source: trunk/LMDZ.MARS/libf/phymars/nonoro_gwd_mix_mod.F90 @ 3567

Last change on this file since 3567 was 3398, checked in by jliu, 6 months ago

Un petit bug fixed in mixing traceurs when doing AR-1: the last step q tendency
was forgot to give to montainant step. Thus all mixing-induce tendency becomes
zero due to initiallization values are zero.

File size: 40.7 KB
Line 
1MODULE nonoro_gwd_mix_mod
2
3IMPLICIT NONE
4
5REAL,allocatable,save :: du_eddymix_gwd(:,:) ! Zonal wind tendency due to GWD
6REAL,allocatable,save :: dv_eddymix_gwd(:,:) ! Meridional wind tendency due to GWD
7REAL,allocatable,save :: dh_eddymix_gwd(:,:) ! PT tendency due to GWD
8REAL,allocatable,save :: dq_eddymix_gwd(:,:,:) ! tracers tendency due to GWD
9REAL,allocatable,save :: de_eddymix_rto(:,:) ! Meridional wind tendency due to GWD
10REAL,allocatable,save :: df_eddymix_flx(:,:) ! Meridional wind tendency due to GWD
11!REAL,ALLOCATABLE,SAVE :: east_gwstress(:,:) ! Profile of eastward stress
12!REAL,ALLOCATABLE,SAVE :: west_gwstress(:,:) ! Profile of westward stress
13LOGICAL, save :: calljliu_gwimix ! flag for using non-orographic GW-induced mixing
14
15!$OMP THREADPRIVATE(du_eddymix_gwd,dv_eddymix_gwd,dh_eddymix_gwd,dq_eddymix_gwd,de_eddymix_rto,df_eddymix_flx,calljliu_gwimix)
16!,east_gwstress,west_gwstress)
17
18CONTAINS
19
20      SUBROUTINE NONORO_GWD_MIX(ngrid,nlayer,DTIME,nq,cpnew, rnew, pp,  &
21                  zmax_therm, pt, pu, pv, pq, pht, pdt, pdu, pdv, pdq, pdht, &
22                  d_pq, d_t, d_u, d_v)
23
24    !--------------------------------------------------------------------------------
25    ! Parametrization of the eddy diffusion coefficient due to a discrete
26    ! number of gravity waves.
27    ! J.LIU
28    ! Version 01, Gaussian distribution of the source
29    ! LMDz model online version     
30    ! 
31    !---------------------------------------------------------------------------------
32
33      use comcstfi_h, only: g, pi, r,rcp
34      USE ioipsl_getin_p_mod, ONLY : getin_p
35      use vertical_layers_mod, only : presnivs
36      use geometry_mod, only: cell_area
37      use write_output_mod, only: write_output
38#ifdef CPP_XIOS
39     use xios_output_mod, only: send_xios_field
40#endif     
41     
42      implicit none
43      include "callkeys.h"
44
45      CHARACTER (LEN=20) :: modname='NONORO_GWD_MIX'
46      CHARACTER (LEN=80) :: abort_message
47
48
49    ! 0. DECLARATIONS:
