1 | MODULE nonoro_gwd_mix_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | REAL,allocatable,save :: du_eddymix_gwd(:,:) ! Zonal wind tendency due to GWD |
---|
6 | REAL,allocatable,save :: dv_eddymix_gwd(:,:) ! Meridional wind tendency due to GWD |
---|
7 | REAL,allocatable,save :: dh_eddymix_gwd(:,:) ! PT tendency due to GWD |
---|
8 | REAL,allocatable,save :: dq_eddymix_gwd(:,:,:) ! tracers tendency due to GWD |
---|
9 | REAL,allocatable,save :: de_eddymix_rto(:,:) ! Meridional wind tendency due to GWD |
---|
10 | REAL,allocatable,save :: df_eddymix_flx(:,:) ! Meridional wind tendency due to GWD |
---|
11 | !REAL,ALLOCATABLE,SAVE :: east_gwstress(:,:) ! Profile of eastward stress |
---|
12 | !REAL,ALLOCATABLE,SAVE :: west_gwstress(:,:) ! Profile of westward stress |
---|
13 | LOGICAL, save :: calljliu_gwimix ! flag for using non-orographic GW-induced mixing |
---|
14 | |
---|
15 | !$OMP THREADPRIVATE(du_eddymix_gwd,dv_eddymix_gwd,dh_eddymix_gwd,dq_eddymix_gwd,de_eddymix_rto,df_eddymix_flx,calljliu_gwimix) |
---|
16 | !,east_gwstress,west_gwstress) |
---|
17 | |
---|
18 | CONTAINS |
---|
19 | |
---|
20 | SUBROUTINE NONORO_GWD_MIX(ngrid,nlayer,DTIME,nq,cpnew, rnew, pp, & |
---|
21 | zmax_therm, pt, pu, pv, pq, pht, pdt, pdu, pdv, pdq, pdht, & |
---|
22 | d_pq, d_t, d_u, d_v) |
---|
23 | |
---|
24 | !-------------------------------------------------------------------------------- |
---|
25 | ! Parametrization of the eddy diffusion coefficient due to a discrete |
---|
26 | ! number of gravity waves. |
---|
27 | ! J.LIU |
---|
28 | ! Version 01, Gaussian distribution of the source |
---|
29 | ! LMDz model online version |
---|
30 | ! |
---|
31 | !--------------------------------------------------------------------------------- |
---|
32 | |
---|
33 | use comcstfi_h, only: g, pi, r,rcp |
---|
34 | USE ioipsl_getin_p_mod, ONLY : getin_p |
---|
35 | use vertical_layers_mod, only : presnivs |
---|
36 | use geometry_mod, only: cell_area |
---|
37 | use write_output_mod, only: write_output |
---|
38 | #ifdef CPP_XIOS |
---|
39 | use xios_output_mod, only: send_xios_field |
---|
40 | #endif |
---|
41 | |
---|
42 | implicit none |
---|
43 | include "callkeys.h" |
---|
44 | |
---|
45 | CHARACTER (LEN=20) :: modname='NONORO_GWD_MIX' |
---|
46 | CHARACTER (LEN=80) :: abort_message |
---|
47 | |
---|
48 | |
---|
49 | ! 0. DECLARATIONS: |
---|
50 | |
---|
51 | ! 0.1 INPUTS |
---|
52 | INTEGER, intent(in):: ngrid ! number of atmospheric columns |
---|
53 | INTEGER, intent(in):: nlayer ! number of atmospheric layers |
---|
54 | INTEGER, INTENT(IN) :: nq ! number of tracer species in traceurs.def |
---|
55 | ! integer, parameter:: nesp =42 ! number of traceurs in chemistry |
---|
56 | REAL, intent(in):: DTIME ! Time step of the Physics(s) |
---|
57 | REAL, intent(in):: zmax_therm(ngrid) ! Altitude of max velocity thermals (m) |
---|
58 | ! REAL, intent(in):: loss(nesp) ! Chemical reaction loss rate |
---|
59 | REAL,INTENT(IN) :: cpnew(ngrid,nlayer)! Cp of the atmosphere |
---|
60 | REAL,INTENT(IN) :: rnew(ngrid,nlayer) ! R of the atmosphere |
---|
61 | REAL, intent(in):: pp(ngrid,nlayer) ! Pressure at full levels(Pa) |
---|
62 | REAL, intent(in):: pt(ngrid,nlayer) ! Temp at full levels(K) |
---|
63 | REAL, intent(in):: pu(ngrid,nlayer) ! Zonal wind at full levels(m/s) |
---|
64 | REAL, intent(in):: pv(ngrid,nlayer) ! Meridional winds at full levels(m/s) |
---|
65 | REAL, INTENT(IN) :: pq(ngrid,nlayer,nq) ! advected field nq |
---|
66 | REAL, INTENT(IN) :: pht(ngrid,nlayer) ! advected field of potential temperature |
---|
67 | REAL, INTENT(IN) :: pdht(ngrid,nlayer) ! tendancy of potential temperature |
---|
68 | REAL, INTENT(IN) :: pdq(ngrid,nlayer,nq)! tendancy field pq |
---|
69 | REAL,INTENT(in) :: pdt(ngrid,nlayer) ! Tendency on temperature (K/s) |
---|
70 | REAL,INTENT(in) :: pdu(ngrid,nlayer) ! Tendency on zonal wind (m/s/s) |
---|
71 | REAL,INTENT(in) :: pdv(ngrid,nlayer) ! Tendency on meridional wind (m/s/s) |
---|
72 | |
---|
73 | ! 0.2 OUTPUTS |
---|
74 | ! REAL, intent(out):: zustr(ngrid) ! Zonal surface stress |
---|
75 | ! REAL, intent(out):: zvstr(ngrid) ! Meridional surface stress |
---|
76 | REAL, intent(out):: d_t(ngrid, nlayer) ! Tendency on temperature (K/s) due to gravity waves (not used set to zero) |
---|
77 | REAL, intent(out):: d_u(ngrid, nlayer) ! Tendency on zonal wind (m/s/s) due to gravity waves |
---|
78 | REAL, intent(out):: d_v(ngrid, nlayer) ! Tendency on meridional wind (m/s/s) due to gravity waves |
---|
79 | REAL, INTENT(out) :: d_pq(ngrid,nlayer,nq)! tendancy field pq |
---|
80 | REAL :: d_h(ngrid, nlayer) ! Tendency on PT (T/s/s) due to gravity waves mixing |
---|
81 | ! 0.3 INTERNAL ARRAYS |
---|
82 | REAL :: TT(ngrid, nlayer) ! Temperature at full levels |
---|
83 | REAL :: RHO(ngrid, nlayer) ! Mass density at full levels |
---|
84 | REAL :: UU(ngrid, nlayer) ! Zonal wind at full levels |
---|
85 | REAL :: VV(ngrid, nlayer) ! Meridional winds at full levels |
---|
86 | REAL :: HH(ngrid, nlayer) ! potential temperature at full levels |
---|
87 | REAL :: BVLOW(ngrid) ! initial N at each grid (not used) |
---|
88 | |
---|
89 | INTEGER II, JJ, LL, QQ |
---|
90 | |
---|
91 | ! 0.3.0 TIME SCALE OF THE LIFE CYCLE OF THE WAVES PARAMETERIZED |
---|
92 | REAL, parameter:: DELTAT = 24. * 3600. |
---|
93 | |
---|
94 | ! 0.3.1 GRAVITY-WAVES SPECIFICATIONS |
---|
95 | INTEGER, PARAMETER:: NK = 2 ! number of horizontal wavenumbers |
---|
96 | INTEGER, PARAMETER:: NP = 2 ! directions (eastward and westward) phase speed |
---|
