[1685] | 1 | SUBROUTINE co2cloud(ngrid,nlay,ptimestep, |
---|
[1617] | 2 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
| 3 | & pq,pdq,pdqcloudco2,pdtcloudco2, |
---|
| 4 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
---|
[1685] | 5 | & rsedcloudco2,rhocloudco2, |
---|
[1720] | 6 | & rsedcloud,rhocloud,pzlev,pdqs_sedco2) |
---|
[1617] | 7 | ! to use 'getin' |
---|
| 8 | use dimradmars_mod, only: naerkind |
---|
| 9 | USE comcstfi_h |
---|
| 10 | USE ioipsl_getincom |
---|
| 11 | USE updaterad |
---|
| 12 | use conc_mod, only: mmean |
---|
| 13 | use tracer_mod, only: nqmx, igcm_co2, igcm_co2_ice, |
---|
[1685] | 14 | & igcm_dust_mass, igcm_dust_number,igcm_h2o_ice, |
---|
| 15 | & igcm_ccn_mass,igcm_ccn_number, |
---|
[1617] | 16 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
---|
| 17 | & rho_dust, nuiceco2_sed, nuiceco2_ref, |
---|
[1720] | 18 | & rho_ice_co2,r3n_q,rho_ice,nuice_sed |
---|
| 19 | |
---|
[1651] | 20 | |
---|
[1617] | 21 | IMPLICIT NONE |
---|
| 22 | |
---|
| 23 | |
---|
[1720] | 24 | #include "datafile.h" |
---|
| 25 | #include "callkeys.h" |
---|
| 26 | #include "microphys.h" |
---|
| 27 | |
---|
| 28 | |
---|
[1617] | 29 | c======================================================================= |
---|
| 30 | c CO2 clouds formation |
---|
| 31 | c |
---|
| 32 | c There is a time loop specific to cloud formation |
---|
| 33 | c due to timescales smaller than the GCM integration timestep. |
---|
| 34 | c microphysics subroutine is improvedCO2clouds.F |
---|
| 35 | c |
---|
| 36 | c The co2 clouds tracers (co2_ice, ccn mass and concentration) are |
---|
| 37 | c sedimented at each microtimestep. pdqs_sedco2 keeps track of the |
---|
| 38 | c CO2 flux at the surface |
---|
| 39 | c |
---|
| 40 | c Authors: 09/2016 Joachim Audouard & Constantino Listowski |
---|
| 41 | c Adaptation of the water ice clouds scheme (with specific microphysics) |
---|
| 42 | c of Montmessin, Navarro & al. |
---|
| 43 | c |
---|
[1720] | 44 | c 07/2017 J.Audouard |
---|
| 45 | c Several logicals can be set to .true. in callphys.def |
---|
| 46 | c co2clouds=.true. call this routine |
---|
| 47 | c co2useh2o=.true. allow the use of water ice particles as CCN for CO2 |
---|
| 48 | c meteo_flux=.true. supply meteoritic particles |
---|
| 49 | c CLFvaryingCO2=.true. allows a subgrid temperature distribution |
---|
| 50 | c of amplitude spantCO2(=integer in callphys.def) |
---|
| 51 | c |
---|
[1617] | 52 | c======================================================================= |
---|
| 53 | |
---|
| 54 | c----------------------------------------------------------------------- |
---|
| 55 | c declarations: |
---|
| 56 | c ------------- |
---|
| 57 | |
---|
| 58 | c Inputs: |
---|
| 59 | c ------ |
---|
| 60 | |
---|
| 61 | INTEGER ngrid,nlay |
---|
| 62 | INTEGER nq ! nombre de traceurs |
---|
| 63 | REAL ptimestep ! pas de temps physique (s) |
---|
| 64 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
| 65 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
| 66 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
| 67 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
| 68 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
| 69 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
[1720] | 70 | real,intent(in) :: pzlev(ngrid,nlay+1) ! altitude at the boundaries of the layers |
---|
[1617] | 71 | |
---|
| 72 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
| 73 | real pdq(ngrid,nlay,nq) ! tendance avant condensation (kg/kg.s-1) |
---|
| 74 | |
---|
| 75 | real rice(ngrid,nlay) ! Water Ice mass mean radius (m) |
---|
| 76 | ! used for nucleation of CO2 on ice-coated ccns |
---|
[1685] | 77 | DOUBLE PRECISION rho_ice_co2T(ngrid,nlay) |
---|
[1617] | 78 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
| 79 | REAL tauscaling(ngrid) ! Convertion factor for dust amount |
---|
| 80 | real rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
| 81 | |
---|
| 82 | c Outputs: |
---|
| 83 | c ------- |
---|
| 84 | |
---|
| 85 | real pdqcloudco2(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
| 86 | REAL pdtcloudco2(ngrid,nlay) ! tendence temperature due |
---|
| 87 | ! a la chaleur latente |
---|
| 88 | |
---|
[1629] | 89 | DOUBLE PRECISION riceco2(ngrid,nlay) ! Ice mass mean radius (m) |
---|
[1617] | 90 | ! (r_c in montmessin_2004) |
---|
| 91 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
| 92 | ! of the size distribution |
---|
| 93 | real rsedcloudco2(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 94 | real rhocloudco2(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
| 95 | real rhocloudco2t(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
| 96 | real pdqs_sedco2(ngrid) ! CO2 flux at the surface |
---|
| 97 | c local: |
---|
| 98 | c ------ |
---|
[1685] | 99 | !water |
---|
| 100 | real rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
| 101 | real rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
[1617] | 102 | ! for ice radius computation |
---|
[1720] | 103 | |
---|
[1617] | 104 | REAl ccntyp |
---|
| 105 | |
---|
| 106 | ! for time loop |
---|
| 107 | INTEGER microstep ! time subsampling step variable |
---|
| 108 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
| 109 | SAVE imicro |
---|
| 110 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
| 111 | SAVE microtimestep |
---|
| 112 | |
---|
| 113 | ! tendency given by clouds (inside the micro loop) |
---|
| 114 | REAL subpdqcloudco2(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 115 | REAL subpdtcloudco2(ngrid,nlay) ! cf. pdtcloud |
---|
| 116 | |
---|
| 117 | ! global tendency (clouds+physics) |
---|
| 118 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
| 119 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
| 120 | real wq(ngrid,nlay+1) ! ! displaced tracer mass (kg.m-2) during microtimestep because sedim (?/m-2) |
---|
| 121 | |
---|
| 122 | REAL satuco2(ngrid,nlay) ! co2 satu ratio for output |
---|
| 123 | REAL zqsatco2(ngrid,nlay) ! saturation co2 |
---|
| 124 | |
---|
[1720] | 125 | INTEGER iq,ig,l,i |
---|
[1617] | 126 | LOGICAL,SAVE :: firstcall=.true. |
---|
[1720] | 127 | DOUBLE PRECISION Nccnco2, Niceco2,Nco2,mdustJA,ndustJA |
---|
[1617] | 128 | DOUBLE PRECISION Qccnco2 |
---|
| 129 | real :: beta |
---|
| 130 | |
---|
| 131 | real epaisseur (ngrid,nlay) ! Layer thickness (m) |
---|
| 132 | real masse (ngrid,nlay) ! Layer mass (kg.m-2) |
---|
[1651] | 133 | double precision diff,diff0 |
---|
[1617] | 134 | real tempo_traceur_t(ngrid,nlay) |
---|
| 135 | real tempo_traceurs(ngrid,nlay,nq) |
---|
