1 | SUBROUTINE co2cloud(ngrid,nlay,ptimestep, |
---|
2 | & pplev,pplay,pdpsrf,pzlay,pt,pdt, |
---|
3 | & pq,pdq,pdqcloudco2,pdtcloudco2, |
---|
4 | & nq,tau,tauscaling,rdust,rice,riceco2,nuice, |
---|
5 | & rsedcloudco2,rhocloudco2, |
---|
6 | & rsedcloud,rhocloud,pzlev,pdqs_sedco2) |
---|
7 | ! to use 'getin' |
---|
8 | use dimradmars_mod, only: naerkind |
---|
9 | USE comcstfi_h |
---|
10 | USE ioipsl_getincom |
---|
11 | USE updaterad |
---|
12 | use conc_mod, only: mmean |
---|
13 | use tracer_mod, only: nqmx, igcm_co2, igcm_co2_ice, |
---|
14 | & igcm_dust_mass, igcm_dust_number,igcm_h2o_ice, |
---|
15 | & igcm_ccn_mass,igcm_ccn_number, |
---|
16 | & igcm_ccnco2_mass, igcm_ccnco2_number, |
---|
17 | & rho_dust, nuiceco2_sed, nuiceco2_ref, |
---|
18 | & rho_ice_co2,r3n_q,rho_ice,nuice_sed |
---|
19 | |
---|
20 | |
---|
21 | IMPLICIT NONE |
---|
22 | |
---|
23 | |
---|
24 | #include "datafile.h" |
---|
25 | #include "callkeys.h" |
---|
26 | #include "microphys.h" |
---|
27 | |
---|
28 | |
---|
29 | c======================================================================= |
---|
30 | c CO2 clouds formation |
---|
31 | c |
---|
32 | c There is a time loop specific to cloud formation |
---|
33 | c due to timescales smaller than the GCM integration timestep. |
---|
34 | c microphysics subroutine is improvedCO2clouds.F |
---|
35 | c |
---|
36 | c The co2 clouds tracers (co2_ice, ccn mass and concentration) are |
---|
37 | c sedimented at each microtimestep. pdqs_sedco2 keeps track of the |
---|
38 | c CO2 flux at the surface |
---|
39 | c |
---|
40 | c Authors: 09/2016 Joachim Audouard & Constantino Listowski |
---|
41 | c Adaptation of the water ice clouds scheme (with specific microphysics) |
---|
42 | c of Montmessin, Navarro & al. |
---|
43 | c |
---|
44 | c 07/2017 J.Audouard |
---|
45 | c Several logicals can be set to .true. in callphys.def |
---|
46 | c co2clouds=.true. call this routine |
---|
47 | c co2useh2o=.true. allow the use of water ice particles as CCN for CO2 |
---|
48 | c meteo_flux=.true. supply meteoritic particles |
---|
49 | c CLFvaryingCO2=.true. allows a subgrid temperature distribution |
---|
50 | c of amplitude spantCO2(=integer in callphys.def) |
---|
51 | c |
---|
52 | c======================================================================= |
---|
53 | |
---|
54 | c----------------------------------------------------------------------- |
---|
55 | c declarations: |
---|
56 | c ------------- |
---|
57 | |
---|
58 | c Inputs: |
---|
59 | c ------ |
---|
60 | |
---|
61 | INTEGER ngrid,nlay |
---|
62 | INTEGER nq ! nombre de traceurs |
---|
63 | REAL ptimestep ! pas de temps physique (s) |
---|
64 | REAL pplev(ngrid,nlay+1) ! pression aux inter-couches (Pa) |
---|
65 | REAL pplay(ngrid,nlay) ! pression au milieu des couches (Pa) |
---|
66 | REAL pdpsrf(ngrid) ! tendence surf pressure |
---|
67 | REAL pzlay(ngrid,nlay) ! altitude at the middle of the layers |
---|
68 | REAL pt(ngrid,nlay) ! temperature at the middle of the layers (K) |