50
51    ! 0.1 INPUTS
52    INTEGER, intent(in):: ngrid          ! number of atmospheric columns
53    INTEGER, intent(in):: nlayer         ! number of atmospheric layers
54    INTEGER, INTENT(IN) :: nq            ! number of tracer species in traceurs.def
55!    integer, parameter::   nesp =42      ! number of traceurs in chemistry
56    REAL, intent(in):: DTIME             ! Time step of the Physics(s)
57    REAL, intent(in):: zmax_therm(ngrid) ! Altitude of max velocity thermals (m)
58!    REAL, intent(in):: loss(nesp)       ! Chemical reaction loss rate
59    REAL,INTENT(IN) :: cpnew(ngrid,nlayer)! Cp of the atmosphere
60    REAL,INTENT(IN) :: rnew(ngrid,nlayer) ! R of the atmosphere
61    REAL, intent(in):: pp(ngrid,nlayer)  ! Pressure at full levels(Pa)
62    REAL, intent(in):: pt(ngrid,nlayer)  ! Temp at full levels(K)
63    REAL, intent(in):: pu(ngrid,nlayer)  ! Zonal wind at full levels(m/s)
64    REAL, intent(in):: pv(ngrid,nlayer)  ! Meridional winds at full levels(m/s)
65    REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq
66    REAL, INTENT(IN) :: pht(ngrid,nlayer) ! advected field of potential temperature
67    REAL, INTENT(IN) :: pdht(ngrid,nlayer) ! tendancy of potential temperature
68    REAL, INTENT(IN) :: pdq(ngrid,nlayer,nq)! tendancy field pq
69    REAL,INTENT(in) :: pdt(ngrid,nlayer) ! Tendency on temperature (K/s)
70    REAL,INTENT(in) :: pdu(ngrid,nlayer) ! Tendency on zonal wind (m/s/s)
71    REAL,INTENT(in) :: pdv(ngrid,nlayer) ! Tendency on meridional wind (m/s/s)
72
73    ! 0.2 OUTPUTS
74!    REAL, intent(out):: zustr(ngrid)       ! Zonal surface stress
75!    REAL, intent(out):: zvstr(ngrid)       ! Meridional surface stress
76    REAL, intent(out):: d_t(ngrid, nlayer) ! Tendency on temperature (K/s) due to gravity waves (not used set to zero)
77    REAL, intent(out):: d_u(ngrid, nlayer) ! Tendency on zonal wind (m/s/s) due to gravity waves
78    REAL, intent(out):: d_v(ngrid, nlayer) ! Tendency on meridional wind (m/s/s) due to gravity waves
79    REAL, INTENT(out) :: d_pq(ngrid,nlayer,nq)! tendancy field pq
80    REAL :: d_h(ngrid, nlayer)  ! Tendency on PT (T/s/s) due to gravity waves mixing
81    ! 0.3 INTERNAL ARRAYS
82    REAL :: TT(ngrid, nlayer)   ! Temperature at full levels
83    REAL :: RHO(ngrid, nlayer)  ! Mass density at full levels
84    REAL :: UU(ngrid, nlayer)   ! Zonal wind at full levels
85    REAL :: VV(ngrid, nlayer)   ! Meridional winds at full levels
86    REAL :: HH(ngrid, nlayer)   ! potential temperature at full levels
87    REAL :: BVLOW(ngrid)        ! initial N at each grid (not used)
88
89    INTEGER II, JJ, LL, QQ
90
91    ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED
92    REAL, parameter:: DELTAT = 24. * 3600.
93   
94    ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS
95    INTEGER, PARAMETER:: NK = 2 ! number of horizontal wavenumbers
96    INTEGER, PARAMETER:: NP = 2 ! directions (eastward and westward) phase speed
97    INTEGER, PARAMETER:: NO = 2 ! absolute values of phase speed
98    INTEGER, PARAMETER:: NA = 5 ! number of realizations to get the phase speed
99    INTEGER, PARAMETER:: NW = NK * NP * NO ! Total numbers of gravity waves
100    INTEGER JK, JP, JO, JW      ! Loop index for NK,NP,NO, and NW
101
102    REAL, save :: kmax             ! Max horizontal wavenumber (lambda min,lambda=2*pi/kmax),kmax=N/u, u(=30~50) zonal wind velocity at launch altitude
103!$OMP THREADPRIVATE(kmax)
104    REAL, save :: kmin             ! Min horizontal wavenumber (lambda max = 314 km,lambda=2*pi/kmin)
105!$OMP THREADPRIVATE(kmin)
106    REAL kstar                     ! Min horizontal wavenumber constrained by horizontal resolution
107
108    REAL :: max_k(ngrid)           ! max_k=max(kstar,kmin)
109    REAL, parameter:: cmin = 1.    ! Min horizontal absolute phase velocity (not used)   
110    REAL CPHA(ngrid)               ! absolute PHASE VELOCITY frequency
111    REAL ZK(NW, ngrid)             ! Horizontal wavenumber amplitude
112    REAL ZP(NW, ngrid)             ! Horizontal wavenumber angle       
113    REAL ZO(NW, ngrid)             ! Absolute frequency
114
115    REAL maxp(NW,ngrid)                ! wave saturation index
116    REAL maxs(NW,ngrid)                ! wave saturation index
117    integer LLSATURATION(NW,ngrid)     ! layer where the gravity waves break
118    integer LLZCRITICAL(NW,ngrid)      ! layer where the gravity waves depleting
119    integer ZHSATURATION(NW,ngrid)     ! altitude of the layer where the gravity waves break
120    INTEGER ll_zb(ngrid)               ! layer where the gravity waves break
121    INTEGER ll_zc(ngrid)               ! layer where the gravity waves break
122    integer ll_zb_ii,ll_zc_ii
123    integer ll_zb_max, ll_zb_max_r
124    REAL d_eddy_mix_p(NW,ngrid)        ! Diffusion coefficients where ll> = ll_zb
125    REAL d_eddy_mix_m(NW,ngrid)        ! Diffusion coefficients where ll< ll_zb
126    REAL d_eddy_mix_s(NW,ngrid)        ! Diffusion coefficients where ll< ll_zb
127    REAL lambda_img(NW,ngrid)
128    REAL d_eddy_mix_p_ll(nlayer,NW,ngrid)  ! Diffusion coefficients where ll> = ll_zb
129    REAL d_eddy_mix_m_ll(nlayer,NW,ngrid)  ! Diffusion coefficients where ll< ll_zb
130    REAL d_eddy_mix_tot_ll(nlayer,NW,ngrid)  ! Diffusion coefficients where ll> = ll_zb
131    REAL d_eddy_mix_tot(ngrid, nlayer+1)
132    REAL d_eddy_mix(NW,ngrid)          ! Comprehensive Diffusion coefficients
133    REAL u_eddy_mix_p(NW, ngrid)       ! Zonal Diffusion coefficients
134    REAL v_eddy_mix_p(NW, ngrid)       ! Meridional Diffusion coefficients
135    REAL h_eddy_mix_p(NW, ngrid)       ! potential temperature DC
136    Real u_eddy_mix_tot(ngrid, nlayer+1)  ! Total zonal D
137    Real v_eddy_mix_tot(ngrid, nlayer+1)  ! Total meridional D
138    Real h_eddy_mix_tot(ngrid, nlayer+1)  ! Total PT D
139    REAL U_shear(ngrid,nlayer)
140    Real wwp_vertical_tot(nlayer+1, NW, ngrid)  ! Total meridional D
141    Real wwp_vertical_ll(nlayer+1)
142    real eddy_mix_ll(nlayer)
143    real eddy_mix_tot_ll(nlayer)
144    REAL pq_eddy_mix_p(NW,ngrid,nq)
145    REAL pq_eddy_mix_tot(ngrid, nlayer+1,nq)
146    REAL zq(ngrid,nlayer,nq) ! advected field nq
147    REAL, save:: eff
148!$OMP THREADPRIVATE(eff)
149    REAL, save:: eff1
150!$OMP THREADPRIVATE(eff1)
151    REAL, save:: vdl
152!$OMP THREADPRIVATE(vdl)     
153
154
155    REAL intr_freq_m(nw, ngrid)          ! Waves Intr. freq. at the 1/2 lev below the full level (previous name: ZOM)
156    REAL intr_freq_p(nw, ngrid)          ! Waves Intr. freq. at the 1/2 lev above the full level (previous name: ZOP)
157    REAL wwm(nw, ngrid)                  ! Wave EP-fluxes at the 1/2 level below the full level
158    REAL wwp(nw, ngrid)                  ! Wave EP-fluxes at the 1/2 level above the full level
159    REAL wwpsat(nw,ngrid)                ! Wave EP-fluxes of saturation
160    REAL u_epflux_p(nw, ngrid)           ! Partial zonal flux (=for each wave) at the 1/2 level above the full level (previous name: RUWP)
161    REAL v_epflux_p(nw, ngrid)           ! Partial meridional flux (=for each wave) at the 1/2 level above the full level (previous name: RVWP)
162    REAL u_epflux_tot(ngrid, nlayer + 1) ! Total zonal flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RUW) 
163    REAL v_epflux_tot(ngrid, nlayer + 1) ! Total meridional flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RVW)
164    REAL epflux_0(nw, ngrid)             ! Fluxes at launching level (previous name: RUW0)
165    REAL, save :: epflux_max             ! Max EP flux value at launching altitude (previous name: RUWMAX, tunable)
166!$OMP THREADPRIVATE(epflux_max)
167    INTEGER LAUNCH                       ! Launching altitude
168    REAL, save :: xlaunch                ! Control the launching altitude by pressure
169!$OMP THREADPRIVATE(xlaunch)
170    REAL, parameter:: zmaxth_top = 8000. ! Top of convective layer (approx. not used)
171    REAL cmax(ngrid,nlayer)             ! Max horizontal absolute phase velocity (at the maginitide of zonal wind u at the launch altitude)
172
173    ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS
174    REAL, save :: sat                 ! saturation parameter(tunable)
175!$OMP THREADPRIVATE(sat)
176    REAL, save :: rdiss               ! dissipation coefficient (tunable)
177!$OMP THREADPRIVATE(rdiss)
178    REAL, parameter:: zoisec = 1.e-10 ! security for intrinsic frequency
179
180    ! 0.3.3 Background flow at 1/2 levels and vertical coordinate
181    REAL H0bis(ngrid, nlayer)          ! Characteristic Height of the atmosphere (specific locations)
182    REAL, save:: H0                    ! Characteristic Height of the atmosphere (constant)
183!$OMP THREADPRIVATE(H0)
184    REAL, parameter:: pr = 250         ! Reference pressure [Pa]
185    REAL, parameter:: tr = 220.        ! Reference temperature [K]
186    REAL ZH(ngrid, nlayer + 1)         ! Log-pressure altitude (constant H0)
187    REAL ZHbis(ngrid, nlayer + 1)      ! Log-pressure altitude (varying H0bis)
188    REAL UH(ngrid, nlayer + 1)         ! zonal wind at 1/2 levels
189    REAL VH(ngrid, nlayer + 1)         ! meridional wind at 1/2 levels
190    REAL PH(ngrid, nlayer + 1)         ! Pressure at 1/2 levels
191    REAL, parameter:: psec = 1.e-20    ! Security to avoid division by 0 pressure(!!IMPORTANT: should be lower than the topmost layer's pressure)