| 136 | real sav_trac(ngrid,nlay,nq) |
---|
| 137 | real pdqsed(ngrid,nlay,nq) |
---|
[1720] | 138 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
| 139 | REAL,save :: l0,l1,l2,l3,l4 !Coeffs for lw |
---|
[1685] | 140 | |
---|
[1720] | 141 | DOUBLE PRECISION,allocatable,save :: memdMMccn(:,:) ! Nb particules intégré |
---|
[1685] | 142 | DOUBLE PRECISION,allocatable,save :: memdMMh2o(:,:) |
---|
| 143 | DOUBLE PRECISION,allocatable,save :: memdNNccn(:,:) |
---|
[1720] | 144 | DOUBLE PRECISION :: myT |
---|
| 145 | ! What we need for Qext reading and tau computation |
---|
| 146 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
| 147 | DOUBLE PRECISION rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) |
---|
| 148 | SAVE rb_cldco2 |
---|
| 149 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 1.e-11 ! Minimum radius (m) |
---|
| 150 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 3.e-6 ! Maximum radius (m) |
---|
| 151 | DOUBLE PRECISION, PARAMETER :: rbmin_cld =1.e-12 |
---|
| 152 | ! Minimum boundary radius (m) |
---|
| 153 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 5.e-6 ! Maximum boundary radius (m) |
---|
| 154 | |
---|
| 155 | DOUBLE PRECISION dr_cld(nbinco2_cld) ! width of each rad_cldco2 bin (m) |
---|
| 156 | DOUBLE PRECISION vol_cld(nbinco2_cld) ! particle volume for each bin (m3) |
---|
| 157 | REAL sigma_iceco2 ! Variance of the ice and CCN distributions |
---|
| 158 | |
---|
| 159 | logical :: file_ok |
---|
| 160 | double precision :: radv(10000),Qextv1mic(10000) |
---|
| 161 | double precision :: Qext1bins(100),Qtemp |
---|
| 162 | double precision :: ltemp1(10000),ltemp2(10000) |
---|
| 163 | integer :: nelem,lebon1,lebon2,uQext |
---|
| 164 | save Qext1bins |
---|
| 165 | character(len=100) scanline |
---|
| 166 | DOUBLE PRECISION n_aer(nbinco2_cld),Rn,No,n_derf,dev2 |
---|
| 167 | DOUBLE PRECISION Qext1bins2(ngrid,nlay) |
---|
| 168 | DOUBLE PRECISION tau1mic(ngrid) !co2 ice column opacity at 1µm |
---|
| 169 | |
---|
| 170 | ! For sub grid T distribution |
---|
| 171 | |
---|
| 172 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
| 173 | REAL :: zq(ngrid, nlay,nq) |
---|
| 174 | |
---|
| 175 | REAL :: tcond(ngrid,nlay) |
---|
| 176 | REAL :: zqvap(ngrid,nlay) |
---|
| 177 | REAL :: zqice(ngrid,nlay) |
---|
| 178 | REAL :: spant,zdelt ! delta T for the temperature distribution |
---|
| 179 | REAL :: zteff(ngrid, nlay)! effective temperature in the cloud,neb |
---|
| 180 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
---|
| 181 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
---|
| 182 | REAL :: mincloud ! min cloud frac |
---|
| 183 | c logical :: CLFvaryingCO2 |
---|
[1617] | 184 | c ** un petit test de coherence |
---|
| 185 | c -------------------------- |
---|
| 186 | |
---|
| 187 | IF (firstcall) THEN |
---|
| 188 | if (nq.gt.nqmx) then |
---|
| 189 | write(*,*) 'stop in co2cloud (nq.gt.nqmx)!' |
---|
| 190 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
| 191 | stop |
---|
| 192 | endif |
---|
[1685] | 193 | write(*,*) "co2cloud.F: rho_ice_co2 = ",rho_ice_co2 |
---|
[1617] | 194 | write(*,*) "co2cloud: igcm_co2=",igcm_co2 |
---|
| 195 | write(*,*) " igcm_co2_ice=",igcm_co2_ice |
---|
| 196 | |
---|
| 197 | write(*,*) "time subsampling for microphysic ?" |
---|
| 198 | #ifdef MESOSCALE |
---|
| 199 | imicro = 2 |
---|
| 200 | #else |
---|
| 201 | imicro = 30 |
---|
| 202 | #endif |
---|
| 203 | call getin("imicro",imicro) |
---|
| 204 | write(*,*)"imicro = ",imicro |
---|
| 205 | |
---|
| 206 | microtimestep = ptimestep/real(imicro) |
---|
| 207 | write(*,*)"Physical timestep is",ptimestep |
---|
| 208 | write(*,*)"CO2 Microphysics timestep is",microtimestep |
---|
[1651] | 209 | |
---|
[1720] | 210 | ! Values for latent heat computation |
---|
| 211 | l0=595594d0 |
---|
| 212 | l1=903.111d0 |
---|
| 213 | l2=-11.5959d0 |
---|
| 214 | l3=0.0528288d0 |
---|
| 215 | l4=-0.000103183d0 |
---|
| 216 | c$$$ |
---|
| 217 | c$$$ if (meteo_flux_number .ne. 0) then |
---|
| 218 | c$$$ |
---|
| 219 | c$$$ write(*,*) "Warning ! Meteoritic flux of dust is turned on" |
---|
| 220 | c$$$ write(*,*) "Dust mass = ",meteo_flux_mass |
---|
| 221 | c$$$ write(*,*) "Dust number = ",meteo_flux_number |
---|
| 222 | c$$$ write(*,*) "Are added at the z-level (km)",meteo_alt |
---|
| 223 | c$$$ write(*,*) "Every timestep in co2cloud.F" |
---|
| 224 | c$$$ endif |
---|
| 225 | |
---|
[1685] | 226 | if (.not. allocated(memdMMccn)) allocate(memdMMccn(ngrid,nlay)) |
---|
| 227 | if (.not. allocated(memdNNccn)) allocate(memdNNccn(ngrid,nlay)) |
---|
| 228 | if (.not. allocated(memdMMh2o)) allocate(memdMMh2o(ngrid,nlay)) |
---|
| 229 | |
---|
| 230 | memdMMccn(:,:)=0. |
---|
| 231 | memdMMh2o(:,:)=0. |
---|
| 232 | memdNNccn(:,:)=0. |
---|
[1720] | 233 | |
---|
| 234 | c Compute the size bins of the distribution of CO2 ice particles |
---|
| 235 | c --> used for opacity calculations |
---|
| 236 | |
---|
| 237 | c rad_cldco2 is the primary radius grid used for microphysics computation. |
---|
| 238 | c The grid spacing is computed assuming a constant volume ratio |
---|
| 239 | c between two consecutive bins; i.e. vrat_cld. |
---|
| 240 | c vrat_cld is determined from the boundary values of the size grid: |
---|
| 241 | c rmin_cld and rmax_cld. |
---|
| 242 | c The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
---|
| 243 | c dr_cld is the width of each rad_cldco2 bin. |
---|
| 244 | sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) |
---|
| 245 | c Volume ratio between two adjacent bins |
---|
| 246 | ! vrat_cld |
---|
| 247 | vrat_cld = log(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. |
---|
| 248 | vrat_cld = exp(vrat_cld) |
---|
| 249 | rb_cldco2(1) = rbmin_cld |
---|
| 250 | rad_cldco2(1) = rmin_cld |
---|
| 251 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
| 252 | do i=1,nbinco2_cld-1 |
---|
| 253 | rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) |
---|
| 254 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
| 255 | enddo |
---|
| 256 | do i=1,nbinco2_cld |
---|
| 257 | rb_cldco2(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
| 258 | & rad_cldco2(i) |
---|
| 259 | dr_cld(i) = rb_cldco2(i+1) - rb_cldco2(i) |
---|
| 260 | enddo |
---|
| 261 | rb_cldco2(nbinco2_cld+1) = rbmax_cld |
---|
| 262 | dr_cld(nbinco2_cld) = rb_cldco2(nbinco2_cld+1) - |
---|
| 263 | & rb_cldco2(nbinco2_cld) |
---|
| 264 | |
---|
| 265 | c read the Qext values |
---|
| 266 | INQUIRE(FILE=datafile(1:LEN_TRIM(datafile))// |
---|
| 267 | & '/optprop_co2ice_1mic.dat', EXIST=file_ok) |