---|
69 | REAL pdt(ngrid,nlay) ! tendence temperature des autres param. |
---|
70 | real,intent(in) :: pzlev(ngrid,nlay+1) ! altitude at the boundaries of the layers |
---|
71 | |
---|
72 | real pq(ngrid,nlay,nq) ! traceur (kg/kg) |
---|
73 | real pdq(ngrid,nlay,nq) ! tendance avant condensation (kg/kg.s-1) |
---|
74 | |
---|
75 | real rice(ngrid,nlay) ! Water Ice mass mean radius (m) |
---|
76 | ! used for nucleation of CO2 on ice-coated ccns |
---|
77 | DOUBLE PRECISION rho_ice_co2T(ngrid,nlay) |
---|
78 | REAL tau(ngrid,naerkind) ! Column dust optical depth at each point |
---|
79 | REAL tauscaling(ngrid) ! Convertion factor for dust amount |
---|
80 | real rdust(ngrid,nlay) ! Dust geometric mean radius (m) |
---|
81 | |
---|
82 | c Outputs: |
---|
83 | c ------- |
---|
84 | |
---|
85 | real pdqcloudco2(ngrid,nlay,nq) ! tendence de la condensation H2O(kg/kg.s-1) |
---|
86 | REAL pdtcloudco2(ngrid,nlay) ! tendence temperature due |
---|
87 | ! a la chaleur latente |
---|
88 | |
---|
89 | DOUBLE PRECISION riceco2(ngrid,nlay) ! Ice mass mean radius (m) |
---|
90 | ! (r_c in montmessin_2004) |
---|
91 | REAL nuice(ngrid,nlay) ! Estimated effective variance |
---|
92 | ! of the size distribution |
---|
93 | real rsedcloudco2(ngrid,nlay) ! Cloud sedimentation radius |
---|
94 | real rhocloudco2(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
95 | real rhocloudco2t(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
96 | real pdqs_sedco2(ngrid) ! CO2 flux at the surface |
---|
97 | c local: |
---|
98 | c ------ |
---|
99 | !water |
---|
100 | real rsedcloud(ngrid,nlay) ! Cloud sedimentation radius |
---|
101 | real rhocloud(ngrid,nlay) ! Cloud density (kg.m-3) |
---|
102 | ! for ice radius computation |
---|
103 | |
---|
104 | REAl ccntyp |
---|
105 | |
---|
106 | ! for time loop |
---|
107 | INTEGER microstep ! time subsampling step variable |
---|
108 | INTEGER imicro ! time subsampling for coupled water microphysics & sedimentation |
---|
109 | SAVE imicro |
---|
110 | REAL microtimestep ! integration timestep for coupled water microphysics & sedimentation |
---|
111 | SAVE microtimestep |
---|
112 | |
---|
113 | ! tendency given by clouds (inside the micro loop) |
---|
114 | REAL subpdqcloudco2(ngrid,nlay,nq) ! cf. pdqcloud |
---|
115 | REAL subpdtcloudco2(ngrid,nlay) ! cf. pdtcloud |
---|
116 | |
---|
117 | ! global tendency (clouds+physics) |
---|
118 | REAL subpdq(ngrid,nlay,nq) ! cf. pdqcloud |
---|
119 | REAL subpdt(ngrid,nlay) ! cf. pdtcloud |
---|
120 | real wq(ngrid,nlay+1) ! ! displaced tracer mass (kg.m-2) during microtimestep because sedim (?/m-2) |
---|
121 | |
---|
122 | REAL satuco2(ngrid,nlay) ! co2 satu ratio for output |
---|
123 | REAL zqsatco2(ngrid,nlay) ! saturation co2 |
---|
124 | |
---|
125 | INTEGER iq,ig,l,i |
---|
126 | LOGICAL,SAVE :: firstcall=.true. |
---|
127 | DOUBLE PRECISION Nccnco2, Niceco2,Nco2,mdustJA,ndustJA |
---|
128 | DOUBLE PRECISION Qccnco2 |
---|