192    REAL BV(ngrid, nlayer + 1)         ! Brunt Vaisala freq. (N^2) at 1/2 levels
193    REAL, parameter:: bvsec = 1.e-3    ! Security to avoid negative BV 
194    REAL HREF(nlayer + 1)              ! Reference pressure for launching altitude
195
196
197    REAL RAN_NUM_1,RAN_NUM_2,RAN_NUM_3
198    INTEGER first_breaking_flag(ngrid)
199    INTEGER first_satuatio_flag(ngrid)
200
201    LOGICAL,SAVE :: firstcall = .true.
202!$OMP THREADPRIVATE(firstcall)
203
204!-----------------------------------------------------------------------------------------------------------------------
205!  1. INITIALISATIONS
206!-----------------------------------------------------------------------------------------------------------------------
207     IF (firstcall) THEN
208        write(*,*) "nonoro_gwd_mix: non-oro GW-induced mixing is active!"
209        epflux_max = 5.E-4 ! Mars' value !!
210        call getin_p("nonoro_gwd_epflux_max", epflux_max)
211        write(*,*) "NONORO_GWD_MIX: epflux_max=", epflux_max
212        sat = 1.5 ! default gravity waves saturation value !!
213        call getin_p("nonoro_gwd_sat", sat)
214        write(*,*) "NONORO_GWD_MIX: sat=", sat     
215!        cmax = 50. ! default gravity waves phase velocity value !!
216!        call getin_p("nonoro_gwd_cmax", cmax)
217!        write(*,*) "NONORO_GWD_MIX: cmax=", cmax
218        rdiss=0.07 ! default coefficient of dissipation !!
219        call getin_p("nonoro_gwd_rdiss", rdiss)
220        write(*,*) "NONORO_GWD_MIX: rdiss=", rdiss
221        kmax=1.E-4 ! default Max horizontal wavenumber !!
222        call getin_p("nonoro_gwd_kmax", kmax)
223        write(*,*) "NONORO_GWD_MIX: kmax=", kmax
224        kmin=7.E-6 ! default Max horizontal wavenumber !!
225        call getin_p("nonoro_gwd_kmin", kmin)
226        write(*,*) "NONORO_GWD_MIX: kmin=", kmin
227        xlaunch=0.6 ! default GW luanch altitude controller !!
228        call getin_p("nonoro_gwd_xlaunch", xlaunch)
229        write(*,*) "NONORO_GWD_MIX: xlaunch=", xlaunch
230        eff=0.1 ! Diffusion effective factor !!
231        call getin_p("nonoro_gwimixing_eff", eff)
232        write(*,*) "NONORO_GWD_MIX: eff=", eff
233        eff1=0.1 ! Diffusion effective factor !!
234        call getin_p("nonoro_gwimixing_eff1", eff1)
235        write(*,*) "NONORO_GWD_MIX: eff1=", eff1
236        vdl=1.5 ! Diffusion effective factor !!
237        call getin_p("nonoro_gwimixing_vdl", vdl)
238        write(*,*) "NONORO_GWD_MIX: vdl=", vdl
239        ! Characteristic vertical scale height
240        H0 = r * tr / g
241        ! Control
242        if (deltat .LT. dtime) THEN
243             call abort_physic("NONORO_GWD_MIX","gwd random: deltat lower than dtime!",1)
244        endif
245        if (nlayer .LT. nw) THEN
246             call abort_physic("NONORO_GWD_MIX","gwd random: nlayer lower than nw!",1)
247        endif
248        firstcall = .false.
249     ENDIF
250
251! Compute current values of temperature and winds
252    tt(:,:)=pt(:,:)+dtime*pdt(:,:)
253    uu(:,:)=pu(:,:)+dtime*pdu(:,:)
254    vv(:,:)=pv(:,:)+dtime*pdv(:,:)
255    zq(:,:,:)=pq(:,:,:)+dtime*pdq(:,:,:)
256    hh(:,:)=pht(:,:)+dtime*pdht(:,:)
257! Compute the real mass density by rho=p/R(T)T
258     DO ll=1,nlayer
259       DO ii=1,ngrid
260            rho(ii,ll) = pp(ii,ll)/(rnew(ii,ll)*tt(ii,ll))
261       ENDDO
262     ENDDO
263!    print*,'epflux_max just after firstcall:', epflux_max
264
265!-----------------------------------------------------------------------------------------------------------------------
266!  2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS
267!-----------------------------------------------------------------------------------------------------------------------
268    ! Pressure and inverse of pressure at 1/2 level
269    DO LL = 2, nlayer
270       PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.)
271    end DO
272    PH(:, nlayer + 1) = 0.
273    PH(:, 1) = 2. * PP(:, 1) - PH(:, 2)
274
275!    call write_output('nonoro_pp','nonoro_pp', 'm',PP(:,:))
276!    call write_output('nonoro_ph','nonoro_ph', 'm',PH(:,:))