---|
| 268 | IF (.not. file_ok) THEN |
---|
| 269 | write(*,*) 'file optprop_co2ice_1mic.dat should be in ' |
---|
| 270 | & ,datafile |
---|
| 271 | STOP |
---|
| 272 | endif |
---|
| 273 | open(newunit=uQext,file=trim(datafile)// |
---|
| 274 | & '/optprop_co2ice_1mic.dat' |
---|
| 275 | & ,FORM='formatted') |
---|
| 276 | read(uQext,*) !skip 1 line |
---|
| 277 | do i=1,10000 |
---|
| 278 | read(uQext,'(E11.5)') radv(i) |
---|
| 279 | enddo |
---|
| 280 | read(uQext,*) !skip 1 line |
---|
| 281 | do i=1,10000 |
---|
| 282 | read(uQext,'(E11.5)') Qextv1mic(i) |
---|
| 283 | enddo |
---|
| 284 | close(uQext) |
---|
| 285 | c innterpol the Qext values |
---|
| 286 | !rice_out=rad_cldco2 |
---|
| 287 | do i=1,nbinco2_cld |
---|
| 288 | ltemp1=abs(radv(:)-rb_cldco2(i)) |
---|
| 289 | ltemp2=abs(radv(:)-rb_cldco2(i+1)) |
---|
| 290 | lebon1=minloc(ltemp1,DIM=1) |
---|
| 291 | lebon2=minloc(ltemp2,DIM=1) |
---|
| 292 | nelem=lebon2-lebon1+1. |
---|
| 293 | Qtemp=0d0 |
---|
| 294 | do l=0,nelem |
---|
| 295 | Qtemp=Qtemp+Qextv1mic(lebon1+l) !mean value in the interval |
---|
| 296 | enddo |
---|
| 297 | Qtemp=Qtemp/nelem |
---|
| 298 | Qext1bins(i)=Qtemp |
---|
| 299 | enddo |
---|
| 300 | Qext1bins(:)=Qext1bins(:)*rad_cldco2(:)*rad_cldco2(:)*pi |
---|
| 301 | ! The actuall tau computation and output is performed in co2cloud.F |
---|
| 302 | |
---|
| 303 | print*,'--------------------------------------------' |
---|
| 304 | print*,'Microphysics co2: size bin-Qext information:' |
---|
| 305 | print*,' i, rad_cldco2(i), Qext1bins(i)' |
---|
| 306 | do i=1,nbinco2_cld |
---|
| 307 | write(*,'(i3,3x,3(e12.6,4x))') i, rad_cldco2(i), |
---|
| 308 | & Qext1bins(i) |
---|
| 309 | enddo |
---|
| 310 | print*,'--------------------------------------------' |
---|
| 311 | |
---|
| 312 | |
---|
| 313 | do i=1,nbinco2_cld+1 |
---|
| 314 | rb_cldco2(i) = log(rb_cldco2(i)) !! we save that so that it is not computed at each timestep and gridpoint |
---|
| 315 | enddo |
---|
| 316 | if (CLFvaryingCO2) then |
---|
| 317 | write(*,*) |
---|
| 318 | write(*,*) "CLFvaryingCO2 is set to true is callphys.def" |
---|
| 319 | write(*,*) "The temperature field is enlarged to +/-",spantCO2 |
---|
| 320 | write(*,*) "for the CO2 microphysics " |
---|
| 321 | endif |
---|
[1617] | 322 | firstcall=.false. |
---|
| 323 | ENDIF ! of IF (firstcall) |
---|
| 324 | |
---|
| 325 | c-----Initialization |
---|
[1720] | 326 | dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) |
---|
[1685] | 327 | beta=0.85 |
---|
| 328 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 329 | subpdt(1:ngrid,1:nlay) = 0 |
---|
| 330 | subpdqcloudco2(1:ngrid,1:nlay,1:nq) = 0 |
---|
| 331 | subpdtcloudco2(1:ngrid,1:nlay) = 0 |
---|
[1720] | 332 | c$$$ |
---|
| 333 | c$$$ call WRITEDIAGFI(ngrid,"pzlay","pzlay","km",3, |
---|
| 334 | c$$$ & pzlay) |
---|
| 335 | c$$$ call WRITEDIAGFI(ngrid,"pplay","pplay","Pa",3, |
---|
| 336 | c$$$ & pplay) |
---|
[1685] | 337 | |
---|
[1617] | 338 | wq(:,:)=0 |
---|
| 339 | ! default value if no ice |
---|
| 340 | rhocloudco2(1:ngrid,1:nlay) = rho_dust |
---|
| 341 | rhocloudco2t(1:ngrid,1:nlay) = rho_dust |
---|
| 342 | epaisseur(1:ngrid,1:nlay)=0 |
---|
| 343 | masse(1:ngrid,1:nlay)=0 |
---|
| 344 | |
---|
| 345 | sav_trac(1:ngrid,1:nlay,1:nq)=0 |
---|
| 346 | pdqsed(1:ngrid,1:nlay,1:nq)=0 |
---|
| 347 | |
---|
| 348 | do l=1,nlay |
---|
| 349 | do ig=1, ngrid |
---|
| 350 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
[1720] | 351 | epaisseur(ig,l)= pzlev(ig,l+1) - pzlev(ig,l) |
---|
[1617] | 352 | enddo |
---|
| 353 | enddo |
---|
| 354 | |
---|
[1720] | 355 | !CLFvaryingCO2=.true. |
---|
[1617] | 356 | |
---|
| 357 | c------------------------------------------------------------------- |
---|
[1720] | 358 | c 0. Representation of sub-grid water ice clouds |
---|
| 359 | c------------------ |
---|
| 360 | IF (CLFvaryingCO2) THEN |
---|
| 361 | spant=spantCO2 ! delta T for the temprature distribution |
---|
| 362 | mincloud=0.1 ! min cloudfrac when there is ice |
---|
| 363 | ! IF (flagcloudco2) THEN |
---|
| 364 | ! write(*,*) "CLFCO2 Delta T", spant |
---|
| 365 | ! write(*,*) "CLFCO2 mincloud", mincloud |
---|
| 366 | ! flagcloudco2=.false. |
---|
| 367 | ! END IF |
---|
| 368 | |
---|
| 369 | c-----Tendencies |
---|
| 370 | DO l=1,nlay |
---|
| 371 | DO ig=1,ngrid |
---|
| 372 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
| 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | DO l=1,nlay |
---|
| 376 | DO ig=1,ngrid |
---|
| 377 | DO iq=1,nq |
---|
| 378 | zq(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
| 379 | ENDDO |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | zqvap=zq(:,:,igcm_co2) |
---|
| 383 | zqice=zq(:,:,igcm_co2_ice) |
---|
[1754] | 384 | !! AS : this routine is not present? |
---|
| 385 | ! CALL tcondco2(ngrid,nlay,pplay,zqvap,tcond) |
---|
[1720] | 386 | ! A tester: CALL tcondco2(ngrid,nlay,pplay,zqvap,tcond) |
---|
| 387 | zdelt=spant |
---|
| 388 | DO l=1,nlay |
---|
| 389 | DO ig=1,ngrid |
---|
| 390 | IF (tcond(ig,l) .ge. (zt(ig,l)+zdelt)) THEN !Toute la fraction est saturée |
---|
| 391 | zteff(ig,l)=zt(ig,l) |
---|
| 392 | cloudfrac(ig,l)=1. |
---|
| 393 | ELSE IF (tcond(ig,l) .le. (zt(ig,l)-zdelt)) THEN !Rien n'est saturé |
---|
| 394 | zteff(ig,l)=zt(ig,l)-zdelt |
---|
| 395 | cloudfrac(ig,l)=mincloud |
---|
| 396 | ELSE |
---|
| 397 | cloudfrac(ig,l)=(tcond(ig,l)-zt(ig,l)+zdelt)/ |
---|
| 398 | & (2.0*zdelt) |
---|
| 399 | zteff(ig,l)=(tcond(ig,l)+zt(ig,l)-zdelt)/2. !Ja Temperature moyenne de la fraction nuageuse |
---|
| 400 | |
---|
| 401 | END IF |
---|
| 402 | zteff(ig,l)=zteff(ig,l)-pdt(ig,l)*ptimestep |
---|
| 403 | IF (cloudfrac(ig,l).le. mincloud) THEN |
---|
| 404 | cloudfrac(ig,l)=mincloud |
---|
| 405 | ELSE IF (cloudfrac(ig,l).ge. 1) THEN |
---|
| 406 | cloudfrac(ig,l)=1. |
---|
| 407 | END IF |
---|
| 408 | ENDDO |
---|
| 409 | ENDDO |
---|
| 410 | ! Totalcloud frac of the column missing here |
---|
| 411 | c----------------------- |
---|
| 412 | c-----No sub-grid cloud representation (CLFvarying=false) |
---|
| 413 | ELSE |
---|
| 414 | DO l=1,nlay |
---|
| 415 | DO ig=1,ngrid |
---|
| 416 | zteff(ig,l)=pt(ig,l) |
---|
| 417 | END DO |
---|
| 418 | END DO |
---|
| 419 | END IF ! end if (CLFvaryingco2)-------------------------------------------- |
---|
[1617] | 420 | c 1. Tendencies: |
---|
| 421 | c------------------ |
---|
| 422 | |
---|
[1720] | 423 | c------ Effective tracers quantities in the cloud fraction |
---|
| 424 | IF (CLFvaryingCO2) THEN |
---|
| 425 | pqeff(:,:,:)=pq(:,:,:) ! prevent from buggs (A. Pottier) |