129 | real :: beta |
---|
130 | |
---|
131 | real epaisseur (ngrid,nlay) ! Layer thickness (m) |
---|
132 | real masse (ngrid,nlay) ! Layer mass (kg.m-2) |
---|
133 | double precision diff,diff0 |
---|
134 | real tempo_traceur_t(ngrid,nlay) |
---|
135 | real tempo_traceurs(ngrid,nlay,nq) |
---|
136 | real sav_trac(ngrid,nlay,nq) |
---|
137 | real pdqsed(ngrid,nlay,nq) |
---|
138 | REAL lw !Latent heat of sublimation (J.kg-1) |
---|
139 | REAL,save :: l0,l1,l2,l3,l4 !Coeffs for lw |
---|
140 | |
---|
141 | DOUBLE PRECISION,allocatable,save :: memdMMccn(:,:) ! Nb particules intégré |
---|
142 | DOUBLE PRECISION,allocatable,save :: memdMMh2o(:,:) |
---|
143 | DOUBLE PRECISION,allocatable,save :: memdNNccn(:,:) |
---|
144 | DOUBLE PRECISION :: myT |
---|
145 | ! What we need for Qext reading and tau computation |
---|
146 | DOUBLE PRECISION vrat_cld ! Volume ratio |
---|
147 | DOUBLE PRECISION rb_cldco2(nbinco2_cld+1) ! boundary values of each rad_cldco2 bin (m) |
---|
148 | SAVE rb_cldco2 |
---|
149 | DOUBLE PRECISION, PARAMETER :: rmin_cld = 1.e-11 ! Minimum radius (m) |
---|
150 | DOUBLE PRECISION, PARAMETER :: rmax_cld = 3.e-6 ! Maximum radius (m) |
---|
151 | DOUBLE PRECISION, PARAMETER :: rbmin_cld =1.e-12 |
---|
152 | ! Minimum boundary radius (m) |
---|
153 | DOUBLE PRECISION, PARAMETER :: rbmax_cld = 5.e-6 ! Maximum boundary radius (m) |
---|
154 | |
---|
155 | DOUBLE PRECISION dr_cld(nbinco2_cld) ! width of each rad_cldco2 bin (m) |
---|
156 | DOUBLE PRECISION vol_cld(nbinco2_cld) ! particle volume for each bin (m3) |
---|
157 | REAL sigma_iceco2 ! Variance of the ice and CCN distributions |
---|
158 | |
---|
159 | logical :: file_ok |
---|
160 | double precision :: radv(10000),Qextv1mic(10000) |
---|
161 | double precision :: Qext1bins(100),Qtemp |
---|
162 | double precision :: ltemp1(10000),ltemp2(10000) |
---|
163 | integer :: nelem,lebon1,lebon2,uQext |
---|
164 | save Qext1bins |
---|
165 | character(len=100) scanline |
---|
166 | DOUBLE PRECISION n_aer(nbinco2_cld),Rn,No,n_derf,dev2 |
---|
167 | DOUBLE PRECISION Qext1bins2(ngrid,nlay) |
---|
168 | DOUBLE PRECISION tau1mic(ngrid) !co2 ice column opacity at 1µm |
---|
169 | |
---|
170 | ! For sub grid T distribution |
---|
171 | |
---|
172 | REAL zt(ngrid,nlay) ! local value of temperature |
---|
173 | REAL :: zq(ngrid, nlay,nq) |
---|
174 | |
---|
175 | REAL :: tcond(ngrid,nlay) |
---|
176 | REAL :: zqvap(ngrid,nlay) |
---|
177 | REAL :: zqice(ngrid,nlay) |
---|
178 | REAL :: spant,zdelt ! delta T for the temperature distribution |
---|
179 | REAL :: zteff(ngrid, nlay)! effective temperature in the cloud,neb |
---|
180 | REAL :: pqeff(ngrid, nlay, nq)! effective tracers quantities in the cloud |
---|
181 | REAL :: cloudfrac(ngrid,nlay) ! cloud fraction |
---|
182 | REAL :: mincloud ! min cloud frac |
---|
183 | c logical :: CLFvaryingCO2 |
---|
184 | c ** un petit test de coherence |
---|
185 | c -------------------------- |
---|
186 | |
---|
187 | IF (firstcall) THEN |