277
278    ! Launching level for reproductible case
279    !Pour revenir a la version non reproductible en changeant le nombre de
280    !process
281    ! Reprend la formule qui calcule PH en fonction de PP=play
282    DO LL = 2, nlayer
283       HREF(LL) = EXP((LOG(presnivs(LL))+ LOG(presnivs(LL - 1))) / 2.)
284    end DO
285    HREF(nlayer + 1) = 0.
286    HREF(1) = 2. * presnivs(1) - HREF(2)
287
288    LAUNCH=0
289    DO LL = 1, nlayer
290       IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL
291    ENDDO
292       
293    ! Log pressure vert. coordinate
294       ZH(:,1) = 0.
295    DO LL = 2, nlayer + 1
296       !ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC))
297        H0bis(:, LL-1) = r * TT(:, LL-1) / g
298          ZH(:, LL) = ZH(:, LL-1) &
299           + H0bis(:, LL-1)*(PH(:, LL-1)-PH(:,LL))/PP(:, LL-1)
300    end DO
301        ZH(:, 1) = H0 * LOG(PR / (PH(:, 1) + PSEC))
302
303!    call write_output('nonoro_zh','nonoro_zh', 'm',ZH(:,2:nlayer+1))
304
305    ! Winds and Brunt Vaisala frequency
306    DO LL = 2, nlayer
307       UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1))                          ! Zonal wind
308       VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1))                          ! Meridional wind
309       ! Brunt Vaisala frequency (=g/T*[dT/dz + g/cp] )
310       BV(:, LL)= G/(0.5 * (TT(:, LL) + TT(:, LL - 1)))                     &
311        *((TT(:, LL) - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1))+ &
312        G / cpnew(:,LL))
313
314       BV(:,LL) =MAX(1.E-12,BV(:,LL)) ! to ensure that BV is positive
315       BV(:,LL) = MAX(BVSEC,SQRT(BV(:,LL))) ! make sure it is not too small
316    end DO
317    BV(:, 1) = BV(:, 2)
318    UH(:, 1) = 0.
319    VH(:, 1) = 0.
320    BV(:, nlayer + 1) = BV(:, nlayer)
321    UH(:, nlayer + 1) = UU(:, nlayer)
322    VH(:, nlayer + 1) = VV(:, nlayer)
323    cmax(:,launch)=UU(:, launch)
324    DO ii=1,ngrid
325       KSTAR = PI/SQRT(cell_area(II))
326       MAX_K(II)=MAX(kmin,kstar)
327    ENDDO
328    call write_output('nonoro_bv','Brunt Vaisala frequency in nonoro', 'Hz',BV(:,2:nlayer+1))
329
330!-----------------------------------------------------------------------------------------------------------------------
331! 3. WAVES CHARACTERISTICS CHOSEN RANDOMLY
332!-----------------------------------------------------------------------------------------------------------------------
333! The mod function of here a weird arguments are used to produce the waves characteristics in a stochastic way
334    DO JW = 1, NW
335             !  Angle
336             DO II = 1, ngrid
337                ! Angle (0 or PI so far)
338                RAN_NUM_1=MOD(TT(II, JW) * 10., 1.)
339                RAN_NUM_2= MOD(TT(II, JW) * 100., 1.)
340                ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.)* PI / 2.
341               
342                ! Horizontal wavenumber amplitude
343                ! From Venus model: TN+GG April/June 2020 (rev2381)
344                ! "Individual waves are not supposed to occupy the entire domain, but only a fraction of it" (Lott+2012)
345                ! ZK(JW, II) = KMIN + (KMAX - KMIN) *RAN_NUM_2
346                KSTAR = PI/SQRT(cell_area(II))         
347                ZK(JW, II) = MAX_K(II) + (KMAX - MAX_K(II)) *RAN_NUM_2
348               
349               ! Horizontal phase speed
350! this computation allows to get a gaussian distribution centered on 0 (right ?)
351! then cmin is not useful, and it favors small values.
352                CPHA(:) = 0.
353                DO JJ = 1, NA
354                    RAN_NUM_3=MOD(TT(II, JW+3*JJ)**2, 1.)
355                    CPHA(ii) = CPHA(ii) + 2.*CMAX(ii,launch)*      &
356                           (RAN_NUM_3 -0.5)*                       &
357                           SQRT(3.)/SQRT(NA*1.)
358                END DO
359                IF (CPHA(ii).LT.0.)  THEN
360                   CPHA(ii) = -1.*CPHA(ii)
361                   ZP(JW,II) = ZP(JW,II) + PI
362                ENDIF
363! otherwise, with the computation below, we get a uniform distribution between cmin and cmax.
364!           ran_num_3 = mod(tt(ii, jw)**2, 1.)
365!           cpha = cmin + (cmax - cmin) * ran_num_3
366
367                ! Intrinsic frequency
368                ZO(JW, II) = CPHA(II) * ZK(JW, II)
369                ! Intrinsic frequency  is imposed
370                ZO(JW, II) = ZO(JW, II)                                            &
371                            + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH)        &
372                            + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH)
373               
374                ! Momentum flux at launch level
375                epflux_0(JW, II) = epflux_max                                      &
376                                  * MOD(100. * (UU(II, JW)**2 + VV(II, JW)**2), 1.)
377              ENDDO
378   end DO
379!     print*,'epflux_0 just after waves charac. ramdon:', epflux_0
380
381!-----------------------------------------------------------------------------------------------------------------------
382! 4. COMPUTE THE FLUXES
383!-----------------------------------------------------------------------------------------------------------------------
384    !  4.1  Vertical velocity at launching altitude to ensure the correct value to the imposed fluxes.
385    !------------------------------------------------------
386    DO JW = 1, NW
387       ! Evaluate intrinsic frequency at launching altitude:
388       intr_freq_p(JW, :) = ZO(JW, :)                                    &
389                            - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) &
390                            - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH)
391    end DO
392
393! VERSION WITHOUT CONVECTIVE SOURCE
394       ! Vertical velocity at launch level, value to ensure the imposed
395       ! mom flux:
396         DO JW = 1, NW
397       ! WW is directly a flux, here, not vertical velocity anymore
398            WWP(JW, :) = epflux_0(JW,:)
399            u_epflux_p(JW, :) = COS(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :)
400            v_epflux_p(JW, :) = SIN(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :)
401         end DO
402   
403    !  4.2 Initial flux at launching altitude
404    !------------------------------------------------------
405    u_epflux_tot(:, LAUNCH) = 0
406    v_epflux_tot(:, LAUNCH) = 0
407    DO JW = 1, NW
408       u_epflux_tot(:, LAUNCH) = u_epflux_tot(:, LAUNCH) + u_epflux_p(JW, :)
409       v_epflux_tot(:, LAUNCH) = v_epflux_tot(:, LAUNCH) + v_epflux_p(JW, :)
410    end DO
411
412    !  4.3 Loop over altitudes, with passage from one level to the next done by:
413    !----------------------------------------------------------------------------
414    !    i) conserving the EP flux,
415    !    ii) dissipating a little,
416    !    iii) testing critical levels,
417    !    iv) testing the breaking.