97 | INTEGER, PARAMETER:: NO = 2 ! absolute values of phase speed |
---|
98 | INTEGER, PARAMETER:: NA = 5 ! number of realizations to get the phase speed |
---|
99 | INTEGER, PARAMETER:: NW = NK * NP * NO ! Total numbers of gravity waves |
---|
100 | INTEGER JK, JP, JO, JW ! Loop index for NK,NP,NO, and NW |
---|
101 | |
---|
102 | REAL, save :: kmax ! Max horizontal wavenumber (lambda min,lambda=2*pi/kmax),kmax=N/u, u(=30~50) zonal wind velocity at launch altitude |
---|
103 | !$OMP THREADPRIVATE(kmax) |
---|
104 | REAL, save :: kmin ! Min horizontal wavenumber (lambda max = 314 km,lambda=2*pi/kmin) |
---|
105 | !$OMP THREADPRIVATE(kmin) |
---|
106 | REAL kstar ! Min horizontal wavenumber constrained by horizontal resolution |
---|
107 | |
---|
108 | REAL :: max_k(ngrid) ! max_k=max(kstar,kmin) |
---|
109 | REAL, parameter:: cmin = 1. ! Min horizontal absolute phase velocity (not used) |
---|
110 | REAL CPHA(ngrid) ! absolute PHASE VELOCITY frequency |
---|
111 | REAL ZK(NW, ngrid) ! Horizontal wavenumber amplitude |
---|
112 | REAL ZP(NW, ngrid) ! Horizontal wavenumber angle |
---|
113 | REAL ZO(NW, ngrid) ! Absolute frequency |
---|
114 | |
---|
115 | REAL maxp(NW,ngrid) ! wave saturation index |
---|
116 | REAL maxs(NW,ngrid) ! wave saturation index |
---|
117 | integer LLSATURATION(NW,ngrid) ! layer where the gravity waves break |
---|
118 | integer LLZCRITICAL(NW,ngrid) ! layer where the gravity waves depleting |
---|
119 | integer ZHSATURATION(NW,ngrid) ! altitude of the layer where the gravity waves break |
---|
120 | INTEGER ll_zb(ngrid) ! layer where the gravity waves break |
---|
121 | INTEGER ll_zc(ngrid) ! layer where the gravity waves break |
---|
122 | integer ll_zb_ii,ll_zc_ii |
---|
123 | integer ll_zb_max, ll_zb_max_r |
---|
124 | REAL d_eddy_mix_p(NW,ngrid) ! Diffusion coefficients where ll> = ll_zb |
---|
125 | REAL d_eddy_mix_m(NW,ngrid) ! Diffusion coefficients where ll< ll_zb |
---|
126 | REAL d_eddy_mix_s(NW,ngrid) ! Diffusion coefficients where ll< ll_zb |
---|
127 | REAL lambda_img(NW,ngrid) |
---|
128 | REAL d_eddy_mix_p_ll(nlayer,NW,ngrid) ! Diffusion coefficients where ll> = ll_zb |
---|
129 | REAL d_eddy_mix_m_ll(nlayer,NW,ngrid) ! Diffusion coefficients where ll< ll_zb |
---|
130 | REAL d_eddy_mix_tot_ll(nlayer,NW,ngrid) ! Diffusion coefficients where ll> = ll_zb |
---|
131 | REAL d_eddy_mix_tot(ngrid, nlayer+1) |
---|
132 | REAL d_eddy_mix(NW,ngrid) ! Comprehensive Diffusion coefficients |
---|
133 | REAL u_eddy_mix_p(NW, ngrid) ! Zonal Diffusion coefficients |
---|
134 | REAL v_eddy_mix_p(NW, ngrid) ! Meridional Diffusion coefficients |
---|
135 | REAL h_eddy_mix_p(NW, ngrid) ! potential temperature DC |
---|
136 | Real u_eddy_mix_tot(ngrid, nlayer+1) ! Total zonal D |
---|
137 | Real v_eddy_mix_tot(ngrid, nlayer+1) ! Total meridional D |
---|
138 | Real h_eddy_mix_tot(ngrid, nlayer+1) ! Total PT D |
---|
139 | REAL U_shear(ngrid,nlayer) |
---|
140 | Real wwp_vertical_tot(nlayer+1, NW, ngrid) ! Total meridional D |
---|
141 | Real wwp_vertical_ll(nlayer+1) |
---|
142 | real eddy_mix_ll(nlayer) |
---|
143 | real eddy_mix_tot_ll(nlayer) |
---|
144 | REAL pq_eddy_mix_p(NW,ngrid,nq) |
---|
145 | REAL pq_eddy_mix_tot(ngrid, nlayer+1,nq) |
---|
146 | REAL zq(ngrid,nlayer,nq) ! advected field nq |
---|
147 | REAL, save:: eff |
---|
148 | !$OMP THREADPRIVATE(eff) |
---|
149 | REAL, save:: eff1 |
---|
150 | !$OMP THREADPRIVATE(eff1) |
---|
151 | REAL, save:: vdl |
---|
152 | !$OMP THREADPRIVATE(vdl) |
---|
153 | |
---|
154 | |
---|
155 | REAL intr_freq_m(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev below the full level (previous name: ZOM) |
---|
156 | REAL intr_freq_p(nw, ngrid) ! Waves Intr. freq. at the 1/2 lev above the full level (previous name: ZOP) |
---|
157 | REAL wwm(nw, ngrid) ! Wave EP-fluxes at the 1/2 level below the full level |
---|
158 | REAL wwp(nw, ngrid) ! Wave EP-fluxes at the 1/2 level above the full level |
---|
159 | REAL wwpsat(nw,ngrid) ! Wave EP-fluxes of saturation |
---|
160 | REAL u_epflux_p(nw, ngrid) ! Partial zonal flux (=for each wave) at the 1/2 level above the full level (previous name: RUWP) |
---|
161 | REAL v_epflux_p(nw, ngrid) ! Partial meridional flux (=for each wave) at the 1/2 level above the full level (previous name: RVWP) |
---|
162 | REAL u_epflux_tot(ngrid, nlayer + 1) ! Total zonal flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RUW) |
---|
163 | REAL v_epflux_tot(ngrid, nlayer + 1) ! Total meridional flux (=for all waves (nw)) at the 1/2 level above the full level (3D) (previous name: RVW) |
---|
164 | REAL epflux_0(nw, ngrid) ! Fluxes at launching level (previous name: RUW0) |
---|
165 | REAL, save :: epflux_max ! Max EP flux value at launching altitude (previous name: RUWMAX, tunable) |
---|
166 | !$OMP THREADPRIVATE(epflux_max) |
---|
167 | INTEGER LAUNCH ! Launching altitude |
---|
168 | REAL, save :: xlaunch ! Control the launching altitude by pressure |
---|
169 | !$OMP THREADPRIVATE(xlaunch) |
---|
170 | REAL, parameter:: zmaxth_top = 8000. ! Top of convective layer (approx. not used) |
---|
171 | REAL cmax(ngrid,nlayer) ! Max horizontal absolute phase velocity (at the maginitide of zonal wind u at the launch altitude) |
---|
172 | |
---|
173 | ! 0.3.2 PARAMETERS OF WAVES DISSIPATIONS |
---|
174 | REAL, save :: sat ! saturation parameter(tunable) |
---|
175 | !$OMP THREADPRIVATE(sat) |
---|
176 | REAL, save :: rdiss ! dissipation coefficient (tunable) |
---|
177 | !$OMP THREADPRIVATE(rdiss) |
---|
178 | REAL, parameter:: zoisec = 1.e-10 ! security for intrinsic frequency |