---|
| 426 | |
---|
| 427 | c pqeff(:,:,igcm_ccn_mass) =pq(:,:,igcm_ccn_mass)/ |
---|
| 428 | c & cloudfrac(:,:) |
---|
| 429 | c pqeff(:,:,igcm_ccn_number)= |
---|
| 430 | c & pq(:,:,igcm_ccn_number)/cloudfrac(:,:) |
---|
| 431 | c pqeff(:,:,igcm_h2o_ice)= pq(:,:,igcm_h2o_ice)/ |
---|
| 432 | c & cloudfrac(:,:) |
---|
| 433 | pqeff(:,:,igcm_ccnco2_mass) =pq(:,:,igcm_ccnco2_mass)/ |
---|
| 434 | & cloudfrac(:,:) |
---|
| 435 | pqeff(:,:,igcm_ccnco2_number)= |
---|
| 436 | & pq(:,:,igcm_ccnco2_number)/cloudfrac(:,:) |
---|
| 437 | pqeff(:,:,igcm_co2_ice)= pq(:,:,igcm_co2_ice)/ |
---|
| 438 | & cloudfrac(:,:) |
---|
[1617] | 439 | |
---|
[1720] | 440 | ELSE |
---|
| 441 | pqeff(:,:,:)=pq(:,:,:) |
---|
| 442 | c pqeff(:,:,igcm_ccn_mass)= pq(:,:,igcm_ccn_mass) |
---|
| 443 | c pqeff(:,:,igcm_ccn_number)= pq(:,:,igcm_ccn_number) |
---|
| 444 | c pqeff(:,:,igcm_h2o_ice)= pq(:,:,igcm_h2o_ice) |
---|
| 445 | c pqeff(:,:,igcm_ccnco2_mass)= pq(:,:,igcm_ccnco2_mass) |
---|
| 446 | c pqeff(:,:,igcm_ccnco2_number)= pq(:,:,igcm_ccnco2_number) |
---|
| 447 | c pqeff(:,:,igcm_co2_ice)= pq(:,:,igcm_co2_ice) |
---|
| 448 | END IF |
---|
| 449 | tempo_traceur_t(1:ngrid,1:nlay)=zteff(1:ngrid,1:nlay) |
---|
| 450 | tempo_traceurs(1:ngrid,1:nlay,1:nq)=pqeff(1:ngrid,1:nlay,1:nq) |
---|
[1617] | 451 | |
---|
| 452 | c------------------------------------------------------------------ |
---|
| 453 | c Time subsampling for microphysics |
---|
| 454 | c------------------------------------------------------------------ |
---|
| 455 | DO microstep=1,imicro |
---|
| 456 | c------ Temperature tendency subpdt |
---|
| 457 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
| 458 | ! If imicro=1 subpdt is the same as pdt |
---|
| 459 | DO l=1,nlay |
---|
| 460 | DO ig=1,ngrid |
---|
| 461 | |
---|
| 462 | subpdt(ig,l) = subpdt(ig,l) |
---|
| 463 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
| 464 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 465 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 466 | & + pdq(ig,l,igcm_dust_mass) |
---|
| 467 | subpdq(ig,l,igcm_dust_number) = |
---|
| 468 | & subpdq(ig,l,igcm_dust_number) |
---|
| 469 | & + pdq(ig,l,igcm_dust_number) |
---|
| 470 | subpdq(ig,l,igcm_ccnco2_mass) = |
---|
| 471 | & subpdq(ig,l,igcm_ccnco2_mass) |
---|
| 472 | & + pdq(ig,l,igcm_ccnco2_mass) |
---|
| 473 | subpdq(ig,l,igcm_ccnco2_number) = |
---|
| 474 | & subpdq(ig,l,igcm_ccnco2_number) |
---|
| 475 | & + pdq(ig,l,igcm_ccnco2_number) |
---|
| 476 | subpdq(ig,l,igcm_co2_ice) = |
---|
| 477 | & subpdq(ig,l,igcm_co2_ice) |
---|
| 478 | & + pdq(ig,l,igcm_co2_ice) |
---|
| 479 | subpdq(ig,l,igcm_co2) = |
---|
| 480 | & subpdq(ig,l,igcm_co2) |
---|
| 481 | & + pdq(ig,l,igcm_co2) |
---|
[1685] | 482 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 483 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 484 | & + pdq(ig,l,igcm_h2o_ice) |
---|
| 485 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 486 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 487 | & + pdq(ig,l,igcm_ccn_mass) |
---|
| 488 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 489 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 490 | & + pdq(ig,l,igcm_ccn_number) |
---|
[1617] | 491 | ENDDO |
---|
| 492 | ENDDO |
---|
[1720] | 493 | |
---|
| 494 | c add meteoritic flux of dust (old version) |
---|
| 495 | cNew version (John Plane values) are added in improvedCO2clouds |
---|
| 496 | !convert meteo_alt (in km) to z-level |
---|
| 497 | !pzlay altitudes of the layers |
---|
| 498 | c$$$!zlev altitudes (nlayl+1) of the boundaries |
---|
| 499 | c$$$ if (meteo_flux_number .ge. 0) then |
---|
| 500 | c$$$ do ig=1, ngrid |
---|
| 501 | c$$$ l=1 |
---|
| 502 | c$$$ do while ( (((meteo_alt .ge. pplev(ig,l)) .and. |
---|
| 503 | c$$$ & (meteo_alt .le. pplev(ig,l+1))) .eq. .false.) |
---|
| 504 | c$$$ & .and. (l .lt. nlay) ) |
---|
| 505 | c$$$ l=l+1 |
---|
| 506 | c$$$ enddo |
---|
| 507 | c$$$ meteo_lvl=l |
---|
| 508 | c$$$ subpdq(ig,meteo_lvl,igcm_dust_mass)= |
---|
| 509 | c$$$ & subpdq(ig,meteo_lvl,igcm_dust_mass) |
---|
| 510 | c$$$ & +meteo_flux_mass |
---|
| 511 | c$$$ subpdq(ig,meteo_lvl,igcm_dust_number)= |
---|
| 512 | c$$$ & subpdq(ig,meteo_lvl,igcm_dust_number) |
---|
| 513 | c$$$ & +meteo_flux_number |
---|
| 514 | c$$$ enddo |
---|
| 515 | c$$$ endif |
---|
| 516 | c------------------------------------------------------------------- |
---|
| 517 | c 2. Main call to the cloud schemes: |
---|
| 518 | c------------------------------------------------ |
---|
| 519 | CALL improvedCO2clouds(ngrid,nlay,microtimestep, |
---|
| 520 | & pplay,pzlev,zteff,subpdt, |
---|
| 521 | & pqeff,subpdq,subpdqcloudco2,subpdtcloudco2, |
---|
| 522 | & nq,tauscaling,memdMMccn,memdMMh2o,memdNNccn) |
---|
| 523 | c------------------------------------------------------------------- |
---|
| 524 | c 3. Updating tendencies after cloud scheme: |
---|
| 525 | c----------------------------------------------- |
---|
| 526 | DO l=1,nlay |
---|
| 527 | DO ig=1,ngrid |
---|
| 528 | subpdt(ig,l) = |
---|
| 529 | & subpdt(ig,l) + subpdtcloudco2(ig,l) |
---|
| 530 | subpdq(ig,l,igcm_dust_mass) = |
---|
| 531 | & subpdq(ig,l,igcm_dust_mass) |
---|
| 532 | & + subpdqcloudco2(ig,l,igcm_dust_mass) |
---|
| 533 | subpdq(ig,l,igcm_dust_number) = |
---|
| 534 | & subpdq(ig,l,igcm_dust_number) |
---|
| 535 | & + subpdqcloudco2(ig,l,igcm_dust_number) |
---|
| 536 | subpdq(ig,l,igcm_ccnco2_mass) = |
---|
| 537 | & subpdq(ig,l,igcm_ccnco2_mass) |
---|
| 538 | & + subpdqcloudco2(ig,l,igcm_ccnco2_mass) |
---|
| 539 | subpdq(ig,l,igcm_ccnco2_number) = |
---|
| 540 | & subpdq(ig,l,igcm_ccnco2_number) |
---|
| 541 | & + subpdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
| 542 | subpdq(ig,l,igcm_co2_ice) = |
---|
| 543 | & subpdq(ig,l,igcm_co2_ice) |
---|
| 544 | & + subpdqcloudco2(ig,l,igcm_co2_ice) |
---|
| 545 | subpdq(ig,l,igcm_co2) = |
---|
| 546 | & subpdq(ig,l,igcm_co2) |
---|
| 547 | & + subpdqcloudco2(ig,l,igcm_co2) |
---|
| 548 | subpdq(ig,l,igcm_h2o_ice) = |
---|
| 549 | & subpdq(ig,l,igcm_h2o_ice) |
---|
| 550 | & + subpdqcloudco2(ig,l,igcm_h2o_ice) |
---|
| 551 | subpdq(ig,l,igcm_ccn_mass) = |
---|
| 552 | & subpdq(ig,l,igcm_ccn_mass) |
---|
| 553 | & + subpdqcloudco2(ig,l,igcm_ccn_mass) |
---|
| 554 | subpdq(ig,l,igcm_ccn_number) = |
---|
| 555 | & subpdq(ig,l,igcm_ccn_number) |
---|
| 556 | & + subpdqcloudco2(ig,l,igcm_ccn_number) |
---|
| 557 | ENDDO |
---|
| 558 | ENDDO |
---|
| 559 | |
---|
| 560 | !Sedimentation |
---|
| 561 | !Update traceurs, compute rsed |
---|
[1617] | 562 | |
