|
41 | double precision xratio |
---|
42 | |
---|
43 | double precision mtetalocal ! local mteta in double precision |
---|
44 | |
---|
45 | integer i |
---|
46 | |
---|
47 | LOGICAL firstcall |
---|
48 | DATA firstcall/.true./ |
---|
49 | SAVE firstcall |
---|
50 | |
---|
51 | c ************************************************* |
---|
52 | |
---|
53 | mtetalocal = mteta |
---|
54 | |
---|
55 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
56 | ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc |
---|
57 | c if (temp .gt. 200) then |
---|
58 | c mtetalocal = mtetalocal |
---|
59 | c else if (temp .lt. 190) then |
---|
60 | c mtetalocal = mtetalocal-0.05 |
---|
61 | c else |
---|
62 | c mtetalocal = mtetalocal - (190-temp)*0.005 |
---|
63 | c endif |
---|
64 | c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 |
---|
65 | !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) |
---|
66 | !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) |
---|
67 | !print*, mtetalocal, temp |
---|
68 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
69 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
70 | IF (firstcall) THEN |
---|
71 | print*, ' ' |
---|
72 | print*, 'dear user, please keep in mind that' |
---|
73 | print*, 'contact parameter IS constant' |
---|
74 | !print*, 'contact parameter IS NOT constant:' |
---|
75 | !print*, 'max(mteta - 6005*exp(-0.065*temp),0.1)' |
---|
76 | !print*, 'max(mteta - 6005*exp(-0.068*temp),0.1)' |
---|
77 | print*, ' ' |
---|
78 | firstcall=.false. |
---|
79 | END IF |
---|
80 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
81 | cccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
82 | |
---|
83 | |
---|
84 | if (sat .gt. 1.) then ! minimum condition to activate nucleation |
---|
85 | |
---|
86 | nh2o = ph2o / kbz / temp |
---|
87 | rstar = 2. * sig(temp) * vo1 / (rgp*temp*dlog(sat)) |
---|
88 | gstar = 4. * nav * pi * (rstar**3) / (3.*vo1) |
---|
89 | |
---|
90 | c Loop over size bins |
---|
91 | do 200 i=1,nbin_cld |
---|
92 | |
---|
93 | if ( n_ccn(i) .lt. 1e-10 ) then |
---|
94 | c no dust, no need to compute nucleation! |
---|
95 | nucrate(i)=0. |
---|
96 | goto 200 |
---|
97 | endif |
---|
98 | |
---|
99 | xratio = rad_cld(i) / rstar |
---|
100 | fistar = (4./3.*pi) * sig(temp) * (rstar**2.) * |
---|
101 | & fshape(mtetalocal,xratio) |
---|
102 | deltaf = (2.*desorp-surfdif-fistar)/ |
---|
103 | & (kbz*temp) |
---|
104 | deltaf = min( max(deltaf, -100.), 100.) |
---|
105 | |
---|
106 | if (deltaf.eq.-100.) then |
---|
107 | nucrate(i) = 0. |
---|
108 | else |
---|
109 | zeldov = sqrt ( fistar / |
---|
110 | & (3.*pi*kbz*temp*(gstar**2.)) ) |
---|
111 | nucrate(i)= zeldov * kbz * temp * rstar |
---|
112 | & * rstar * 4. * pi |
---|
113 | & * ( nh2o*rad_cld(i) )**2. |
---|
114 | & / ( fshape(mtetalocal,xratio) * nus * m0 ) |
---|
115 | & * dexp (deltaf) |
---|
116 | endif |
---|
117 | |
---|
118 | 200 continue |
---|
119 | |
---|
120 | else |
---|
121 | |
---|
122 | do i=1,nbin_cld |
---|
123 | nucrate(i) = 0. |
---|
124 | enddo |
---|
125 | |
---|
126 | endif |
---|
127 | |
---|
128 | return |
---|
129 | end |
---|
130 | |
---|
131 | ********************************************************* |
---|
132 | double precision function fshape(cost,rap) |
---|
133 | implicit none |
---|
134 | * function computing the f(m,x) factor * |
---|
135 | * related to energy required to form a critical embryo * |
---|
136 | ********************************************************* |
---|
137 | |
---|
138 | double precision cost,rap |
---|
139 | double precision phi |
---|
140 | double precision a,b,c |
---|
141 | |
---|
142 | phi = sqrt( 1. - 2.*cost*rap + rap**2 ) |
---|
143 | a = 1. + ( (1.-cost*rap)/phi )**3 |
---|
144 | b = (rap**3) * (2.-3.*(rap-cost)/phi+((rap-cost)/phi)**3) |
---|
145 | c = 3. * cost * (rap**2) * ((rap-cost)/phi-1.) |
---|
146 | |
---|
147 | fshape = 0.5*(a+b+c) |
---|
148 | |
---|
149 | if (rap.gt.3000.) fshape = ((2.+cost)*(1.-cost)**2)/4. |
---|
150 | |
---|
151 | return |
---|
152 | end |
---|