---|
179 | |
---|
180 | ! 0.3.3 Background flow at 1/2 levels and vertical coordinate |
---|
181 | REAL H0bis(ngrid, nlayer) ! Characteristic Height of the atmosphere (specific locations) |
---|
182 | REAL, save:: H0 ! Characteristic Height of the atmosphere (constant) |
---|
183 | !$OMP THREADPRIVATE(H0) |
---|
184 | REAL, parameter:: pr = 250 ! Reference pressure [Pa] |
---|
185 | REAL, parameter:: tr = 220. ! Reference temperature [K] |
---|
186 | REAL ZH(ngrid, nlayer + 1) ! Log-pressure altitude (constant H0) |
---|
187 | REAL ZHbis(ngrid, nlayer + 1) ! Log-pressure altitude (varying H0bis) |
---|
188 | REAL UH(ngrid, nlayer + 1) ! zonal wind at 1/2 levels |
---|
189 | REAL VH(ngrid, nlayer + 1) ! meridional wind at 1/2 levels |
---|
190 | REAL PH(ngrid, nlayer + 1) ! Pressure at 1/2 levels |
---|
191 | REAL, parameter:: psec = 1.e-20 ! Security to avoid division by 0 pressure(!!IMPORTANT: should be lower than the topmost layer's pressure) |
---|
192 | REAL BV(ngrid, nlayer + 1) ! Brunt Vaisala freq. (N^2) at 1/2 levels |
---|
193 | REAL, parameter:: bvsec = 1.e-3 ! Security to avoid negative BV |
---|
194 | REAL HREF(nlayer + 1) ! Reference pressure for launching altitude |
---|
195 | |
---|
196 | |
---|
197 | REAL RAN_NUM_1,RAN_NUM_2,RAN_NUM_3 |
---|
198 | INTEGER first_breaking_flag(ngrid) |
---|
199 | INTEGER first_satuatio_flag(ngrid) |
---|
200 | |
---|
201 | LOGICAL,SAVE :: firstcall = .true. |
---|
202 | !$OMP THREADPRIVATE(firstcall) |
---|
203 | |
---|
204 | !----------------------------------------------------------------------------------------------------------------------- |
---|
205 | ! 1. INITIALISATIONS |
---|
206 | !----------------------------------------------------------------------------------------------------------------------- |
---|
207 | IF (firstcall) THEN |
---|
208 | write(*,*) "nonoro_gwd_mix: non-oro GW-induced mixing is active!" |
---|
209 | epflux_max = 5.E-4 ! Mars' value !! |
---|
210 | call getin_p("nonoro_gwd_epflux_max", epflux_max) |
---|
211 | write(*,*) "NONORO_GWD_MIX: epflux_max=", epflux_max |
---|
212 | sat = 1.5 ! default gravity waves saturation value !! |
---|
213 | call getin_p("nonoro_gwd_sat", sat) |
---|
214 | write(*,*) "NONORO_GWD_MIX: sat=", sat |
---|
215 | ! cmax = 50. ! default gravity waves phase velocity value !! |
---|
216 | ! call getin_p("nonoro_gwd_cmax", cmax) |
---|
217 | ! write(*,*) "NONORO_GWD_MIX: cmax=", cmax |
---|
218 | rdiss=0.07 ! default coefficient of dissipation !! |
---|
219 | call getin_p("nonoro_gwd_rdiss", rdiss) |
---|
220 | write(*,*) "NONORO_GWD_MIX: rdiss=", rdiss |
---|
221 | kmax=1.E-4 ! default Max horizontal wavenumber !! |
---|
222 | call getin_p("nonoro_gwd_kmax", kmax) |
---|
223 | write(*,*) "NONORO_GWD_MIX: kmax=", kmax |
---|
224 | kmin=7.E-6 ! default Max horizontal wavenumber !! |
---|
225 | call getin_p("nonoro_gwd_kmin", kmin) |
---|
226 | write(*,*) "NONORO_GWD_MIX: kmin=", kmin |
---|
227 | xlaunch=0.6 ! default GW luanch altitude controller !! |
---|
228 | call getin_p("nonoro_gwd_xlaunch", xlaunch) |
---|
229 | write(*,*) "NONORO_GWD_MIX: xlaunch=", xlaunch |
---|
230 | eff=0.1 ! Diffusion effective factor !! |
---|
231 | call getin_p("nonoro_gwimixing_eff", eff) |
---|
232 | write(*,*) "NONORO_GWD_MIX: eff=", eff |
---|
233 | eff1=0.1 ! Diffusion effective factor !! |
---|
234 | call getin_p("nonoro_gwimixing_eff1", eff1) |
---|
235 | write(*,*) "NONORO_GWD_MIX: eff1=", eff1 |
---|
236 | vdl=1.5 ! Diffusion effective factor !! |
---|
237 | call getin_p("nonoro_gwimixing_vdl", vdl) |
---|
238 | write(*,*) "NONORO_GWD_MIX: vdl=", vdl |
---|
239 | ! Characteristic vertical scale height |
---|
240 | H0 = r * tr / g |
---|
241 | ! Control |
---|
242 | if (deltat .LT. dtime) THEN |
---|
243 | call abort_physic("NONORO_GWD_MIX","gwd random: deltat lower than dtime!",1) |
---|
244 | endif |
---|
245 | if (nlayer .LT. nw) THEN |
---|
246 | call abort_physic("NONORO_GWD_MIX","gwd random: nlayer lower than nw!",1) |
---|
247 | endif |
---|
248 | firstcall = .false. |
---|
249 | ENDIF |
---|
250 | |
---|
251 | ! Compute current values of temperature and winds |
---|
252 | tt(:,:)=pt(:,:)+dtime*pdt(:,:) |
---|
253 | uu(:,:)=pu(:,:)+dtime*pdu(:,:) |
---|
254 | vv(:,:)=pv(:,:)+dtime*pdv(:,:) |
---|
255 | zq(:,:,:)=pq(:,:,:)+dtime*pdq(:,:,:) |
---|
256 | hh(:,:)=pht(:,:)+dtime*pdht(:,:) |
---|
257 | ! Compute the real mass density by rho=p/R(T)T |
---|
258 | DO ll=1,nlayer |
---|
259 | DO ii=1,ngrid |
---|
260 | rho(ii,ll) = pp(ii,ll)/(rnew(ii,ll)*tt(ii,ll)) |
---|
261 | ENDDO |
---|
262 | ENDDO |
---|
263 | ! print*,'epflux_max just after firstcall:', epflux_max |
---|
264 | |
---|
265 | !----------------------------------------------------------------------------------------------------------------------- |
---|
266 | ! 2. EVALUATION OF THE BACKGROUND FLOW AT SEMI-LEVELS |
---|
267 | !----------------------------------------------------------------------------------------------------------------------- |
---|
268 | ! Pressure and inverse of pressure at 1/2 level |
---|
269 | DO LL = 2, nlayer |
---|
270 | PH(:, LL) = EXP((LOG(PP(:, LL)) + LOG(PP(:, LL - 1))) / 2.) |
---|
271 | end DO |
---|
272 | PH(:, nlayer + 1) = 0. |
---|
273 | PH(:, 1) = 2. * PP(:, 1) - PH(:, 2) |
---|
274 | |
---|
275 | ! call write_output('nonoro_pp','nonoro_pp', 'm',PP(:,:)) |
---|
276 | ! call write_output('nonoro_ph','nonoro_ph', 'm',PH(:,:)) |
---|
277 | |
---|
278 | ! Launching level for reproductible case |
---|