---|
| 563 | DO l=1, nlay |
---|
[1720] | 564 | DO ig=1,ngrid |
---|
| 565 | tempo_traceur_t(ig,l)=zteff(ig,l)+subpdt(ig,l) |
---|
| 566 | & *microtimestep |
---|
| 567 | tempo_traceurs(ig,l,:)=pqeff(ig,l,:) |
---|
| 568 | & +subpdq(ig,l,:)*microtimestep |
---|
| 569 | |
---|
[1685] | 570 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4* |
---|
| 571 | & tempo_traceur_t(ig,l)-2.87e-6* |
---|
| 572 | & tempo_traceur_t(ig,l)*tempo_traceur_t(ig,l)) |
---|
[1720] | 573 | |
---|
| 574 | rho_ice_co2=rho_ice_co2T(ig,l) |
---|
[1649] | 575 | Niceco2=max(tempo_traceurs(ig,l,igcm_co2_ice),1.e-30) |
---|
[1617] | 576 | Nccnco2=max(tempo_traceurs(ig,l,igcm_ccnco2_number), |
---|
| 577 | & 1.e-30) |
---|
| 578 | Qccnco2=max(tempo_traceurs(ig,l,igcm_ccnco2_mass), |
---|
| 579 | & 1.e-30) |
---|
| 580 | mdustJA= tempo_traceurs(ig,l,igcm_dust_mass) |
---|
| 581 | ndustJA=tempo_traceurs(ig,l,igcm_dust_number) |
---|
[1685] | 582 | if ((Nccnco2 .lt. tauscaling(ig)) .or. (Qccnco2 .lt. |
---|
[1617] | 583 | & 1.e-30 *tauscaling(ig))) then |
---|
| 584 | rdust(ig,l)=1.e-10 |
---|
| 585 | else |
---|
[1685] | 586 | rdust(ig,l)=(3./4./pi/2500.*Qccnco2/Nccnco2)**(1./3.) |
---|
| 587 | rdust(ig,l)=max(rdust(ig,l),1.e-10) |
---|
[1720] | 588 | c rdust(ig,l)=min(rdust(ig,l),5.e-6) |
---|
[1617] | 589 | end if |
---|
[1685] | 590 | rhocloudco2t(ig,l) = (Niceco2 *rho_ice_co2 |
---|
| 591 | & + Qccnco2*tauscaling(ig)*rho_dust) |
---|
| 592 | & / (Niceco2 + Qccnco2*tauscaling(ig)) |
---|
[1720] | 593 | |
---|
| 594 | rhocloudco2t(ig,l)=min(max(rhocloudco2t(ig,l) |
---|
| 595 | & ,rho_ice_co2),rho_dust) |
---|
[1685] | 596 | riceco2(ig,l)=(Niceco2*3.0/ |
---|
| 597 | & (4.0*rho_ice_co2*pi*Nccnco2 |
---|
| 598 | & *tauscaling(ig)) +rdust(ig,l)*rdust(ig,l) |
---|
| 599 | & *rdust(ig,l))**(1.0/3.0) |
---|
| 600 | riceco2(ig,l)=max(1.e-10,riceco2(ig,l)) |
---|
[1720] | 601 | |
---|
| 602 | rsedcloudco2(ig,l)=max(riceco2(ig,l)* |
---|
[1617] | 603 | & (1.+nuiceco2_sed)*(1.+nuiceco2_sed)*(1.+nuiceco2_sed), |
---|
| 604 | & rdust(ig,l)) |
---|
[1720] | 605 | |
---|
[1617] | 606 | ENDDO |
---|
| 607 | ENDDO |
---|
| 608 | |
---|
| 609 | ! Gravitational sedimentation |
---|
[1720] | 610 | |
---|
[1617] | 611 | sav_trac(:,:,igcm_co2_ice)=tempo_traceurs(:,:,igcm_co2_ice) |
---|
| 612 | sav_trac(:,:,igcm_ccnco2_mass)= |
---|
| 613 | & tempo_traceurs(:,:,igcm_ccnco2_mass) |
---|
| 614 | sav_trac(:,:,igcm_ccnco2_number)= |
---|
| 615 | & tempo_traceurs(:,:,igcm_ccnco2_number) |
---|
| 616 | |
---|
| 617 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
| 618 | & microtimestep,pplev,masse,epaisseur,tempo_traceur_t, |
---|
| 619 | & rsedcloudco2,rhocloudco2t, |
---|
| 620 | & tempo_traceurs(:,:,igcm_co2_ice),wq,beta) ! 3 traceurs |
---|
| 621 | |
---|
[1720] | 622 | ! sedim at the surface of co2 ice : keep track of it for physiq_mod |
---|
[1617] | 623 | do ig=1,ngrid |
---|
[1720] | 624 | pdqs_sedco2(ig)=pdqs_sedco2(ig)+ wq(ig,1)/microtimestep |
---|
[1617] | 625 | end do |
---|
| 626 | |
---|
| 627 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
| 628 | & microtimestep,pplev,masse,epaisseur,tempo_traceur_t, |
---|
| 629 | & rsedcloudco2,rhocloudco2t, |
---|
| 630 | & tempo_traceurs(:,:,igcm_ccnco2_mass),wq,beta) |
---|
| 631 | |
---|
| 632 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
| 633 | & microtimestep,pplev,masse,epaisseur,tempo_traceur_t, |
---|
| 634 | & rsedcloudco2,rhocloudco2t, |
---|
| 635 | & tempo_traceurs(:,:,igcm_ccnco2_number),wq,beta) |
---|
[1720] | 636 | |
---|
| 637 | DO l = 1, nlay !Compute tendencies |
---|
[1617] | 638 | DO ig=1,ngrid |
---|
| 639 | pdqsed(ig,l,igcm_ccnco2_mass)= |
---|
| 640 | & (tempo_traceurs(ig,l,igcm_ccnco2_mass)- |
---|
| 641 | & sav_trac(ig,l,igcm_ccnco2_mass))/microtimestep |
---|
| 642 | pdqsed(ig,l,igcm_ccnco2_number)= |
---|
| 643 | & (tempo_traceurs(ig,l,igcm_ccnco2_number)- |
---|
| 644 | & sav_trac(ig,l,igcm_ccnco2_number))/microtimestep |
---|
| 645 | pdqsed(ig,l,igcm_co2_ice)= |
---|
| 646 | & (tempo_traceurs(ig,l,igcm_co2_ice)- |
---|
| 647 | & sav_trac(ig,l,igcm_co2_ice))/microtimestep |
---|
| 648 | ENDDO |
---|
| 649 | ENDDO |
---|
| 650 | !pdqsed est la tendance due a la sedimentation |
---|
| 651 | |
---|
| 652 | DO l=1,nlay |
---|
| 653 | DO ig=1,ngrid |
---|
| 654 | subpdq(ig,l,igcm_ccnco2_mass) = |
---|
| 655 | & subpdq(ig,l,igcm_ccnco2_mass) |
---|
| 656 | & +pdqsed(ig,l,igcm_ccnco2_mass) |
---|
| 657 | subpdq(ig,l,igcm_ccnco2_number) = |
---|
| 658 | & subpdq(ig,l,igcm_ccnco2_number) |
---|
| 659 | & +pdqsed(ig,l,igcm_ccnco2_number) |
---|
| 660 | subpdq(ig,l,igcm_co2_ice) = |
---|
| 661 | & subpdq(ig,l,igcm_co2_ice) |
---|
| 662 | & +pdqsed(ig,l,igcm_co2_ice) |
---|
| 663 | ENDDO |
---|
| 664 | ENDDO |
---|
| 665 | |
---|
[1720] | 666 | ENDDO ! of DO microstep=1,imicro |
---|
[1617] | 667 | |
---|
| 668 | c------------------------------------------------------------------- |
---|
| 669 | c 6. Compute final tendencies after time loop: |
---|
| 670 | c------------------------------------------------ |
---|
| 671 | c CO2 flux at surface (kg.m-2.s-1) |
---|
| 672 | do ig=1,ngrid |
---|
[1720] | 673 | pdqs_sedco2(ig)=pdqs_sedco2(ig)/real(imicro) |
---|
[1617] | 674 | enddo |
---|
| 675 | |
---|
| 676 | c------ Temperature tendency pdtcloud |
---|
| 677 | DO l=1,nlay |
---|
| 678 | DO ig=1,ngrid |
---|
| 679 | pdtcloudco2(ig,l) = |
---|
[1685] | 680 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
[1617] | 681 | ENDDO |
---|
| 682 | ENDDO |
---|
[1685] | 683 | |
---|
[1617] | 684 | c------ Tracers tendencies pdqcloud |
---|
| 685 | DO l=1,nlay |
---|
| 686 | DO ig=1,ngrid |
---|
| 687 | |
---|
| 688 | pdqcloudco2(ig,l,igcm_co2_ice) = |
---|
[1720] | 689 | & subpdq(ig,l,igcm_co2_ice)/real(imicro) |
---|
[1617] | 690 | & - pdq(ig,l,igcm_co2_ice) |
---|
| 691 | pdqcloudco2(ig,l,igcm_co2) = |
---|
[1720] | 692 | & subpdq(ig,l,igcm_co2)/real(imicro) |
---|
[1617] | 693 | & - pdq(ig,l,igcm_co2) |
---|
[1685] | 694 | pdqcloudco2(ig,l,igcm_h2o_ice) = |
---|
[1720] | 695 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
[1685] | 696 | & - pdq(ig,l,igcm_h2o_ice) |
---|
[1617] | 697 | ENDDO |
---|
| 698 | ENDDO |
---|
| 699 | |
---|
| 700 | DO l=1,nlay |
---|
| 701 | DO ig=1,ngrid |
---|
| 702 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = |
---|
[1685] | 703 | & subpdq(ig,l,igcm_ccnco2_mass)/real(imicro) |
---|
[1617] | 704 | & - pdq(ig,l,igcm_ccnco2_mass) |
---|
| 705 | pdqcloudco2(ig,l,igcm_ccnco2_number) = |
---|
[1685] | 706 | & subpdq(ig,l,igcm_ccnco2_number)/real(imicro) |
---|