---|
188 | if (nq.gt.nqmx) then |
---|
189 | write(*,*) 'stop in co2cloud (nq.gt.nqmx)!' |
---|
190 | write(*,*) 'nq=',nq,' nqmx=',nqmx |
---|
191 | stop |
---|
192 | endif |
---|
193 | write(*,*) "co2cloud.F: rho_ice_co2 = ",rho_ice_co2 |
---|
194 | write(*,*) "co2cloud: igcm_co2=",igcm_co2 |
---|
195 | write(*,*) " igcm_co2_ice=",igcm_co2_ice |
---|
196 | |
---|
197 | write(*,*) "time subsampling for microphysic ?" |
---|
198 | #ifdef MESOSCALE |
---|
199 | imicro = 2 |
---|
200 | #else |
---|
201 | imicro = 30 |
---|
202 | #endif |
---|
203 | call getin("imicro",imicro) |
---|
204 | write(*,*)"imicro = ",imicro |
---|
205 | |
---|
206 | microtimestep = ptimestep/real(imicro) |
---|
207 | write(*,*)"Physical timestep is",ptimestep |
---|
208 | write(*,*)"CO2 Microphysics timestep is",microtimestep |
---|
209 | |
---|
210 | ! Values for latent heat computation |
---|
211 | l0=595594d0 |
---|
212 | l1=903.111d0 |
---|
213 | l2=-11.5959d0 |
---|
214 | l3=0.0528288d0 |
---|
215 | l4=-0.000103183d0 |
---|
216 | c$$$ |
---|
217 | c$$$ if (meteo_flux_number .ne. 0) then |
---|
218 | c$$$ |
---|
219 | c$$$ write(*,*) "Warning ! Meteoritic flux of dust is turned on" |
---|
220 | c$$$ write(*,*) "Dust mass = ",meteo_flux_mass |
---|
221 | c$$$ write(*,*) "Dust number = ",meteo_flux_number |
---|
222 | c$$$ write(*,*) "Are added at the z-level (km)",meteo_alt |
---|
223 | c$$$ write(*,*) "Every timestep in co2cloud.F" |
---|
224 | c$$$ endif |
---|
225 | |
---|
226 | if (.not. allocated(memdMMccn)) allocate(memdMMccn(ngrid,nlay)) |
---|
227 | if (.not. allocated(memdNNccn)) allocate(memdNNccn(ngrid,nlay)) |
---|
228 | if (.not. allocated(memdMMh2o)) allocate(memdMMh2o(ngrid,nlay)) |
---|
229 | |
---|
230 | memdMMccn(:,:)=0. |
---|
231 | memdMMh2o(:,:)=0. |
---|
232 | memdNNccn(:,:)=0. |
---|
233 | |
---|
234 | c Compute the size bins of the distribution of CO2 ice particles |
---|
235 | c --> used for opacity calculations |
---|
236 | |
---|
237 | c rad_cldco2 is the primary radius grid used for microphysics computation. |
---|
238 | c The grid spacing is computed assuming a constant volume ratio |
---|
239 | c between two consecutive bins; i.e. vrat_cld. |
---|
240 | c vrat_cld is determined from the boundary values of the size grid: |
---|
241 | c rmin_cld and rmax_cld. |
---|
242 | c The rb_cldco2 array contains the boundary values of each rad_cldco2 bin. |
---|
243 | c dr_cld is the width of each rad_cldco2 bin. |
---|
244 | sigma_iceco2 = sqrt(log(1.+nuiceco2_sed)) |
---|
245 | c Volume ratio between two adjacent bins |
---|
246 | ! vrat_cld |
---|
247 | vrat_cld = log(rmax_cld/rmin_cld) / float(nbinco2_cld-1) *3. |
---|
248 | vrat_cld = exp(vrat_cld) |
---|
249 | rb_cldco2(1) = rbmin_cld |
---|
250 | rad_cldco2(1) = rmin_cld |
---|
251 | vol_cld(1) = 4./3. * dble(pi) * rmin_cld*rmin_cld*rmin_cld |
---|
252 | do i=1,nbinco2_cld-1 |
---|
253 | rad_cldco2(i+1) = rad_cldco2(i) * vrat_cld**(1./3.) |
---|
254 | vol_cld(i+1) = vol_cld(i) * vrat_cld |