279 | !Pour revenir a la version non reproductible en changeant le nombre de |
---|
280 | !process |
---|
281 | ! Reprend la formule qui calcule PH en fonction de PP=play |
---|
282 | DO LL = 2, nlayer |
---|
283 | HREF(LL) = EXP((LOG(presnivs(LL))+ LOG(presnivs(LL - 1))) / 2.) |
---|
284 | end DO |
---|
285 | HREF(nlayer + 1) = 0. |
---|
286 | HREF(1) = 2. * presnivs(1) - HREF(2) |
---|
287 | |
---|
288 | LAUNCH=0 |
---|
289 | DO LL = 1, nlayer |
---|
290 | IF (HREF(LL) / HREF(1) > XLAUNCH) LAUNCH = LL |
---|
291 | ENDDO |
---|
292 | |
---|
293 | ! Log pressure vert. coordinate |
---|
294 | ZH(:,1) = 0. |
---|
295 | DO LL = 2, nlayer + 1 |
---|
296 | !ZH(:, LL) = H0 * LOG(PR / (PH(:, LL) + PSEC)) |
---|
297 | H0bis(:, LL-1) = r * TT(:, LL-1) / g |
---|
298 | ZH(:, LL) = ZH(:, LL-1) & |
---|
299 | + H0bis(:, LL-1)*(PH(:, LL-1)-PH(:,LL))/PP(:, LL-1) |
---|
300 | end DO |
---|
301 | ZH(:, 1) = H0 * LOG(PR / (PH(:, 1) + PSEC)) |
---|
302 | |
---|
303 | ! call write_output('nonoro_zh','nonoro_zh', 'm',ZH(:,2:nlayer+1)) |
---|
304 | |
---|
305 | ! Winds and Brunt Vaisala frequency |
---|
306 | DO LL = 2, nlayer |
---|
307 | UH(:, LL) = 0.5 * (UU(:, LL) + UU(:, LL - 1)) ! Zonal wind |
---|
308 | VH(:, LL) = 0.5 * (VV(:, LL) + VV(:, LL - 1)) ! Meridional wind |
---|
309 | ! Brunt Vaisala frequency (=g/T*[dT/dz + g/cp] ) |
---|
310 | BV(:, LL)= G/(0.5 * (TT(:, LL) + TT(:, LL - 1))) & |
---|
311 | *((TT(:, LL) - TT(:, LL - 1)) / (ZH(:, LL) - ZH(:, LL - 1))+ & |
---|
312 | G / cpnew(:,LL)) |
---|
313 | |
---|
314 | BV(:,LL) =MAX(1.E-12,BV(:,LL)) ! to ensure that BV is positive |
---|
315 | BV(:,LL) = MAX(BVSEC,SQRT(BV(:,LL))) ! make sure it is not too small |
---|
316 | end DO |
---|
317 | BV(:, 1) = BV(:, 2) |
---|
318 | UH(:, 1) = 0. |
---|
319 | VH(:, 1) = 0. |
---|
320 | BV(:, nlayer + 1) = BV(:, nlayer) |
---|
321 | UH(:, nlayer + 1) = UU(:, nlayer) |
---|
322 | VH(:, nlayer + 1) = VV(:, nlayer) |
---|
323 | cmax(:,launch)=UU(:, launch) |
---|
324 | DO ii=1,ngrid |
---|
325 | KSTAR = PI/SQRT(cell_area(II)) |
---|
326 | MAX_K(II)=MAX(kmin,kstar) |
---|
327 | ENDDO |
---|
328 | call write_output('nonoro_bv','Brunt Vaisala frequency in nonoro', 'Hz',BV(:,2:nlayer+1)) |
---|
329 | |
---|
330 | !----------------------------------------------------------------------------------------------------------------------- |
---|
331 | ! 3. WAVES CHARACTERISTICS CHOSEN RANDOMLY |
---|
332 | !----------------------------------------------------------------------------------------------------------------------- |
---|
333 | ! The mod function of here a weird arguments are used to produce the waves characteristics in a stochastic way |
---|
334 | DO JW = 1, NW |
---|
335 | ! Angle |
---|
336 | DO II = 1, ngrid |
---|
337 | ! Angle (0 or PI so far) |
---|
338 | RAN_NUM_1=MOD(TT(II, JW) * 10., 1.) |
---|
339 | RAN_NUM_2= MOD(TT(II, JW) * 100., 1.) |
---|
340 | ZP(JW, II) = (SIGN(1., 0.5 - RAN_NUM_1) + 1.)* PI / 2. |
---|
341 | |
---|
342 | ! Horizontal wavenumber amplitude |
---|
343 | ! From Venus model: TN+GG April/June 2020 (rev2381) |
---|
344 | ! "Individual waves are not supposed to occupy the entire domain, but only a fraction of it" (Lott+2012) |
---|
345 | ! ZK(JW, II) = KMIN + (KMAX - KMIN) *RAN_NUM_2 |
---|
346 | KSTAR = PI/SQRT(cell_area(II)) |
---|
347 | ZK(JW, II) = MAX_K(II) + (KMAX - MAX_K(II)) *RAN_NUM_2 |
---|
348 | |
---|
349 | ! Horizontal phase speed |
---|
350 | ! this computation allows to get a gaussian distribution centered on 0 (right ?) |
---|
351 | ! then cmin is not useful, and it favors small values. |
---|
352 | CPHA(:) = 0. |
---|
353 | DO JJ = 1, NA |
---|
354 | RAN_NUM_3=MOD(TT(II, JW+3*JJ)**2, 1.) |
---|
355 | CPHA(ii) = CPHA(ii) + 2.*CMAX(ii,launch)* & |
---|
356 | (RAN_NUM_3 -0.5)* & |
---|
357 | SQRT(3.)/SQRT(NA*1.) |
---|
358 | END DO |
---|
359 | IF (CPHA(ii).LT.0.) THEN |
---|
360 | CPHA(ii) = -1.*CPHA(ii) |
---|
361 | ZP(JW,II) = ZP(JW,II) + PI |
---|
362 | ENDIF |
---|
363 | ! otherwise, with the computation below, we get a uniform distribution between cmin and cmax. |
---|
364 | ! ran_num_3 = mod(tt(ii, jw)**2, 1.) |
---|
365 | ! cpha = cmin + (cmax - cmin) * ran_num_3 |
---|
366 | |
---|
367 | ! Intrinsic frequency |
---|
368 | ZO(JW, II) = CPHA(II) * ZK(JW, II) |
---|
369 | ! Intrinsic frequency is imposed |
---|
370 | ZO(JW, II) = ZO(JW, II) & |
---|
371 | + ZK(JW, II) * COS(ZP(JW, II)) * UH(II, LAUNCH) & |
---|
372 | + ZK(JW, II) * SIN(ZP(JW, II)) * VH(II, LAUNCH) |
---|
373 | |
---|
374 | ! Momentum flux at launch level |
---|
375 | epflux_0(JW, II) = epflux_max & |
---|
376 | * MOD(100. * (UU(II, JW)**2 + VV(II, JW)**2), 1.) |
---|
377 | ENDDO |
---|
378 | end DO |
---|
379 | ! print*,'epflux_0 just after waves charac. ramdon:', epflux_0 |
---|
380 | |
---|
381 | !----------------------------------------------------------------------------------------------------------------------- |
---|
382 | ! 4. COMPUTE THE FLUXES |
---|
383 | !----------------------------------------------------------------------------------------------------------------------- |
---|
384 | ! 4.1 Vertical velocity at launching altitude to ensure the correct value to the imposed fluxes. |
---|
385 | !------------------------------------------------------ |
---|
386 | DO JW = 1, NW |
---|
387 | ! Evaluate intrinsic frequency at launching altitude: |
---|
388 | intr_freq_p(JW, :) = ZO(JW, :) & |
---|
389 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
390 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
391 | end DO |
---|
392 | |
---|
393 | ! VERSION WITHOUT CONVECTIVE SOURCE |