[1617] | 707 | & - pdq(ig,l,igcm_ccnco2_number) |
---|
[1685] | 708 | pdqcloudco2(ig,l,igcm_ccn_mass) = |
---|
| 709 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
| 710 | & - pdq(ig,l,igcm_ccn_mass) |
---|
| 711 | pdqcloudco2(ig,l,igcm_ccn_number) = |
---|
| 712 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
| 713 | & - pdq(ig,l,igcm_ccn_number) |
---|
[1617] | 714 | ENDDO |
---|
| 715 | ENDDO |
---|
| 716 | |
---|
| 717 | |
---|
| 718 | DO l=1,nlay |
---|
| 719 | DO ig=1,ngrid |
---|
| 720 | pdqcloudco2(ig,l,igcm_dust_mass) = |
---|
[1720] | 721 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
[1617] | 722 | & - pdq(ig,l,igcm_dust_mass) |
---|
| 723 | pdqcloudco2(ig,l,igcm_dust_number) = |
---|
| 724 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
| 725 | & - pdq(ig,l,igcm_dust_number) |
---|
| 726 | ENDDO |
---|
| 727 | ENDDO |
---|
| 728 | |
---|
| 729 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
| 730 | c------- Therefore, enforce positive values and conserve mass |
---|
| 731 | |
---|
| 732 | |
---|
[1720] | 733 | |
---|
[1617] | 734 | DO l=1,nlay |
---|
[1720] | 735 | DO ig=1,ngrid |
---|
| 736 | IF ((pqeff(ig,l,igcm_ccnco2_number) + |
---|
| 737 | & ptimestep* (pdq(ig,l,igcm_ccnco2_number) + |
---|
| 738 | & pdqcloudco2(ig,l,igcm_ccnco2_number)) |
---|
| 739 | & .lt. 1.e-20) |
---|
| 740 | & .or. (pqeff(ig,l,igcm_ccnco2_mass) + |
---|
| 741 | & ptimestep* (pdq(ig,l,igcm_ccnco2_mass) + |
---|
| 742 | & pdqcloudco2(ig,l,igcm_ccnco2_mass)) |
---|
| 743 | & .lt. 1.e-30)) THEN |
---|
| 744 | |
---|
| 745 | pdqcloudco2(ig,l,igcm_ccnco2_number) = |
---|
| 746 | & - pqeff(ig,l,igcm_ccnco2_number)/ptimestep |
---|
| 747 | & - pdq(ig,l,igcm_ccnco2_number)+1.e-20 |
---|
| 748 | pdqcloudco2(ig,l,igcm_dust_number) = |
---|
| 749 | & -pdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
| 750 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = |
---|
| 751 | & - pqeff(ig,l,igcm_ccnco2_mass)/ptimestep |
---|
| 752 | & - pdq(ig,l,igcm_ccnco2_mass)+1.e-30 |
---|
| 753 | pdqcloudco2(ig,l,igcm_dust_mass) = |
---|
| 754 | & -pdqcloudco2(ig,l,igcm_ccnco2_mass) |
---|
[1617] | 755 | |
---|
[1720] | 756 | ENDIF |
---|
| 757 | ENDDO |
---|
[1617] | 758 | ENDDO |
---|
[1720] | 759 | |
---|
[1617] | 760 | |
---|
| 761 | |
---|
[1720] | 762 | DO l=1,nlay |
---|
| 763 | DO ig=1,ngrid |
---|
| 764 | IF ( (pqeff(ig,l,igcm_dust_number) + |
---|
| 765 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
| 766 | & pdqcloudco2(ig,l,igcm_dust_number)) .le. 1.e-30) |
---|
| 767 | & .or. (pqeff(ig,l,igcm_dust_mass)+ |
---|
| 768 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
| 769 | & pdqcloudco2(ig,l,igcm_dust_mass)) |
---|
| 770 | & .le. 1.e-30)) then |
---|
| 771 | |
---|
| 772 | pdqcloudco2(ig,l,igcm_dust_number) = |
---|
| 773 | & - pqeff(ig,l,igcm_dust_number)/ptimestep |
---|
| 774 | & - pdq(ig,l,igcm_dust_number)+1.e-30 |
---|
| 775 | pdqcloudco2(ig,l,igcm_ccnco2_number) = |
---|
[1617] | 776 | & -pdqcloudco2(ig,l,igcm_dust_number) |
---|
[1720] | 777 | pdqcloudco2(ig,l,igcm_dust_mass) = |
---|
| 778 | & - pqeff(ig,l,igcm_dust_mass)/ptimestep |
---|
[1685] | 779 | & - pdq(ig,l,igcm_dust_mass) +1.e-30 |
---|
[1720] | 780 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = |
---|
| 781 | & -pdqcloudco2(ig,l,igcm_dust_mass) |
---|
[1617] | 782 | |
---|
[1720] | 783 | ENDIF |
---|
| 784 | ENDDO |
---|
| 785 | ENDDO |
---|
| 786 | !pq+ptime*(pdq+pdqc)=1 ! pdqc=1-pq/ptime-pdq |
---|
| 787 | c$$$ |
---|
| 788 | c$$$ |
---|
| 789 | c$$$ DO l=1,nlay |
---|
| 790 | c$$$ DO ig=1,ngrid |
---|
| 791 | c$$$ IF (pq(ig,l,igcm_co2_ice) + ptimestep* |
---|
| 792 | c$$$ & (pdq(ig,l,igcm_co2_ice) + pdqcloudco2(ig,l,igcm_co2_ice)) |
---|
| 793 | c$$$ & .lt. 1.e-30) THEN |
---|
| 794 | c$$$ pdqcloudco2(ig,l,igcm_co2_ice) = |
---|
| 795 | c$$$ & - pq(ig,l,igcm_co2_ice)/ptimestep - pdq(ig,l,igcm_co2_ice) |
---|
| 796 | c$$$ pdqcloudco2(ig,l,igcm_co2) = -pdqcloudco2(ig,l,igcm_co2_ice) |
---|
| 797 | c$$$ !write(*,*) "WARNING CO2 ICE in co2cloud.F" |
---|
| 798 | c$$$ |
---|
| 799 | c$$$ ENDIF |
---|
| 800 | c$$$ IF (pq(ig,l,igcm_co2) + ptimestep* |
---|
| 801 | c$$$ & (pdq(ig,l,igcm_co2) + pdqcloudco2(ig,l,igcm_co2)) |
---|
| 802 | c$$$ & .lt. 0.5) THEN |
---|
| 803 | c$$$ pdqcloudco2(ig,l,igcm_co2) = |
---|
| 804 | c$$$ & - pdq(ig,l,igcm_co2_ice) !- pdq(ig,l,igcm_co2) |
---|
| 805 | c$$$c pdqcloudco2(ig,l,igcm_co2_ice) = -pdqcloudco2(ig,l,igcm_co2) |
---|
| 806 | c$$$ pdqcloudco2(ig,l,igcm_co2_ice) = |
---|
| 807 | c$$$ & - pq(ig,l,igcm_co2_ice)/ptimestep - pdq(ig,l,igcm_co2_ice) |
---|
| 808 | c$$$ ! write(*,*) "WARNING CO2 in co2cloud.F" |
---|
| 809 | c$$$ ENDIF |
---|
| 810 | c$$$ ENDDO |
---|
| 811 | c$$$ ENDDO |
---|
| 812 | c$$$ |
---|
[1617] | 813 | |
---|
[1720] | 814 | DO l=1, nlay |
---|
| 815 | DO ig=1,ngrid |
---|
[1617] | 816 | |
---|
| 817 | c call updaterice_microco2( |
---|
| 818 | c & pq(ig,l,igcm_co2_ice) + ! ice mass |
---|
| 819 | c & (pdq(ig,l,igcm_co2_ice) + ! ice mass |
---|
| 820 | c & pdqcloudco2(ig,l,igcm_co2_ice))*ptimestep, ! ice mass |
---|
| 821 | c & pq(ig,l,igcm_ccnco2_mass) + ! ccn mass |
---|
| 822 | c & (pdq(ig,l,igcm_ccnco2_mass) + ! ccn mass |
---|
| 823 | c & pdqcloudco2(ig,l,igcm_ccnco2_mass))*ptimestep, ! ccn mass |
---|
| 824 | c & pq(ig,l,igcm_ccnco2_number) + ! ccn number |
---|
| 825 | c & (pdq(ig,l,igcm_ccnco2_number) + ! ccn number |
---|
| 826 | c & pdqcloudco2(ig,l,igcm_ccnco2_number))*ptimestep, ! ccn number |
---|
| 827 | c & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
---|
| 828 | c write(*,*) "in co2clouds, riceco2(ig,l)= ",riceco2(ig,l) |
---|
[1720] | 829 | Niceco2=pqeff(ig,l,igcm_co2_ice) + |
---|
| 830 | & (pdq(ig,l,igcm_co2_ice) + |
---|
| 831 | & pdqcloudco2(ig,l,igcm_co2_ice))*ptimestep |
---|
| 832 | Nco2=pqeff(ig,l,igcm_co2) + |
---|
| 833 | & (pdq(ig,l,igcm_co2) + |
---|
| 834 | & pdqcloudco2(ig,l,igcm_co2))*ptimestep |
---|
| 835 | Nccnco2=max((pqeff(ig,l,igcm_ccnco2_number) + |
---|
| 836 | & (pdq(ig,l,igcm_ccnco2_number) + |
---|
| 837 | & pdqcloudco2(ig,l,igcm_ccnco2_number))*ptimestep)* |
---|
| 838 | & tauscaling(ig),1.e-30) |
---|
| 839 | Qccnco2=max((pqeff(ig,l,igcm_ccnco2_mass) + |
---|
| 840 | & (pdq(ig,l,igcm_ccnco2_mass) + |
---|
| 841 | & pdqcloudco2(ig,l,igcm_ccnco2_mass))*ptimestep)* |
---|
| 842 | & tauscaling(ig),1.e-30) |
---|
| 843 | |
---|
| 844 | if (Nccnco2 .lt. 0.1) then |
---|
| 845 | rdust(ig,l)=1.e-10 |
---|
| 846 | else |
---|
[1617] | 847 | |
---|
[1720] | 848 | rdust(ig,l)= Qccnco2 |
---|
| 849 | & *0.75/pi/rho_dust |
---|
| 850 | & / Nccnco2 |
---|