418    !----------------------------------------------------------------------------
419     
420    wwp_vertical_tot(:, :,:) =0.
421    DO LL = LAUNCH, nlayer - 1
422       !  W(KB)ARNING: ALL THE PHYSICS IS HERE (PASSAGE FROM ONE LEVEL TO THE NEXT)
423       DO JW = 1, NW
424          intr_freq_m(JW, :) = intr_freq_p(JW, :)
425          WWM(JW, :) = WWP(JW, :)
426          ! Intrinsic Frequency
427          intr_freq_p(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW,:)) * UH(:, LL + 1)     &
428                               - ZK(JW, :) * SIN(ZP(JW,:)) * VH(:, LL + 1)
429          ! Vertical velocity in flux formulation
430
431          wwpsat(JW,:) =  ABS(intr_freq_p(JW, :))**3 / (2.*BV(:, LL+1))                  &
432                                       * rho(:,launch)*exp(-zh(:, ll + 1) / H0)          &
433                                       * SAT**2 *KMIN**2 / ZK(JW, :)**4 
434          WWP(JW, :) = MIN(                                                              &
435                     ! No breaking (Eq.6)
436                     WWM(JW, :)                                                          &
437                     ! Dissipation (Eq. 8)(real rho used here rather than pressure
438                     ! parametration because the original code has a bug if the density of
439                     ! the planet at the launch altitude not approximate 1):                     !
440                     * EXP(- RDISS*2./rho(:, LL + 1)                                     &
441                     * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3                             &
442                     / MAX(ABS(intr_freq_p(JW, :) + intr_freq_m(JW, :)) / 2., ZOISEC)**4 &
443                     * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))),                      &
444                     ! Critical levels (forced to zero if intrinsic frequency
445                     ! changes sign)
446                     MAX(0., SIGN(1., intr_freq_p(JW, :) * intr_freq_m(JW, :)))          &
447                     ! Saturation (Eq. 12) (rho at launch altitude is imposed by J.Liu.
448                     ! Same reason with Eq. 8)
449                     * WWPSAT(JW,:)) 
450       end DO
451       ! END OF W(KB)ARNING
452
453       !      first_breaking_flag(:)=0 !mixing start at first breaking
454       !      first_satuatio_flag(:)=0 
455
456       DO JW=1,NW
457           wwp_vertical_tot(ll, JW, :) = WWP(JW,:)/rho(:,ll)
458       ENDDO           
459    end DO ! DO LL = LAUNCH, nlayer - 1
460     ! print*, "this line is for tunning"
461
462    DO II=1, ngrid
463       DO JW=1,NW
464          wwp_vertical_ll(:)=wwp_vertical_tot(:, JW, II)
465          ll_zb_max = MAXloc(wwp_vertical_ll(:),1)
466          !if (LLSATURATION(JW,II).ne.-1000) then
467              LLSATURATION(JW,II)=ll_zb_max
468          !endif
469         ! print*, "this line is for tunning"
470         if (ll_zb_max .gt. 1) then
471          !ll_zb_max_r =MAXloc(wwp_vertical_ll(nlayer:1:-1),1)
472          !if (ll_zb_max_r .gt. ll_zb_max) LLSATURATION(JW,II)=ll_zb_max_r
473          DO ll = nlayer,ll_zb_max,-1
474            if (wwp_vertical_ll(ll)-wwp_vertical_ll(ll-1).gt. 0) then
475               LLSATURATION(JW,II)=ll
476               goto 119
477            endif                     
478          ENDDO
479119       continue
480         endif
481         ! if (ll_zb_max .gt. launch) then
482         !    DO LL = (nlayer + 1), ll_zb_max,-1
483         !       if (abs(wwp_vertical_ll(ll)).le. 1.e-9)  LLZCRITICAL(JW,II)=LL
484         !    ENDDO
485         ! else
486         !    LLZCRITICAL(JW,II)=1
487         ! endif
488         !print*, "this line is for tunning"
489       ENDDO
490    ENDDO
491    !print*, "this line is for tunning"   
492
493
494    DO JW = 1, NW
495       ! Evaluate intrinsic frequency at launching altitude:
496       intr_freq_p(JW, :) = ZO(JW, :)                                    &
497                            - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) &
498                            - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH)
499    end DO
500      d_eddy_mix_p_ll(:,:,:)=0.
501      d_eddy_mix_m_ll(:,:,:)=0.
502      d_eddy_mix_p(:,:)=0.
503      d_eddy_mix_m(:,:)=0.
504      d_eddy_mix_s(:,:)=0.
505      lambda_img(:,:) = 0.
506      u_shear(:,:)= 0.
507    DO LL = LAUNCH, nlayer - 1
508    U_shear(:,ll)=(UU(:, LL+1)-UU(:, LL)) /(ZH(:, LL+1) - ZH(:, LL))
509       DO II=1,ngrid
510       ! all the eddy diffusion parameters are culculated at here
511        DO JW = 1, NW
512             intr_freq_m(JW, II) = intr_freq_p(JW, II)
513             ! Intrinsic Frequency
514             intr_freq_p(JW, II) = ZO(JW, II) - ZK(JW, II) * COS(ZP(JW,II)) * UH(II, LL + 1) &
515                               - ZK(JW, II) * SIN(ZP(JW,II)) * VH(II, LL + 1)
516           ll_zb(II)= LLSATURATION(JW,II)
517           ll_zb_ii = ll_zb(II)
518       !    ll_zc(II)= LLZCRITICAL(JW,II)
519       !    ll_zc_ii = ll_zc(II)
520       !    If (ll_zb_ii.le. launch .or. ll .gt. ll_zc_ii) then
521           If (ll .lt. ll_zb_ii .or. ll_zb_ii.lt. launch) then
522              d_eddy_mix_p(JW,II)=0.
523              d_eddy_mix_m(JW,II)=0.
524              d_eddy_mix_p_ll(ll,JW,ii)=0.
525              d_eddy_mix_m_ll(ll,JW,ii)=0.
526           endif 
527           IF (LL.GE.ll_zb_ii .and. ll_zb_ii.ge. launch) THEN
528              lambda_img(JW,II) = 0.5 / H0bis(II,LL)                                             &
529                                  - 1.5 /((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.)       &                                             
530                                  *(intr_freq_p(JW, II) - intr_freq_m(JW, II))                   &
531                                  /(ZH(II, LL+1) - ZH(II, LL))                                   &
532                                  + 1.5/((BV(II,LL)+BV(II, LL+1))/2.)                            &
533                                  *(BV(II, LL+1)-BV(II, LL)) /(ZH(II, LL+1) - ZH(II, LL)) 
534           !lambda_img(JW,II) = max(0.5 / H0bis(II,LL), abs(lambda_img(JW,II)))
535           if (lambda_img(JW,II).lt. 0) lambda_img(JW,II) = 0.