---|
394 | ! Vertical velocity at launch level, value to ensure the imposed |
---|
395 | ! mom flux: |
---|
396 | DO JW = 1, NW |
---|
397 | ! WW is directly a flux, here, not vertical velocity anymore |
---|
398 | WWP(JW, :) = epflux_0(JW,:) |
---|
399 | u_epflux_p(JW, :) = COS(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
---|
400 | v_epflux_p(JW, :) = SIN(ZP(JW, :)) * SIGN(1., intr_freq_p(JW, :)) * epflux_0(JW, :) |
---|
401 | end DO |
---|
402 | |
---|
403 | ! 4.2 Initial flux at launching altitude |
---|
404 | !------------------------------------------------------ |
---|
405 | u_epflux_tot(:, LAUNCH) = 0 |
---|
406 | v_epflux_tot(:, LAUNCH) = 0 |
---|
407 | DO JW = 1, NW |
---|
408 | u_epflux_tot(:, LAUNCH) = u_epflux_tot(:, LAUNCH) + u_epflux_p(JW, :) |
---|
409 | v_epflux_tot(:, LAUNCH) = v_epflux_tot(:, LAUNCH) + v_epflux_p(JW, :) |
---|
410 | end DO |
---|
411 | |
---|
412 | ! 4.3 Loop over altitudes, with passage from one level to the next done by: |
---|
413 | !---------------------------------------------------------------------------- |
---|
414 | ! i) conserving the EP flux, |
---|
415 | ! ii) dissipating a little, |
---|
416 | ! iii) testing critical levels, |
---|
417 | ! iv) testing the breaking. |
---|
418 | !---------------------------------------------------------------------------- |
---|
419 | |
---|
420 | wwp_vertical_tot(:, :,:) =0. |
---|
421 | DO LL = LAUNCH, nlayer - 1 |
---|
422 | ! W(KB)ARNING: ALL THE PHYSICS IS HERE (PASSAGE FROM ONE LEVEL TO THE NEXT) |
---|
423 | DO JW = 1, NW |
---|
424 | intr_freq_m(JW, :) = intr_freq_p(JW, :) |
---|
425 | WWM(JW, :) = WWP(JW, :) |
---|
426 | ! Intrinsic Frequency |
---|
427 | intr_freq_p(JW, :) = ZO(JW, :) - ZK(JW, :) * COS(ZP(JW,:)) * UH(:, LL + 1) & |
---|
428 | - ZK(JW, :) * SIN(ZP(JW,:)) * VH(:, LL + 1) |
---|
429 | ! Vertical velocity in flux formulation |
---|
430 | |
---|
431 | wwpsat(JW,:) = ABS(intr_freq_p(JW, :))**3 / (2.*BV(:, LL+1)) & |
---|
432 | * rho(:,launch)*exp(-zh(:, ll + 1) / H0) & |
---|
433 | * SAT**2 *KMIN**2 / ZK(JW, :)**4 |
---|
434 | WWP(JW, :) = MIN( & |
---|
435 | ! No breaking (Eq.6) |
---|
436 | WWM(JW, :) & |
---|
437 | ! Dissipation (Eq. 8)(real rho used here rather than pressure |
---|
438 | ! parametration because the original code has a bug if the density of |
---|
439 | ! the planet at the launch altitude not approximate 1): ! |
---|
440 | * EXP(- RDISS*2./rho(:, LL + 1) & |
---|
441 | * ((BV(:, LL + 1) + BV(:, LL)) / 2.)**3 & |
---|
442 | / MAX(ABS(intr_freq_p(JW, :) + intr_freq_m(JW, :)) / 2., ZOISEC)**4 & |
---|
443 | * ZK(JW, :)**3 * (ZH(:, LL + 1) - ZH(:, LL))), & |
---|
444 | ! Critical levels (forced to zero if intrinsic frequency |
---|
445 | ! changes sign) |
---|
446 | MAX(0., SIGN(1., intr_freq_p(JW, :) * intr_freq_m(JW, :))) & |
---|
447 | ! Saturation (Eq. 12) (rho at launch altitude is imposed by J.Liu. |
---|
448 | ! Same reason with Eq. 8) |
---|
449 | * WWPSAT(JW,:)) |
---|
450 | end DO |
---|
451 | ! END OF W(KB)ARNING |
---|
452 | |
---|
453 | ! first_breaking_flag(:)=0 !mixing start at first breaking |
---|
454 | ! first_satuatio_flag(:)=0 |
---|
455 | |
---|
456 | DO JW=1,NW |
---|
457 | wwp_vertical_tot(ll, JW, :) = WWP(JW,:)/rho(:,ll) |
---|
458 | ENDDO |
---|
459 | end DO ! DO LL = LAUNCH, nlayer - 1 |
---|
460 | ! print*, "this line is for tunning" |
---|
461 | |
---|
462 | DO II=1, ngrid |
---|
463 | DO JW=1,NW |
---|
464 | wwp_vertical_ll(:)=wwp_vertical_tot(:, JW, II) |
---|
465 | ll_zb_max = MAXloc(wwp_vertical_ll(:),1) |
---|
466 | !if (LLSATURATION(JW,II).ne.-1000) then |
---|
467 | LLSATURATION(JW,II)=ll_zb_max |
---|
468 | !endif |
---|
469 | ! print*, "this line is for tunning" |
---|
470 | if (ll_zb_max .gt. 1) then |
---|
471 | !ll_zb_max_r =MAXloc(wwp_vertical_ll(nlayer:1:-1),1) |
---|
472 | !if (ll_zb_max_r .gt. ll_zb_max) LLSATURATION(JW,II)=ll_zb_max_r |
---|
473 | DO ll = nlayer,ll_zb_max,-1 |
---|
474 | if (wwp_vertical_ll(ll)-wwp_vertical_ll(ll-1).gt. 0) then |
---|
475 | LLSATURATION(JW,II)=ll |
---|
476 | goto 119 |
---|
477 | endif |
---|
478 | ENDDO |
---|
479 | 119 continue |
---|
480 | endif |
---|
481 | ! if (ll_zb_max .gt. launch) then |
---|
482 | ! DO LL = (nlayer + 1), ll_zb_max,-1 |
---|
483 | ! if (abs(wwp_vertical_ll(ll)).le. 1.e-9) LLZCRITICAL(JW,II)=LL |
---|
484 | ! ENDDO |
---|
485 | ! else |
---|
486 | ! LLZCRITICAL(JW,II)=1 |
---|
487 | ! endif |
---|
488 | !print*, "this line is for tunning" |
---|
489 | ENDDO |
---|
490 | ENDDO |
---|
491 | !print*, "this line is for tunning" |
---|
492 | |
---|
493 | |
---|
494 | DO JW = 1, NW |
---|
495 | ! Evaluate intrinsic frequency at launching altitude: |
---|
496 | intr_freq_p(JW, :) = ZO(JW, :) & |
---|
497 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
498 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
499 | end DO |
---|
500 | d_eddy_mix_p_ll(:,:,:)=0. |
---|
501 | d_eddy_mix_m_ll(:,:,:)=0. |
---|
502 | d_eddy_mix_p(:,:)=0. |
---|
503 | d_eddy_mix_m(:,:)=0. |
---|
504 | d_eddy_mix_s(:,:)=0. |
---|
505 | lambda_img(:,:) = 0. |
---|
506 | u_shear(:,:)= 0. |
---|
507 | DO LL = LAUNCH, nlayer - 1 |
---|
508 | U_shear(:,ll)=(UU(:, LL+1)-UU(:, LL)) /(ZH(:, LL+1) - ZH(:, LL)) |
---|
509 | DO II=1,ngrid |
---|
510 | ! all the eddy diffusion parameters are culculated at here |
---|
511 | DO JW = 1, NW |
---|
512 | intr_freq_m(JW, II) = intr_freq_p(JW, II) |
---|
513 | ! Intrinsic Frequency |
---|
514 | intr_freq_p(JW, II) = ZO(JW, II) - ZK(JW, II) * COS(ZP(JW,II)) * UH(II, LL + 1) & |
---|