| 851 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
---|
| 852 | rdust(ig,l)=max(1.e-10,rdust(ig,l)) |
---|
| 853 | c rdust(ig,l)=min(5.e-6,rdust(ig,l)) |
---|
| 854 | endif |
---|
| 855 | myT=zteff(ig,l)+(pdt(ig,l)+pdtcloudco2(ig,l))*ptimestep |
---|
| 856 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4* |
---|
| 857 | & myT-2.87e-6* myT* myT) |
---|
| 858 | rho_ice_co2=rho_ice_co2T(ig,l) |
---|
[1617] | 859 | |
---|
[1720] | 860 | lw = l0 + l1 * myT + l2 *myT**2 + |
---|
| 861 | & l3 * myT**3 + l4 * myT**4 !J.kg-1 |
---|
[1617] | 862 | |
---|
[1720] | 863 | riceco2(ig,l)=(Niceco2*3.0/ |
---|
| 864 | & (4.0*rho_ice_co2*pi*Nccnco2) |
---|
| 865 | & +rdust(ig,l)*rdust(ig,l) |
---|
| 866 | & *rdust(ig,l) )**(1.0/3.0) |
---|
| 867 | c & .or. (riceco2(ig,l) .le. rdust(ig,l)) |
---|
| 868 | if ( (Niceco2 .le. 1.e-25).or. (Nccnco2 .le. 0.1) )THEN !anciennement 200 |
---|
| 869 | c riceco2(ig,l)=0. |
---|
[1617] | 870 | |
---|
[1720] | 871 | c & .or. (Nccnco2 .le. 1.) |
---|
| 872 | c endif |
---|
| 873 | !Flux chaleur latente <0 quand sublimation |
---|
[1617] | 874 | |
---|
[1720] | 875 | pdtcloudco2(ig,l)= pdtcloudco2(ig,l)-Niceco2*lw/cpp/ptimestep |
---|
| 876 | c$$$ !NO CLOUD : RESET TRACERS AND CONSERVE MASS |
---|
| 877 | c if (pq(ig,l,igcm_co2_ice)+(pdq(ig,l,igcm_co2_ice)+ |
---|
| 878 | c & pdqcloudco2(ig,l,igcm_co2_ice))*ptimestep .le. 0.) then |
---|
| 879 | c pdqcloudco2(ig,l,igcm_co2)=0. |
---|
| 880 | c pdqcloudco2(ig,l,igcm_co2_ice)=0. |
---|
| 881 | c else |
---|
| 882 | pdqcloudco2(ig,l,igcm_co2_ice)=-1.*pqeff(ig,l,igcm_co2_ice) |
---|
[1685] | 883 | & /ptimestep-pdq(ig,l,igcm_co2_ice) |
---|
[1720] | 884 | pdqcloudco2(ig,l,igcm_co2)=-1.* |
---|
| 885 | & pdqcloudco2(ig,l,igcm_co2_ice) |
---|
| 886 | c endif |
---|
| 887 | ! Reverse h2o ccn and ices into h2o tracers |
---|
[1685] | 888 | if (memdMMccn(ig,l) .gt. 0) then |
---|
[1720] | 889 | pdqcloudco2(ig,l,igcm_ccn_mass)=memdMMccn(ig,l)/ptimestep |
---|
[1685] | 890 | else |
---|
| 891 | memdMMccn(ig,l)=0. |
---|
| 892 | pdqcloudco2(ig,l,igcm_ccn_mass)=0. |
---|
| 893 | endif |
---|
| 894 | if (memdNNccn(ig,l) .gt. 0) then |
---|
[1720] | 895 | pdqcloudco2(ig,l,igcm_ccn_number)=memdNNccn(ig,l)/ptimestep |
---|
[1685] | 896 | else |
---|
| 897 | memdNNccn(ig,l)=0. |
---|
| 898 | pdqcloudco2(ig,l,igcm_ccn_number)=0. |
---|
| 899 | endif |
---|
| 900 | if (memdMMh2o(ig,l) .gt. 0) then |
---|
[1720] | 901 | pdqcloudco2(ig,l,igcm_h2o_ice)=memdMMh2o(ig,l)/ptimestep |
---|
[1685] | 902 | else |
---|
| 903 | memdMMh2o(ig,l)=0. |
---|
| 904 | pdqcloudco2(ig,l,igcm_h2o_ice)=0. |
---|
| 905 | endif |
---|
[1720] | 906 | c if (pq(ig,l,igcm_ccnco2_mass)+(pdq(ig,l,igcm_ccnco2_mass)+ |
---|
| 907 | c & pdqcloudco2(ig,l,igcm_ccnco2_mass))*ptimestep |
---|
| 908 | c & .le. 1.e-30) then |
---|
| 909 | c pdqcloudco2(ig,l,igcm_ccnco2_mass)=0. |
---|
| 910 | c pdqcloudco2(ig,l,igcm_ccnco2_number)=0. |
---|
| 911 | c pdqcloudco2(ig,l,igcm_co2)=0. |
---|
| 912 | c pdqcloudco2(ig,l,igcm_co2_ice)=0. |
---|
| 913 | c else |
---|
[1685] | 914 | pdqcloudco2(ig,l,igcm_ccnco2_mass)= |
---|
[1720] | 915 | & -1.*pqeff(ig,l,igcm_ccnco2_mass) |
---|
[1685] | 916 | & /ptimestep-pdq(ig,l,igcm_ccnco2_mass) |
---|
[1720] | 917 | c endif |
---|
| 918 | c if (pq(ig,l,igcm_ccnco2_number)+ |
---|
| 919 | c & (pdq(ig,l,igcm_ccnco2_number)+ |
---|
| 920 | c & pdqcloudco2(ig,l,igcm_ccnco2_number)) |
---|
| 921 | c & *ptimestep.le. 1.e-30) |
---|
| 922 | c & then |
---|
| 923 | c pdqcloudco2(ig,l,igcm_ccnco2_mass)=0. |
---|
| 924 | c pdqcloudco2(ig,l,igcm_ccnco2_number)=0. |
---|
| 925 | c pdqcloudco2(ig,l,igcm_co2)=0. |
---|
| 926 | c pdqcloudco2(ig,l,igcm_co2_ice)=0. |
---|
| 927 | c else |
---|
[1685] | 928 | pdqcloudco2(ig,l,igcm_ccnco2_number)= |
---|
[1720] | 929 | & -1.*pqeff(ig,l,igcm_ccnco2_number) |
---|
[1685] | 930 | & /ptimestep-pdq(ig,l,igcm_ccnco2_number) |
---|
[1720] | 931 | c endif |
---|
| 932 | c if (pq(ig,l,igcm_dust_number)+ |
---|
| 933 | c & (pdq(ig,l,igcm_dust_number)+ |
---|
| 934 | c & pdqcloudco2(ig,l,igcm_dust_number)) |
---|
| 935 | c & *ptimestep.le. 1.e-30) |
---|
| 936 | c & then |
---|
| 937 | c pdqcloudco2(ig,l,igcm_dust_number)=0. |
---|
| 938 | c pdqcloudco2(ig,l,igcm_dust_mass)=0. |
---|
| 939 | c else |
---|
[1685] | 940 | pdqcloudco2(ig,l,igcm_dust_number)= |
---|
[1720] | 941 | & pqeff(ig,l,igcm_ccnco2_number) |
---|
[1685] | 942 | & /ptimestep+pdq(ig,l,igcm_ccnco2_number) |
---|
[1720] | 943 | & -memdNNccn(ig,l)/ptimestep |
---|
| 944 | c endif |
---|
| 945 | c if (pq(ig,l,igcm_dust_mass)+ |
---|
| 946 | c & (pdq(ig,l,igcm_dust_mass)+ |
---|
| 947 | c & pdqcloudco2(ig,l,igcm_dust_mass)) |
---|
| 948 | c & *ptimestep .le. 1.e-30) |
---|
| 949 | c & then |
---|
| 950 | c pdqcloudco2(ig,l,igcm_dust_number)=0. |
---|
| 951 | c pdqcloudco2(ig,l,igcm_dust_mass)=0. |
---|
| 952 | c else |
---|
[1685] | 953 | pdqcloudco2(ig,l,igcm_dust_mass)= |
---|
[1720] | 954 | & pqeff(ig,l,igcm_ccnco2_mass) |
---|
[1685] | 955 | & /ptimestep+pdq(ig,l,igcm_ccnco2_mass) |
---|
[1720] | 956 | & -(memdMMh2o(ig,l)+memdMMccn(ig,l))/ptimestep |
---|
| 957 | c endif |
---|
[1685] | 958 | memdMMccn(ig,l)=0. |
---|
| 959 | memdMMh2o(ig,l)=0. |
---|
| 960 | memdNNccn(ig,l)=0. |
---|
| 961 | riceco2(ig,l)=0. |
---|
| 962 | endif |
---|
[1720] | 963 | c Compute opacities |
---|
| 964 | No=Nccnco2 |
---|
| 965 | Rn=-log(riceco2(ig,l)) |
---|
| 966 | n_derf = erf( (rb_cldco2(1)+Rn) *dev2) |
---|
| 967 | Qext1bins2(ig,l)=0. |
---|
| 968 | do i = 1, nbinco2_cld !Qext below 50 is negligible |
---|
| 969 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
| 970 | n_derf = derf((rb_cldco2(i+1)+Rn) *dev2) |
---|
| 971 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
---|
| 972 | Qext1bins2(ig,l)=Qext1bins2(ig,l)+Qext1bins(i)*n_aer(i) |
---|
| 973 | enddo |
---|
| 974 | !l'opacité de la case ig est la somme sur l de Qext1bins2 |
---|
| 975 | |
---|
| 976 | |
---|
[1685] | 977 | !update rice water |
---|
| 978 | call updaterice_micro( |
---|
[1720] | 979 | & pqeff(ig,l,igcm_h2o_ice) + ! ice mass |
---|
[1685] | 980 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
| 981 | & pdqcloudco2(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
[1720] | 982 | & pqeff(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
[1685] | 983 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
| 984 | & pdqcloudco2(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
[1720] | 985 | & pqeff(ig,l,igcm_ccn_number) + ! ccn number |
---|
[1685] | 986 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
| 987 | & pdqcloudco2(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
