******************************************************* * * subroutine nuclea(ph2o,temp,sat,n_ccn,nucrate) implicit none * * * This subroutine computes the nucleation rate * * as given in Pruppacher & Klett (1978) in the * * case of water ice forming on a solid substrate. * * Definition refined by Keese (jgr,1989) * * Authors: F. Montmessin * * Adapted for the LMD/GCM by J.-B. Madeleine * * (October 2011) * ******************************************************* #include "dimensions.h" #include "dimphys.h" #include "comcstfi.h" #include "tracer.h" #include "microphys.h" c Inputs DOUBLE PRECISION ph2o,sat DOUBLE PRECISION n_ccn(nbin_cld) REAL temp c Output DOUBLE PRECISION nucrate(nbin_cld) c Local variables DOUBLE PRECISION nh2o DOUBLE PRECISION sig ! Water-ice/air surface tension (N.m) external sig DOUBLE PRECISION rstar ! Radius of the critical germ (m) DOUBLE PRECISION gstar ! # of molecules forming a critical embryo DOUBLE PRECISION fistar ! Activation energy required to form a critical embryo (J) DOUBLE PRECISION zeldov ! Zeldovitch factor (no dim) DOUBLE PRECISION fshape ! function defined at the end of the file DOUBLE PRECISION deltaf c Ratio rstar/radius of the nucleating dust particle double precision xratio double precision mtetalocal ! local mteta in double precision integer i LOGICAL firstcall DATA firstcall/.true./ SAVE firstcall c ************************************************* mtetalocal = mteta cccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccc ESSAIS TN MTETA = F (T) cccccccccccccc c if (temp .gt. 200) then c mtetalocal = mtetalocal c else if (temp .lt. 190) then c mtetalocal = mtetalocal-0.05 c else c mtetalocal = mtetalocal - (190-temp)*0.005 c endif c----------------exp law, see Trainer 2008, J. Phys. Chem. C 2009, 113, 2036\u20132040 !mtetalocal = max(mtetalocal - 6005*exp(-0.065*temp),0.1) !mtetalocal = max(mtetalocal - 6005*exp(-0.068*temp),0.1) !print*, mtetalocal, temp cccccccccccccccccccccccccccccccccccccccccccccccccc cccccccccccccccccccccccccccccccccccccccccccccccccc IF (firstcall) THEN print*, ' ' print*, 'dear user, please keep in mind that' print*, 'contact parameter IS constant' !print*, 'contact parameter IS NOT constant:' !print*, 'max(mteta - 6005*exp(-0.065*temp),0.1)' !print*, 'max(mteta - 6005*exp(-0.068*temp),0.1)' print*, ' ' firstcall=.false. END IF cccccccccccccccccccccccccccccccccccccccccccccccccc cccccccccccccccccccccccccccccccccccccccccccccccccc if (sat .gt. 1.) then ! minimum condition to activate nucleation nh2o = ph2o / kbz / temp rstar = 2. * sig(temp) * vo1 / (rgp*temp*dlog(sat)) gstar = 4. * nav * pi * (rstar**3) / (3.*vo1) c Loop over size bins do 200 i=1,nbin_cld if ( n_ccn(i) .lt. 1e-10 ) then c no dust, no need to compute nucleation! nucrate(i)=0. goto 200 endif xratio = rad_cld(i) / rstar fistar = (4./3.*pi) * sig(temp) * (rstar**2.) * & fshape(mtetalocal,xratio) deltaf = (2.*desorp-surfdif-fistar)/ & (kbz*temp) deltaf = min( max(deltaf, -100.), 100.) if (deltaf.eq.-100.) then nucrate(i) = 0. else zeldov = sqrt ( fistar / & (3.*pi*kbz*temp*(gstar**2.)) ) nucrate(i)= zeldov * kbz * temp * rstar & * rstar * 4. * pi & * ( nh2o*rad_cld(i) )**2. & / ( fshape(mtetalocal,xratio) * nus * m0 ) & * dexp (deltaf) endif 200 continue else do i=1,nbin_cld nucrate(i) = 0. enddo endif return end ********************************************************* double precision function fshape(cost,rap) implicit none * function computing the f(m,x) factor * * related to energy required to form a critical embryo * ********************************************************* double precision cost,rap double precision phi double precision a,b,c phi = sqrt( 1. - 2.*cost*rap + rap**2 ) a = 1. + ( (1.-cost*rap)/phi )**3 b = (rap**3) * (2.-3.*(rap-cost)/phi+((rap-cost)/phi)**3) c = 3. * cost * (rap**2) * ((rap-cost)/phi-1.) fshape = 0.5*(a+b+c) if (rap.gt.3000.) fshape = ((2.+cost)*(1.-cost)**2)/4. return end