515 | - ZK(JW, II) * SIN(ZP(JW,II)) * VH(II, LL + 1) |
---|
516 | ll_zb(II)= LLSATURATION(JW,II) |
---|
517 | ll_zb_ii = ll_zb(II) |
---|
518 | ! ll_zc(II)= LLZCRITICAL(JW,II) |
---|
519 | ! ll_zc_ii = ll_zc(II) |
---|
520 | ! If (ll_zb_ii.le. launch .or. ll .gt. ll_zc_ii) then |
---|
521 | If (ll .lt. ll_zb_ii .or. ll_zb_ii.lt. launch) then |
---|
522 | d_eddy_mix_p(JW,II)=0. |
---|
523 | d_eddy_mix_m(JW,II)=0. |
---|
524 | d_eddy_mix_p_ll(ll,JW,ii)=0. |
---|
525 | d_eddy_mix_m_ll(ll,JW,ii)=0. |
---|
526 | endif |
---|
527 | IF (LL.GE.ll_zb_ii .and. ll_zb_ii.ge. launch) THEN |
---|
528 | lambda_img(JW,II) = 0.5 / H0bis(II,LL) & |
---|
529 | - 1.5 /((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.) & |
---|
530 | *(intr_freq_p(JW, II) - intr_freq_m(JW, II)) & |
---|
531 | /(ZH(II, LL+1) - ZH(II, LL)) & |
---|
532 | + 1.5/((BV(II,LL)+BV(II, LL+1))/2.) & |
---|
533 | *(BV(II, LL+1)-BV(II, LL)) /(ZH(II, LL+1) - ZH(II, LL)) |
---|
534 | !lambda_img(JW,II) = max(0.5 / H0bis(II,LL), abs(lambda_img(JW,II))) |
---|
535 | if (lambda_img(JW,II).lt. 0) lambda_img(JW,II) = 0. |
---|
536 | !if (lambda_img(JW,II).gt. 0.5/H0bis(II,LL)) lambda_img(JW,II) = 0.5/H0bis(II,LL) |
---|
537 | d_eddy_mix_s(JW,II) = eff*MAX(ABS(intr_freq_p(JW, II) + intr_freq_m(JW, II)) / 2., & |
---|
538 | ZOISEC)**4 / (ZK(JW, II)**3 * ((BV(II,LL)+BV(II, LL+1))/2.)**3)& |
---|
539 | *lambda_img(JW,II) |
---|
540 | ! *abs(0.5 / H0bis(II,LL) - 1.5*ZK(JW, II) & |
---|
541 | ! /abs((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.) & |
---|
542 | ! *(UU(II, LL+1)-UU(II, LL)) /(ZH(II, LL+1) - ZH(II, LL)) & |
---|
543 | ! + 1.5/((BV(II,LL)+BV(II, LL+1))/2.) & |
---|
544 | ! *(BV(II, LL+1)-BV(II, LL)) /(ZH(II, LL+1) - ZH(II, LL))) |
---|
545 | ! *MAX(0., sign(1., lambda_img(JW,II))) |
---|
546 | |
---|
547 | d_eddy_mix_p(JW,II) = Min( d_eddy_mix_s(JW,II) , & |
---|
548 | -((wwp_vertical_tot(ll+1, JW, II)-wwp_vertical_tot(ll, JW, II)) & |
---|
549 | /(ZH(II, LL+1) - ZH(II, LL))) & |
---|
550 | *((intr_freq_p(JW, II)+ intr_freq_m(JW, II)) / 2.)*eff1 & |
---|
551 | /(((BV(II, LL+1) + BV(II,LL)) / 2.)**2 * ZK(JW, II))) |
---|
552 | |
---|
553 | if (d_eddy_mix_p(jw,ii) .lt. 0.) then |
---|
554 | print*, "this line is for tunning" |
---|
555 | endif |
---|
556 | ENDIF |
---|
557 | |
---|
558 | |
---|
559 | end DO !JW = 1, NW |
---|
560 | end DO !II=1,ngrid |
---|
561 | ! print*, "this line is for tunning" |
---|
562 | d_eddy_mix_p_ll(ll,:,:)=d_eddy_mix_p(:,:) |
---|
563 | ! print*, "this line is for tunning" |
---|
564 | ! if (ll.ge.55) then |
---|
565 | ! print*, "this line is for tunning" |
---|
566 | ! endif |
---|
567 | end DO ! DO LL = LAUNCH, nlayer - 1 |
---|
568 | |
---|
569 | call write_output('zonal_shear','u shear', 's-1',u_shear(:,:)) |
---|
570 | |
---|
571 | DO II=1,ngrid |
---|
572 | DO JW = 1, NW |
---|
573 | ll_zb(II)= LLSATURATION(JW,II) |
---|
574 | ll_zb_ii = ll_zb(II) |
---|
575 | |
---|
576 | do LL=launch, nlayer-1 |
---|
577 | IF (LL.eq.ll_zb_ii .and. ll_zb_ii .gt.launch) THEN |
---|
578 | d_eddy_mix_m(JW,II) = d_eddy_mix_p_ll(ll,JW,ii) |
---|
579 | ! if (ii.eq. 848) then |
---|
580 | ! print*, "this line is for tunning" |
---|
581 | ! endif |
---|
582 | ENDIF |
---|
583 | enddo |
---|
584 | |
---|
585 | ENDDO |
---|
586 | ENDDO |
---|
587 | |
---|
588 | DO II=1,ngrid |
---|
589 | DO JW = 1, NW |
---|
590 | ll_zb(II)= LLSATURATION(JW,II) |
---|
591 | ll_zb_ii = ll_zb(II) |
---|
592 | DO LL= launch, (ll_zb_ii - 1) |
---|
593 | if (ll_zb_ii .gt. launch) then |
---|
594 | d_eddy_mix_m_ll(ll,JW,II) = d_eddy_mix_m(JW,II) & |
---|
595 | * exp(vdl*(ZH(II, LL)-ZH(II, ll_zb_ii) ) / H0) |
---|
596 | else |
---|
597 | d_eddy_mix_m_ll(ll,JW,II) = 0. |
---|
598 | endif |
---|
599 | endDO |
---|
600 | ENDDO |
---|
601 | ENDDO |
---|
602 | ! print*, "this line is for tunning" |
---|
603 | |
---|
604 | |
---|
605 | DO II=1, ngrid |
---|
606 | DO JW=1,NW |
---|
607 | eddy_mix_ll(:) = d_eddy_mix_p_ll(:,JW,II)+ d_eddy_mix_m_ll(:,JW,II) |
---|
608 | ! print*, "this line is for tunning" |
---|
609 | enddo |
---|
610 | ENDDO |
---|
611 | |
---|
612 | |
---|
613 | DO JW = 1, NW |
---|
614 | ! Evaluate intrinsic frequency at launching altitude: |
---|
615 | intr_freq_p(JW, :) = ZO(JW, :) & |
---|
616 | - ZK(JW, :) * COS(ZP(JW, :)) * UH(:, LAUNCH) & |
---|
617 | - ZK(JW, :) * SIN(ZP(JW, :)) * VH(:, LAUNCH) |
---|
618 | end DO |
---|
619 | u_eddy_mix_tot(:, :) = 0. |
---|
620 | v_eddy_mix_tot(:, :) = 0. |
---|
621 | h_eddy_mix_tot(:, :) = 0. |
---|
622 | u_eddy_mix_p(:, :)=0. |
---|
623 | v_eddy_mix_p(:, :)=0. |
---|
624 | h_eddy_mix_p(:, :)=0. |
---|
625 | d_eddy_mix_tot_ll(:,:,:)=0. |
---|
626 | pq_eddy_mix_p(:,:,:)=0. |
---|
627 | pq_eddy_mix_tot(:, :,:)=0. |
---|
628 | d_eddy_mix(:,:)=0. |
---|
629 | d_eddy_mix_p_ll(nlayer,:,:)=d_eddy_mix_p_ll(nlayer-1,:,:) |
---|
630 | d_eddy_mix_tot(:, :) =0. |
---|
631 | DO LL = LAUNCH, nlayer - 1 |
---|
632 | d_eddy_mix(:,:) = d_eddy_mix_m_ll(ll,:,:) + d_eddy_mix_p_ll(ll,:,:) |
---|
633 | DO JW = 1, NW |
---|
634 | u_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(UU(:, LL + 1) - UU(:, LL)) & |
---|
635 | /(ZH(:, LL + 1) - ZH(:, LL)) & |
---|
636 | *SIGN(1.,intr_freq_p(JW, :)) * COS(ZP(JW, :)) |
---|
637 | v_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(VV(:, LL + 1) - VV(:, LL)) & |
---|
638 | /(ZH(:, LL + 1) - ZH(:, LL)) & |
---|
639 | *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) |
---|
640 | h_eddy_mix_p(JW, :) = d_eddy_mix(JW,:)*(HH(:, LL + 1) - HH(:, LL)) & |
---|
641 | /(ZH(:, LL + 1) - ZH(:, LL)) & |
---|