| 988 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
| 989 | |
---|
[1617] | 990 | |
---|
[1685] | 991 | call updaterdust( |
---|
[1720] | 992 | & pqeff(ig,l,igcm_dust_mass) + ! dust mass |
---|
[1685] | 993 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
| 994 | & pdqcloudco2(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
[1720] | 995 | & pqeff(ig,l,igcm_dust_number) + ! dust number |
---|
[1685] | 996 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
| 997 | & pdqcloudco2(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
| 998 | & rdust(ig,l)) |
---|
| 999 | |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
[1720] | 1002 | tau1mic(:)=0. |
---|
| 1003 | do l=1,nlay |
---|
| 1004 | do ig=1,ngrid |
---|
| 1005 | tau1mic(ig)=tau1mic(ig)+Qext1bins2(ig,l) |
---|
| 1006 | enddo |
---|
| 1007 | enddo |
---|
[1685] | 1008 | |
---|
[1720] | 1009 | c$$$ |
---|
| 1010 | c$$$ if (riceco2(725,22) .ge. 1.e-10) then |
---|
| 1011 | c$$$ |
---|
| 1012 | c$$$ write(*,*) 'DIAGJA co2 ',pqeff(725,22,igcm_co2) + |
---|
| 1013 | c$$$ & (pdq(725,22,igcm_co2) + |
---|
| 1014 | c$$$ & pdqcloudco2(725,22,igcm_co2))*ptimestep |
---|
| 1015 | c$$$ write(*,*) 'DIAGJA co2_ice',pqeff(725,22,igcm_co2_ice) + |
---|
| 1016 | c$$$ & (pdq(725,22,igcm_co2_ice) + |
---|
| 1017 | c$$$ & pdqcloudco2(725,22,igcm_co2_ice))*ptimestep |
---|
| 1018 | c$$$ |
---|
| 1019 | c$$$ write(*,*) 'DIAGJA riceco2',riceco2(725,22) |
---|
| 1020 | c$$$ write(*,*) 'DIAGJA T',zteff(725,22) + |
---|
| 1021 | c$$$ & (pdt(725,22) + pdtcloudco2(725,22))*ptimestep |
---|
| 1022 | c$$$ write(*,*) 'DIAG pdtcloud',pdtcloudco2(725,22)*ptimestep |
---|
| 1023 | c$$$ write(*,*) 'DIAGJA ccnNco2',pqeff(725,22,igcm_ccnco2_number)+ |
---|
| 1024 | c$$$ & (pdq(725,22,igcm_ccnco2_number) + |
---|
| 1025 | c$$$ & pdqcloudco2(725,22,igcm_ccnco2_number))*ptimestep |
---|
| 1026 | c$$$ |
---|
| 1027 | c$$$ write(*,*) 'DIAGJA dustN',pqeff(725,22,igcm_dust_number) + |
---|
| 1028 | c$$$ & (pdq(725,22,igcm_dust_number) + |
---|
| 1029 | c$$$ & pdqcloudco2(725,22,igcm_dust_number))*ptimestep |
---|
| 1030 | c$$$ ENDIF |
---|
| 1031 | c$$$ |
---|
[1685] | 1032 | |
---|
[1617] | 1033 | |
---|
[1720] | 1034 | |
---|
[1617] | 1035 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
| 1036 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
| 1037 | c Then that should not affect the ice particle radius |
---|
| 1038 | do ig=1,ngrid |
---|
| 1039 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
| 1040 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
| 1041 | & riceco2(ig,2)=riceco2(ig,3) |
---|
| 1042 | riceco2(ig,1)=riceco2(ig,2) |
---|
| 1043 | end if |
---|
| 1044 | end do |
---|
| 1045 | |
---|
| 1046 | |
---|
| 1047 | DO l=1,nlay |
---|
| 1048 | DO ig=1,ngrid |
---|
[1685] | 1049 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
| 1050 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
| 1051 | & rdust(ig,l)) |
---|
| 1052 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
| 1053 | ENDDO |
---|
| 1054 | ENDDO |
---|
| 1055 | |
---|
| 1056 | DO l=1,nlay |
---|
| 1057 | DO ig=1,ngrid |
---|
[1617] | 1058 | rsedcloudco2(ig,l)=max(riceco2(ig,l)* |
---|
| 1059 | & (1.+nuiceco2_sed)*(1.+nuiceco2_sed)*(1.+nuiceco2_sed), |
---|
| 1060 | & rdust(ig,l)) |
---|
[1720] | 1061 | c rsedcloudco2(ig,l)=min(rsedcloudco2(ig,l),1.e-5) |
---|
[1617] | 1062 | ENDDO |
---|
| 1063 | ENDDO |
---|
| 1064 | |
---|
[1720] | 1065 | call co2sat(ngrid*nlay,zteff+(pdt+pdtcloudco2)*ptimestep |
---|
| 1066 | & ,pplay,zqsatco2) |
---|
| 1067 | do l=1,nlay |
---|
| 1068 | do ig=1,ngrid |
---|
| 1069 | satuco2(ig,l) = (pqeff(ig,l,igcm_co2) + |
---|
| 1070 | & (pdq(ig,l,igcm_co2) + |
---|
| 1071 | & pdqcloudco2(ig,l,igcm_co2))*ptimestep)* |
---|
| 1072 | & (mmean(ig,l)/44.01)*pplay(ig,l)/zqsatco2(ig,l) |
---|
| 1073 | !write(*,*) "In CO2 pt,sat ",pt(ig,l),satuco2(ig,l) |
---|
[1617] | 1074 | enddo |
---|
| 1075 | enddo |
---|
[1720] | 1076 | !Tout ce qui est modifié par la microphysique de CO2 doit être rapporté a cloudfrac |
---|
| 1077 | IF (CLFvaryingCO2) THEN |
---|
| 1078 | DO l=1,nlay |
---|
| 1079 | DO ig=1,ngrid |
---|
| 1080 | pdqcloudco2(ig,l,igcm_ccn_mass)= |
---|
| 1081 | & pdqcloudco2(ig,l,igcm_ccn_mass)*cloudfrac(ig,l) |
---|
| 1082 | pdqcloudco2(ig,l,igcm_ccnco2_mass)= |
---|
| 1083 | & pdqcloudco2(ig,l,igcm_ccnco2_mass)*cloudfrac(ig,l) |
---|
| 1084 | pdqcloudco2(ig,l,igcm_ccn_number)= |
---|
| 1085 | & pdqcloudco2(ig,l,igcm_ccn_number)*cloudfrac(ig,l) |
---|
| 1086 | pdqcloudco2(ig,l,igcm_ccnco2_number)= |
---|
| 1087 | & pdqcloudco2(ig,l,igcm_ccnco2_number)*cloudfrac(ig,l) |
---|
| 1088 | pdqcloudco2(ig,l,igcm_dust_mass)= |
---|
| 1089 | & pdqcloudco2(ig,l,igcm_dust_mass)*cloudfrac(ig,l) |
---|
| 1090 | pdqcloudco2(ig,l,igcm_dust_number)= |
---|
| 1091 | & pdqcloudco2(ig,l,igcm_dust_number)*cloudfrac(ig,l) |
---|
| 1092 | pdqcloudco2(ig,l,igcm_h2o_ice)= |
---|
| 1093 | & pdqcloudco2(ig,l,igcm_h2o_ice)*cloudfrac(ig,l) |
---|
| 1094 | pdqcloudco2(ig,l,igcm_co2_ice)= |
---|
| 1095 | & pdqcloudco2(ig,l,igcm_co2_ice)*cloudfrac(ig,l) |
---|
| 1096 | pdqcloudco2(ig,l,igcm_co2)= |
---|
| 1097 | & pdqcloudco2(ig,l,igcm_co2)*cloudfrac(ig,l) |
---|
| 1098 | pdtcloudco2(ig,l)=pdtcloudco2(ig,l)*cloudfrac(ig,l) |
---|
| 1099 | ENDDO |
---|
| 1100 | ENDDO |
---|
| 1101 | ENDIF |
---|
| 1102 | |
---|
| 1103 | call WRITEDIAGFI(ngrid,"satuco2","vap in satu","kg/kg",3, |
---|
[1629] | 1104 | & satuco2) |
---|
[1720] | 1105 | call WRITEdiagfi(ngrid,"riceco2","ice radius","m" |
---|
[1649] | 1106 | & ,3,riceco2) |
---|
[1720] | 1107 | ! or output in diagfi.nc (for testphys1d) |
---|
[1617] | 1108 | c call WRITEDIAGFI(ngrid,'ps','Surface pressure','Pa',0,ps) |
---|
| 1109 | c call WRITEDIAGFI(ngrid,'temp','Temperature ', |
---|
| 1110 | c & 'K JA',1,pt) |
---|
| 1111 | |
---|
[1649] | 1112 | call WRITEdiagfi(ngrid,"rsedcloudco2","rsed co2","m",3, |
---|
[1617] | 1113 | & rsedcloudco2) |
---|
| 1114 | |
---|
[1720] | 1115 | call WRITEdiagfi(ngrid,"tau1mic","co2 ice opacity 1 micron"," ",2, |
---|
| 1116 | & tau1mic) |
---|
| 1117 | call WRITEdiagfi(ngrid,"cloudfrac","co2 cloud fraction"," ",3, |
---|
| 1118 | & cloudfrac) |
---|
[1617] | 1119 | ! used for rad. transfer calculations |
---|
| 1120 | ! nuice is constant because a lognormal distribution is prescribed |
---|
| 1121 | c nuice(1:ngrid,1:nlay)=nuice_ref |
---|
| 1122 | |
---|
| 1123 | |
---|
| 1124 | |
---|
| 1125 | c======================================================================= |
---|
| 1126 | |
---|
| 1127 | END |
---|
| 1128 | |
---|