536           !if (lambda_img(JW,II).gt. 0.5/H0bis(II,LL)) lambda_img(JW,II) = 0.5/H0bis(II,LL)
537           d_eddy_mix_s(JW,II) = eff*MAX(ABS(intr_freq_p(JW, II) + intr_freq_m(JW, II)) / 2.,        &
538                                      ZOISEC)**4 / (ZK(JW, II)**3 * ((BV(II,LL)+BV(II, LL+1))/2.)**3)&
539                                     *lambda_img(JW,II)
540                                     ! *abs(0.5 / H0bis(II,LL) - 1.5*ZK(JW, II)                       &
541                                     ! /abs((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.)          &
542                                     ! *(UU(II, LL+1)-UU(II, LL)) /(ZH(II, LL+1) - ZH(II, LL))        &
543                                     ! + 1.5/((BV(II,LL)+BV(II, LL+1))/2.)                            &
544                                     ! *(BV(II, LL+1)-BV(II, LL)) /(ZH(II, LL+1) - ZH(II, LL)))       
545                                     ! *MAX(0., sign(1., lambda_img(JW,II)))                   
546                                       
547           d_eddy_mix_p(JW,II) = Min( d_eddy_mix_s(JW,II) ,                                          &
548                                 -((wwp_vertical_tot(ll+1, JW, II)-wwp_vertical_tot(ll, JW, II))     &
549                                 /(ZH(II, LL+1) - ZH(II, LL)))                                       &
550                                 *((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.)*eff1             &
551                                 /(((BV(II, LL+1) + BV(II,LL)) / 2.)**2 * ZK(JW, II))) 
552
553                if (d_eddy_mix_p(jw,ii) .lt. 0.) then
554                        print*, "this line is for tunning"
555                endif                       
556           ENDIF
557   
558         
559        end DO  !JW = 1, NW
560       end DO !II=1,ngrid           
561   ! print*, "this line is for tunning"
562      d_eddy_mix_p_ll(ll,:,:)=d_eddy_mix_p(:,:)
563     ! print*, "this line is for tunning"
564     ! if (ll.ge.55) then
565     !  print*, "this line is for tunning"
566     ! endif   
567    end DO ! DO LL = LAUNCH, nlayer - 1
568
569    call write_output('zonal_shear','u shear', 's-1',u_shear(:,:))
570
571    DO II=1,ngrid       
572    DO JW = 1, NW               
573         ll_zb(II)= LLSATURATION(JW,II)
574         ll_zb_ii = ll_zb(II)
575                 
576       do LL=launch, nlayer-1
577         IF (LL.eq.ll_zb_ii .and. ll_zb_ii .gt.launch) THEN
578          d_eddy_mix_m(JW,II) = d_eddy_mix_p_ll(ll,JW,ii)
579         ! if (ii.eq. 848)  then                                       
580         ! print*, "this line is for tunning"
581         ! endif
582         ENDIF
583       enddo   
584
585    ENDDO
586    ENDDO
587
588    DO II=1,ngrid       
589    DO JW = 1, NW               
590         ll_zb(II)= LLSATURATION(JW,II)
591         ll_zb_ii = ll_zb(II)
592      DO LL= launch, (ll_zb_ii - 1)
593        if (ll_zb_ii .gt. launch) then
594        d_eddy_mix_m_ll(ll,JW,II) = d_eddy_mix_m(JW,II)                           &
595                                   * exp(vdl*(ZH(II, LL)-ZH(II, ll_zb_ii) ) / H0)
596        else
597        d_eddy_mix_m_ll(ll,JW,II) = 0.
598        endif
599      endDO
600    ENDDO
601    ENDDO
602   ! print*, "this line is for tunning"
603
604
605    DO II=1, ngrid
606       DO JW=1,NW
607         eddy_mix_ll(:) = d_eddy_mix_p_ll(:,JW,II)+ d_eddy_mix_m_ll(:,JW,II)
608      ! print*, "this line is for tunning" 
609       enddo
610    ENDDO
611
612
613    DO JW = 1, NW
614       ! Evaluate intrinsic frequency at launching altitude:
615       intr_freq_p(JW, :) = ZO(JW, :)                                    &
616                            - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) &
617                            - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH)
618    end DO
619    u_eddy_mix_tot(:, :) = 0.
620    v_eddy_mix_tot(:, :) = 0.
621    h_eddy_mix_tot(:, :) = 0.
622    u_eddy_mix_p(:, :)=0.
623    v_eddy_mix_p(:, :)=0.
624    h_eddy_mix_p(:, :)=0.
625    d_eddy_mix_tot_ll(:,:,:)=0.
626    pq_eddy_mix_p(:,:,:)=0.
627    pq_eddy_mix_tot(:, :,:)=0.
628    d_eddy_mix(:,:)=0.
629    d_eddy_mix_p_ll(nlayer,:,:)=d_eddy_mix_p_ll(nlayer-1,:,:)
630    d_eddy_mix_tot(:, :) =0.
631    DO LL = LAUNCH, nlayer - 1
632       d_eddy_mix(:,:) = d_eddy_mix_m_ll(ll,:,:) + d_eddy_mix_p_ll(ll,:,:)
633      DO JW = 1, NW
634         u_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(UU(:, LL + 1) - UU(:, LL))          &
635                               /(ZH(:, LL + 1) - ZH(:, LL))                          &
636                               *SIGN(1.,intr_freq_p(JW, :)) * COS(ZP(JW, :))
637         v_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(VV(:, LL + 1) - VV(:, LL))          &
638                               /(ZH(:, LL + 1) - ZH(:, LL))                          &
639                               *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :))
640         h_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(HH(:, LL + 1) - HH(:, LL))          &
641                               /(ZH(:, LL + 1) - ZH(:, LL))                          &
642                               *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :))
643
644      ENDDO
645       u_eddy_mix_tot(:, LL+1)=0.
646       v_eddy_mix_tot(:, LL+1)=0.
647       h_eddy_mix_tot(:, LL+1)=0.