642 | *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) |
---|
643 | |
---|
644 | ENDDO |
---|
645 | u_eddy_mix_tot(:, LL+1)=0. |
---|
646 | v_eddy_mix_tot(:, LL+1)=0. |
---|
647 | h_eddy_mix_tot(:, LL+1)=0. |
---|
648 | DO JW=1,NW |
---|
649 | u_eddy_mix_tot(:, LL+1) = u_eddy_mix_tot(:, LL+1) + u_eddy_mix_p(JW, :) |
---|
650 | v_eddy_mix_tot(:, LL+1) = v_eddy_mix_tot(:, LL+1) + v_eddy_mix_p(JW, :) |
---|
651 | h_eddy_mix_tot(:, LL+1) = h_eddy_mix_tot(:, LL+1) + h_eddy_mix_p(JW, :) |
---|
652 | ENDDO |
---|
653 | DO JW=1,NW |
---|
654 | ! d_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL+1) + d_eddy_mix(JW,:) |
---|
655 | d_eddy_mix_tot(:, LL+1) = d_eddy_mix_tot(:, LL+1) + d_eddy_mix(JW,:) |
---|
656 | ! u_eddy_mix_tot(:, LL+1) = u_eddy_mix_tot(:, LL+1)+ u_eddy_mix_p(JW, :) |
---|
657 | ! v_eddy_mix_tot(:, LL+1) = v_eddy_mix_tot(:, LL+1)+ v_eddy_mix_p(JW, :) |
---|
658 | ENDDO |
---|
659 | ! if (ll.ge.55) then |
---|
660 | ! print*, "this line is for tunning" |
---|
661 | !endif |
---|
662 | DO QQ=1,NQ |
---|
663 | DO JW=1,NW |
---|
664 | pq_eddy_mix_p(JW, :, QQ) = d_eddy_mix(JW, :)* (zq(:, LL + 1,QQ)- zq(:, LL, QQ)) & |
---|
665 | /(ZH(:, LL + 1)- ZH(:, LL)) & |
---|
666 | *SIGN(1.,intr_freq_p(JW, :)) * SIN(ZP(JW, :)) |
---|
667 | ! pq_eddy_mix_tot(:, LL+1,QQ) = pq_eddy_mix_tot(:, LL+1,QQ) & |
---|
668 | ! + pq_eddy_mix_p(JW, :, QQ) |
---|
669 | ENDDO |
---|
670 | ENDDO |
---|
671 | pq_eddy_mix_tot(:, LL+1,:)=0. |
---|
672 | DO JW=1,NW |
---|
673 | DO QQ=1, NQ |
---|
674 | pq_eddy_mix_tot(:, LL+1,QQ) = pq_eddy_mix_tot(:, LL+1,QQ) + pq_eddy_mix_p(JW, :, QQ) |
---|
675 | ENDDO |
---|
676 | endDO |
---|
677 | ! print*, "this line is for tunning" |
---|
678 | ENDDO !LL = LAUNCH, nlayer - 1 |
---|
679 | |
---|
680 | d_eddy_mix_tot(:, LAUNCH) = d_eddy_mix_tot(:, LAUNCH+1) |
---|
681 | d_eddy_mix_tot(:, nlayer + 1) = d_eddy_mix_tot(:, nlayer) |
---|
682 | d_eddy_mix_tot(:,:) = DTIME/DELTAT/REAL(NW) * d_eddy_mix_tot(:,:) & |
---|
683 | + (1.-DTIME/DELTAT) * de_eddymix_rto(:,:) |
---|
684 | call write_output('nonoro_d_mixing_tot','Total EP Flux along U in nonoro', 'm2s-1',d_eddy_mix_tot(:,2:nlayer+1)) |
---|
685 | ! u_eddy_mix_tot(:, :) = 0. |
---|
686 | ! v_eddy_mix_tot(:, :) = 0. |
---|
687 | ! pq_eddy_mix_tot(:, :, :) = 0. |
---|
688 | ! DO LL = 1, nlayer-1 |
---|
689 | !u_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL)*(UU(:, LL + 1) - UU(:, LL)) & |
---|
690 | ! /(ZH(:, LL + 1) - ZH(:, LL)) !*sign(1.,u_shear(:, LL)) |
---|
691 | !v_eddy_mix_tot(:, LL) = d_eddy_mix_tot(:, LL)*(VV(:, LL + 1) - VV(:, LL)) & |
---|
692 | ! |
---|
693 | ! /(ZH(:, LL + 1) - ZH(:, LL)) !*sign(1.,u_shear(:, LL)) |
---|
694 | |
---|
695 | |
---|
696 | |
---|
697 | ! DO QQ=1, NQ |
---|
698 | ! pq_eddy_mix_tot(:, LL,QQ) = d_eddy_mix_tot(:, LL) & |
---|
699 | ! * (zq(:, LL + 1,QQ)- zq(:, LL, QQ)) & |
---|
700 | ! /(ZH(:, LL + 1)- ZH(:, LL)) |
---|
701 | ! ENDDO |
---|
702 | |
---|
703 | |
---|
704 | |
---|
705 | |
---|
706 | !ENDDO !LL = LAUNCH, nlayer - 1 |
---|
707 | |
---|
708 | de_eddymix_rto(:,:) = d_eddy_mix_tot(:,:) |
---|
709 | !----------------------------------------------------------------------------------------------------------------------- |
---|
710 | ! 5. TENDENCY CALCULATIONS |
---|
711 | !----------------------------------------------------------------------------------------------------------------------- |
---|
712 | |
---|
713 | ! 5.1 Flow rectification at the top and in the low layers |
---|
714 | ! -------------------------------------------------------- |
---|
715 | ! Warning, this is the total on all GW |
---|
716 | u_eddy_mix_tot(:, nlayer + 1) = 0. |
---|
717 | v_eddy_mix_tot(:, nlayer + 1) = 0. |
---|
718 | h_eddy_mix_tot(:, nlayer + 1) = 0. |
---|
719 | pq_eddy_mix_tot(:, nlayer + 1,:)=0. |
---|
720 | ! Here, big change compared to FLott version: |
---|
721 | ! We compensate (u_epflux_tot(:, LAUNCH), ie total emitted upward flux |
---|
722 | ! over the layers max(1,LAUNCH-3) to LAUNCH-1 |
---|
723 | DO LL = 1, max(1,LAUNCH-3) |
---|
724 | u_eddy_mix_tot(:, LL) = 0. |
---|
725 | v_eddy_mix_tot(:, LL) = 0. |
---|
726 | h_eddy_mix_tot(:, LL) = 0. |
---|
727 | end DO |
---|
728 | |
---|
729 | DO QQ=1,NQ |
---|
730 | DO LL = 1, max(1,LAUNCH-3) |
---|
731 | pq_eddy_mix_tot(:, LL,QQ) = 0. |
---|
732 | end DO |
---|
733 | ENDDO |
---|
734 | |
---|
735 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
---|
736 | u_eddy_mix_tot(:, LL) = u_eddy_mix_tot(:, LL - 1) + u_eddy_mix_tot(:, LAUNCH) & |
---|
737 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
738 | v_eddy_mix_tot(:, LL) = v_eddy_mix_tot(:, LL - 1) + v_eddy_mix_tot(:, LAUNCH) & |
---|
739 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
740 | h_eddy_mix_tot(:, LL) = h_eddy_mix_tot(:, LL - 1) + h_eddy_mix_tot(:, LAUNCH) & |
---|
741 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
742 | end DO |
---|
743 | |
---|
744 | |
---|
745 | DO QQ=1,NQ |
---|
746 | DO LL = max(2,LAUNCH-2), LAUNCH-1 |
---|
747 | pq_eddy_mix_tot(:, LL,QQ) = pq_eddy_mix_tot(:, LL-1,QQ)+pq_eddy_mix_tot(:, LAUNCH,QQ)& |
---|
748 | * (PH(:,LL)-PH(:,LL-1)) / (PH(:,LAUNCH)-PH(:,max(1,LAUNCH-3))) |
---|
749 | end DO |
---|
750 | ENDDO |
---|
751 | !u_eddy_mix_tot(:,:) = DTIME/DELTAT/REAL(NW) * u_eddy_mix_tot(:,:) & |
---|
752 | ! + (1.-DTIME/DELTAT) * df_eddymix_flx(:,:) |
---|
753 | |
---|
754 | !do ii=1,ngrid |
---|
755 | ! if (u_eddy_mix_tot(ii,58).lt. -8000.) then |
---|
756 | ! print*, ii |
---|
757 | ! endif |
---|
758 | !enddo |
---|
759 | |
---|
760 | ! This way, the total flux from GW is zero, but there is a net transport |