648      DO JW=1,NW
649        u_eddy_mix_tot(:, LL+1) = u_eddy_mix_tot(:, LL+1) + u_eddy_mix_p(JW, :)
650        v_eddy_mix_tot(:, LL+1) = v_eddy_mix_tot(:, LL+1) + v_eddy_mix_p(JW, :)
651        h_eddy_mix_tot(:, LL+1) = h_eddy_mix_tot(:, LL+1) + h_eddy_mix_p(JW, :)
652      ENDDO
653      DO JW=1,NW
654!      d_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL+1) + d_eddy_mix(JW,:)
655      d_eddy_mix_tot(:, LL+1) = d_eddy_mix_tot(:, LL+1) + d_eddy_mix(JW,:)
656     !     u_eddy_mix_tot(:, LL+1) = u_eddy_mix_tot(:, LL+1)+ u_eddy_mix_p(JW, :)
657     !     v_eddy_mix_tot(:, LL+1) = v_eddy_mix_tot(:, LL+1)+ v_eddy_mix_p(JW, :)         
658      ENDDO
659     ! if (ll.ge.55) then
660      ! print*, "this line is for tunning"
661      !endif
662      DO QQ=1,NQ
663         DO JW=1,NW
664         pq_eddy_mix_p(JW, :, QQ) = d_eddy_mix(JW, :)* (zq(:, LL + 1,QQ)- zq(:, LL, QQ)) &
665                                   /(ZH(:, LL + 1)- ZH(:, LL))                           &
666                                   *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) 
667      !   pq_eddy_mix_tot(:, LL+1,QQ) = pq_eddy_mix_tot(:, LL+1,QQ)                   &
668      !                               + pq_eddy_mix_p(JW, :, QQ)
669         ENDDO
670      ENDDO
671       pq_eddy_mix_tot(:, LL+1,:)=0.
672      DO JW=1,NW
673        DO QQ=1, NQ
674          pq_eddy_mix_tot(:, LL+1,QQ) = pq_eddy_mix_tot(:, LL+1,QQ) + pq_eddy_mix_p(JW, :, QQ)
675        ENDDO
676      endDO
677     ! print*, "this line is for tunning"
678    ENDDO  !LL = LAUNCH, nlayer - 1
679   
680    d_eddy_mix_tot(:, LAUNCH) = d_eddy_mix_tot(:, LAUNCH+1)
681    d_eddy_mix_tot(:, nlayer + 1) = d_eddy_mix_tot(:, nlayer)
682    d_eddy_mix_tot(:,:) = DTIME/DELTAT/REAL(NW) * d_eddy_mix_tot(:,:)            &
683                         + (1.-DTIME/DELTAT) * de_eddymix_rto(:,:)
684    call write_output('nonoro_d_mixing_tot','Total EP Flux along U in nonoro', 'm2s-1',d_eddy_mix_tot(:,2:nlayer+1))
685   ! u_eddy_mix_tot(:, :) = 0.
686   ! v_eddy_mix_tot(:, :) = 0.
687   ! pq_eddy_mix_tot(:, :, :) = 0.
688   ! DO LL = 1, nlayer-1
689     !u_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL)*(UU(:, LL + 1) - UU(:, LL))   &
690     !                        /(ZH(:, LL + 1) - ZH(:, LL)) !*sign(1.,u_shear(:, LL))
691     !v_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL)*(VV(:, LL + 1) - VV(:, LL))   &
692     ! 
693     !                 /(ZH(:, LL + 1) - ZH(:, LL)) !*sign(1.,u_shear(:, LL))
694
695
696
697    ! DO QQ=1, NQ
698    !   pq_eddy_mix_tot(:, LL,QQ) = d_eddy_mix_tot(:, LL)                         &
699    !                               * (zq(:, LL + 1,QQ)- zq(:, LL, QQ))           &
700    !                               /(ZH(:, LL + 1)- ZH(:, LL))
701    ! ENDDO
702
703
704
705
706    !ENDDO  !LL = LAUNCH, nlayer - 1
707   
708    de_eddymix_rto(:,:) = d_eddy_mix_tot(:,:)
709!-----------------------------------------------------------------------------------------------------------------------
710! 5. TENDENCY CALCULATIONS
711!-----------------------------------------------------------------------------------------------------------------------
712
713    ! 5.1 Flow rectification at the top and in the low layers
714    ! --------------------------------------------------------
715    ! Warning, this is the total on all GW
716    u_eddy_mix_tot(:, nlayer + 1) = 0.
717    v_eddy_mix_tot(:, nlayer + 1) = 0.
718    h_eddy_mix_tot(:, nlayer + 1) = 0.
719    pq_eddy_mix_tot(:, nlayer + 1,:)=0.
720    ! Here, big change compared to FLott version:
721    ! We compensate (u_epflux_tot(:, LAUNCH), ie total emitted upward flux
722    !  over the layers max(1,LAUNCH-3) to LAUNCH-1
723    DO LL = 1, max(1,LAUNCH-3)
724      u_eddy_mix_tot(:, LL) = 0.
725      v_eddy_mix_tot(:, LL) = 0.
726      h_eddy_mix_tot(:, LL) = 0.
727    end DO
728
729    DO QQ=1,NQ
730      DO LL = 1, max(1,LAUNCH-3)
731        pq_eddy_mix_tot(:, LL,QQ) = 0.
732      end DO
733    ENDDO
734
735    DO LL = max(2,LAUNCH-2), LAUNCH-1
736      u_eddy_mix_tot(:, LL) = u_eddy_mix_tot(:, LL - 1) + u_eddy_mix_tot(:, LAUNCH)     &
737                              * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3)))
738      v_eddy_mix_tot(:, LL) = v_eddy_mix_tot(:, LL - 1) + v_eddy_mix_tot(:, LAUNCH)     &
739                              * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3)))
740      h_eddy_mix_tot(:, LL) = h_eddy_mix_tot(:, LL - 1) + h_eddy_mix_tot(:, LAUNCH)     &
741                              * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3)))
742    end DO
743
744
745    DO QQ=1,NQ
746      DO LL = max(2,LAUNCH-2), LAUNCH-1
747        pq_eddy_mix_tot(:, LL,QQ) = pq_eddy_mix_tot(:, LL-1,QQ)+pq_eddy_mix_tot(:, LAUNCH,QQ)&
748                                  * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3)))
749      end DO
750    ENDDO
751    !u_eddy_mix_tot(:,:) = DTIME/DELTAT/REAL(NW) * u_eddy_mix_tot(:,:)     &
752    !                     + (1.-DTIME/DELTAT) * df_eddymix_flx(:,:)
753   
754    !do ii=1,ngrid
755    !   if (u_eddy_mix_tot(ii,58).lt. -8000.) then
756    !   print*, ii
757    !   endif
758    !enddo
759
760    ! This way, the total flux from GW is zero, but there is a net transport
761    ! (upward) that should be compensated by circulation
762    ! and induce additional friction at the surface
763    call write_output('nonoro_u_mixing_tot','Total EP Flux along U in nonoro', '',u_eddy_mix_tot(:,2:nlayer+1))
764    call write_output('nonoro_v_mixing_tot','Total EP Flux along V in nonoro', '',v_eddy_mix_tot(:,2:nlayer+1))
765
766    ! 5.2 AR-1 RECURSIVE FORMULA (13) IN VERSION 4
767    !---------------------------------------------
768    DO LL = 1, nlayer
769       !Notice here the d_u and d_v are tendency (For Mars) but not increment(Venus).
770       d_u(:, LL) =  (u_eddy_mix_tot(:, LL + 1) - u_eddy_mix_tot(:, LL)) &
771                    / (ZH(:, LL + 1) - ZH(:, LL))
772       !d_v(:, LL) =  (v_eddy_mix_tot(:, LL + 1) - v_eddy_mix_tot(:, LL)) &
773       !             / (ZH(:, LL + 1) - ZH(:, LL))
774       d_h(:, LL) =  (h_eddy_mix_tot(:, LL + 1) - h_eddy_mix_tot(:, LL)) &
775                    / (ZH(:, LL + 1) - ZH(:, LL))
776    ENDDO
777
778    DO QQ=1,NQ
779       DO ll = 1, nlayer
780          d_pq(:, ll, QQ) =  (pq_eddy_mix_tot(:, LL + 1,QQ) - pq_eddy_mix_tot(:, LL, QQ)) &
781                    / (ZH(:, LL + 1) - ZH(:, LL))
782       end DO
783    ENDDO
784    !df_eddymix_flx(:,:) = u_eddy_mix_tot(:,:)
785    !d_pq(:, :, :)=0.
786    !d_t(:,:) = 0.
787    !d_v(:,:) = 0.
788    !zustr(:) = 0.
789    !zvstr(:) = 0.
790!    call write_output('nonoro_d_u','nonoro_d_u', '',d_u(:,:))
791!    call write_output('nonoro_d_v','nonoro_d_v', '',d_v(:,:))
792
793    ! 5.3 Update tendency of wind with the previous (and saved) values
794    !-----------------------------------------------------------------
795    d_u(:,:) = DTIME/DELTAT/REAL(NW) * d_u(:,:)                       &
796               + (1.-DTIME/DELTAT) * du_eddymix_gwd(:,:)
797    !d_v(:,:) = DTIME/DELTAT/REAL(NW) * d_v(:,:)                       &
798    !           + (1.-DTIME/DELTAT) * dv_eddymix_gwd(:,:)
799    du_eddymix_gwd(:,:) = d_u(:,:)
800    !dv_eddymix_gwd(:,:) = d_v(:,:)
801    d_v(:,:)=0.
802    call write_output('du_eddymix_gwd','Tendency on U due to nonoro GW', 'm.s-2',du_eddymix_gwd(:,:))
803    !call write_output('dv_eddymix_gwd','Tendency on V due to nonoro GW', 'm.s-2',dv_eddymix_gwd(:,:))   
804    d_h(:,:) = DTIME/DELTAT/REAL(NW) * d_h(:,:)                       &
805               + (1.-DTIME/DELTAT) * dh_eddymix_gwd(:,:)
806    do ii=1,ngrid
807    d_t(ii,:) = d_h(ii,:) * (PP(ii,:) / PH(ii,1))**rcp   
808    enddo                 
809               
810    dh_eddymix_gwd(:,:)=d_h(:,:)
811
812    DO QQ=1,NQ
813    d_pq(:, :, QQ) =DTIME/DELTAT/REAL(NW) * d_pq(:, :, QQ)            &
814               + (1.-DTIME/DELTAT) * dq_eddymix_gwd(:, :, QQ)
815    endDO
816
817    do QQ=1,NQ
818    dq_eddymix_gwd(:, :, QQ)=d_pq(:, :, QQ)
819    ENDdo
820
821  END SUBROUTINE NONORO_GWD_MIX
822
823
824
825! ========================================================
826! Subroutines used to allocate/deallocate module variables       
827! ========================================================
828  SUBROUTINE ini_nonoro_gwd_mix(ngrid,nlayer,nq)
829
830  IMPLICIT NONE
831
832      INTEGER, INTENT (in) :: ngrid  ! number of atmospheric columns
833      INTEGER, INTENT (in) :: nlayer ! number of atmospheric layers
834      INTEGER, INTENT (in) :: nq ! number of atmospheric tracers
835
836         allocate(du_eddymix_gwd(ngrid,nlayer))
837         allocate(dv_eddymix_gwd(ngrid,nlayer))
838         allocate(dh_eddymix_gwd(ngrid,nlayer))
839         allocate(dq_eddymix_gwd(ngrid,nlayer,nq))
840         allocate(de_eddymix_rto(ngrid,nlayer+1))
841         allocate(df_eddymix_flx(ngrid,nlayer+1))
842
843          !du_eddymix_gwd(:,:)=0
844          !dv_eddymix_gwd(:,:)=0
845!         allocate(east_gwstress(ngrid,nlayer))
846!         east_gwstress(:,:)=0
847!         allocate(west_gwstress(ngrid,nlayer))
848!         west_gwstress(:,:)=0
849
850  END SUBROUTINE ini_nonoro_gwd_mix
851! ----------------------------------
852  SUBROUTINE end_nonoro_gwd_mix
853
854  IMPLICIT NONE
855
856    if (allocated(du_eddymix_gwd)) deallocate(du_eddymix_gwd)
857    if (allocated(dv_eddymix_gwd)) deallocate(dv_eddymix_gwd)
858    if (allocated(dh_eddymix_gwd)) deallocate(dh_eddymix_gwd)
859    if (allocated(dq_eddymix_gwd)) deallocate(dq_eddymix_gwd)
860    if (allocated(de_eddymix_rto)) deallocate(de_eddymix_rto)
861    if (allocated(df_eddymix_flx)) deallocate(df_eddymix_flx)             
862!         if (allocated(east_gwstress)) deallocate(east_gwstress)
863!         if (allocated(west_gwstress)) deallocate(west_gwstress)
864
865  END SUBROUTINE end_nonoro_gwd_mix
866!-----------------------------------
867!  FUNCTION MAXLOCATION(gwd_normal,gwd_satura)
868
869!  implicit none
870       
871!       INTEGER MAXLOCATION
872!       REAL gwd_normal,gwd_satura
873       
874!       IF (gwd_normal .GT. gwd_satura ) THEN
875!       MAXLOCATION=1
876!       ELSEIF (gwd_normal .LT.gwd_satura) THEN
877!       MAXLOCATION=2
878!       ELSE
879!       MAXLOCATION=1
880!       ENDIF
881       
882!   return
883
884!   END FUNCTION
885
886
887END MODULE nonoro_gwd_mix_mod
Note: See TracBrowser for help on using the repository browser.