---|
761 | ! (upward) that should be compensated by circulation |
---|
762 | ! and induce additional friction at the surface |
---|
763 | call write_output('nonoro_u_mixing_tot','Total EP Flux along U in nonoro', '',u_eddy_mix_tot(:,2:nlayer+1)) |
---|
764 | call write_output('nonoro_v_mixing_tot','Total EP Flux along V in nonoro', '',v_eddy_mix_tot(:,2:nlayer+1)) |
---|
765 | |
---|
766 | ! 5.2 AR-1 RECURSIVE FORMULA (13) IN VERSION 4 |
---|
767 | !--------------------------------------------- |
---|
768 | DO LL = 1, nlayer |
---|
769 | !Notice here the d_u and d_v are tendency (For Mars) but not increment(Venus). |
---|
770 | d_u(:, LL) = (u_eddy_mix_tot(:, LL + 1) - u_eddy_mix_tot(:, LL)) & |
---|
771 | / (ZH(:, LL + 1) - ZH(:, LL)) |
---|
772 | !d_v(:, LL) = (v_eddy_mix_tot(:, LL + 1) - v_eddy_mix_tot(:, LL)) & |
---|
773 | ! / (ZH(:, LL + 1) - ZH(:, LL)) |
---|
774 | d_h(:, LL) = (h_eddy_mix_tot(:, LL + 1) - h_eddy_mix_tot(:, LL)) & |
---|
775 | / (ZH(:, LL + 1) - ZH(:, LL)) |
---|
776 | ENDDO |
---|
777 | |
---|
778 | DO QQ=1,NQ |
---|
779 | DO ll = 1, nlayer |
---|
780 | d_pq(:, ll, QQ) = (pq_eddy_mix_tot(:, LL + 1,QQ) - pq_eddy_mix_tot(:, LL, QQ)) & |
---|
781 | / (ZH(:, LL + 1) - ZH(:, LL)) |
---|
782 | end DO |
---|
783 | ENDDO |
---|
784 | !df_eddymix_flx(:,:) = u_eddy_mix_tot(:,:) |
---|
785 | !d_pq(:, :, :)=0. |
---|
786 | !d_t(:,:) = 0. |
---|
787 | !d_v(:,:) = 0. |
---|
788 | !zustr(:) = 0. |
---|
789 | !zvstr(:) = 0. |
---|
790 | ! call write_output('nonoro_d_u','nonoro_d_u', '',d_u(:,:)) |
---|
791 | ! call write_output('nonoro_d_v','nonoro_d_v', '',d_v(:,:)) |
---|
792 | |
---|
793 | ! 5.3 Update tendency of wind with the previous (and saved) values |
---|
794 | !----------------------------------------------------------------- |
---|
795 | d_u(:,:) = DTIME/DELTAT/REAL(NW) * d_u(:,:) & |
---|
796 | + (1.-DTIME/DELTAT) * du_eddymix_gwd(:,:) |
---|
797 | !d_v(:,:) = DTIME/DELTAT/REAL(NW) * d_v(:,:) & |
---|
798 | ! + (1.-DTIME/DELTAT) * dv_eddymix_gwd(:,:) |
---|
799 | du_eddymix_gwd(:,:) = d_u(:,:) |
---|
800 | !dv_eddymix_gwd(:,:) = d_v(:,:) |
---|
801 | d_v(:,:)=0. |
---|
802 | call write_output('du_eddymix_gwd','Tendency on U due to nonoro GW', 'm.s-2',du_eddymix_gwd(:,:)) |
---|
803 | !call write_output('dv_eddymix_gwd','Tendency on V due to nonoro GW', 'm.s-2',dv_eddymix_gwd(:,:)) |
---|
804 | d_h(:,:) = DTIME/DELTAT/REAL(NW) * d_h(:,:) & |
---|
805 | + (1.-DTIME/DELTAT) * dh_eddymix_gwd(:,:) |
---|
806 | do ii=1,ngrid |
---|
807 | d_t(ii,:) = d_h(ii,:) * (PP(ii,:) / PH(ii,1))**rcp |
---|
808 | enddo |
---|
809 | |
---|
810 | dh_eddymix_gwd(:,:)=d_h(:,:) |
---|
811 | |
---|
812 | DO QQ=1,NQ |
---|
813 | d_pq(:, :, QQ) =DTIME/DELTAT/REAL(NW) * d_pq(:, :, QQ) & |
---|
814 | + (1.-DTIME/DELTAT) * dq_eddymix_gwd(:, :, QQ) |
---|
815 | endDO |
---|
816 | |
---|
817 | END SUBROUTINE NONORO_GWD_MIX |
---|
818 | |
---|
819 | |
---|
820 | |
---|
821 | ! ======================================================== |
---|
822 | ! Subroutines used to allocate/deallocate module variables |
---|
823 | ! ======================================================== |
---|
824 | SUBROUTINE ini_nonoro_gwd_mix(ngrid,nlayer,nq) |
---|
825 | |
---|
826 | IMPLICIT NONE |
---|
827 | |
---|
828 | INTEGER, INTENT (in) :: ngrid ! number of atmospheric columns |
---|
829 | INTEGER, INTENT (in) :: nlayer ! number of atmospheric layers |
---|
830 | INTEGER, INTENT (in) :: nq ! number of atmospheric tracers |
---|
831 | |
---|
832 | allocate(du_eddymix_gwd(ngrid,nlayer)) |
---|
833 | allocate(dv_eddymix_gwd(ngrid,nlayer)) |
---|
834 | allocate(dh_eddymix_gwd(ngrid,nlayer)) |
---|
835 | allocate(dq_eddymix_gwd(ngrid,nlayer,nq)) |
---|
836 | allocate(de_eddymix_rto(ngrid,nlayer+1)) |
---|
837 | allocate(df_eddymix_flx(ngrid,nlayer+1)) |
---|
838 | |
---|
839 | !du_eddymix_gwd(:,:)=0 |
---|
840 | !dv_eddymix_gwd(:,:)=0 |
---|
841 | ! allocate(east_gwstress(ngrid,nlayer)) |
---|
842 | ! east_gwstress(:,:)=0 |
---|
843 | ! allocate(west_gwstress(ngrid,nlayer)) |
---|
844 | ! west_gwstress(:,:)=0 |
---|
845 | |
---|
846 | END SUBROUTINE ini_nonoro_gwd_mix |
---|
847 | ! ---------------------------------- |
---|
848 | SUBROUTINE end_nonoro_gwd_mix |
---|
849 | |
---|
850 | IMPLICIT NONE |
---|
851 | |
---|
852 | if (allocated(du_eddymix_gwd)) deallocate(du_eddymix_gwd) |
---|
853 | if (allocated(dv_eddymix_gwd)) deallocate(dv_eddymix_gwd) |
---|
854 | if (allocated(dh_eddymix_gwd)) deallocate(dh_eddymix_gwd) |
---|
855 | if (allocated(dq_eddymix_gwd)) deallocate(dq_eddymix_gwd) |
---|
856 | if (allocated(de_eddymix_rto)) deallocate(de_eddymix_rto) |
---|
857 | if (allocated(df_eddymix_flx)) deallocate(df_eddymix_flx) |
---|
858 | ! if (allocated(east_gwstress)) deallocate(east_gwstress) |
---|
859 | ! if (allocated(west_gwstress)) deallocate(west_gwstress) |
---|
860 | |
---|
861 | END SUBROUTINE end_nonoro_gwd_mix |
---|
862 | !----------------------------------- |
---|
863 | ! FUNCTION MAXLOCATION(gwd_normal,gwd_satura) |
---|
864 | |
---|
865 | ! implicit none |
---|
866 | |
---|
867 | ! INTEGER MAXLOCATION |
---|
868 | ! REAL gwd_normal,gwd_satura |
---|
869 | |
---|
870 | ! IF (gwd_normal .GT. gwd_satura ) THEN |
---|
871 | ! MAXLOCATION=1 |
---|
872 | ! ELSEIF (gwd_normal .LT.gwd_satura) THEN |
---|
873 | ! MAXLOCATION=2 |
---|
874 | ! ELSE |
---|
875 | ! MAXLOCATION=1 |
---|
876 | ! ENDIF |
---|
877 | |
---|
878 | ! return |
---|
879 | |
---|
880 | ! END FUNCTION |
---|
881 | |
---|
882 | |
---|
883 | END MODULE nonoro_gwd_mix_mod |
---|