---|
255 | enddo |
---|
256 | do i=1,nbinco2_cld |
---|
257 | rb_cldco2(i+1)= ( (2.*vrat_cld) / (vrat_cld+1.) )**(1./3.) * |
---|
258 | & rad_cldco2(i) |
---|
259 | dr_cld(i) = rb_cldco2(i+1) - rb_cldco2(i) |
---|
260 | enddo |
---|
261 | rb_cldco2(nbinco2_cld+1) = rbmax_cld |
---|
262 | dr_cld(nbinco2_cld) = rb_cldco2(nbinco2_cld+1) - |
---|
263 | & rb_cldco2(nbinco2_cld) |
---|
264 | |
---|
265 | c read the Qext values |
---|
266 | INQUIRE(FILE=datafile(1:LEN_TRIM(datafile))// |
---|
267 | & '/optprop_co2ice_1mic.dat', EXIST=file_ok) |
---|
268 | IF (.not. file_ok) THEN |
---|
269 | write(*,*) 'file optprop_co2ice_1mic.dat should be in ' |
---|
270 | & ,datafile |
---|
271 | STOP |
---|
272 | endif |
---|
273 | open(newunit=uQext,file=trim(datafile)// |
---|
274 | & '/optprop_co2ice_1mic.dat' |
---|
275 | & ,FORM='formatted') |
---|
276 | read(uQext,*) !skip 1 line |
---|
277 | do i=1,10000 |
---|
278 | read(uQext,'(E11.5)') radv(i) |
---|
279 | enddo |
---|
280 | read(uQext,*) !skip 1 line |
---|
281 | do i=1,10000 |
---|
282 | read(uQext,'(E11.5)') Qextv1mic(i) |
---|
283 | enddo |
---|
284 | close(uQext) |
---|
285 | c innterpol the Qext values |
---|
286 | !rice_out=rad_cldco2 |
---|
287 | do i=1,nbinco2_cld |
---|
288 | ltemp1=abs(radv(:)-rb_cldco2(i)) |
---|
289 | ltemp2=abs(radv(:)-rb_cldco2(i+1)) |
---|
290 | lebon1=minloc(ltemp1,DIM=1) |
---|
291 | lebon2=minloc(ltemp2,DIM=1) |
---|
292 | nelem=lebon2-lebon1+1. |
---|
293 | Qtemp=0d0 |
---|
294 | do l=0,nelem |
---|
295 | Qtemp=Qtemp+Qextv1mic(lebon1+l) !mean value in the interval |
---|
296 | enddo |
---|
297 | Qtemp=Qtemp/nelem |
---|
298 | Qext1bins(i)=Qtemp |
---|
299 | enddo |
---|
300 | Qext1bins(:)=Qext1bins(:)*rad_cldco2(:)*rad_cldco2(:)*pi |
---|
301 | ! The actuall tau computation and output is performed in co2cloud.F |
---|
302 | |
---|
303 | print*,'--------------------------------------------' |
---|
304 | print*,'Microphysics co2: size bin-Qext information:' |
---|
305 | print*,' i, rad_cldco2(i), Qext1bins(i)' |
---|
306 | do i=1,nbinco2_cld |
---|
307 | write(*,'(i3,3x,3(e12.6,4x))') i, rad_cldco2(i), |
---|
308 | & Qext1bins(i) |
---|
309 | enddo |
---|
310 | print*,'--------------------------------------------' |
---|
311 | |
---|
312 | |
---|
313 | do i=1,nbinco2_cld+1 |
---|
314 | rb_cldco2(i) = log(rb_cldco2(i)) !! we save that so that it is not computed at each timestep and gridpoint |
---|
315 | enddo |
---|
316 | if (CLFvaryingCO2) then |
---|
317 | write(*,*) |
---|
318 | write(*,*) "CLFvaryingCO2 is set to true is callphys.def" |
---|
319 | write(*,*) "The temperature field is enlarged to +/-",spantCO2 |
---|
320 | write(*,*) "for the CO2 microphysics " |
---|
321 | endif |
---|
322 | firstcall=.false. |
---|
323 | ENDIF ! of IF (firstcall) |
---|
324 | |
---|
325 | c-----Initialization |
---|
326 | dev2 = 1. / ( sqrt(2.) * sigma_iceco2 ) |
---|
327 | beta=0.85 |
---|
328 | subpdq(1:ngrid,1:nlay,1:nq) = 0 |
---|
329 | subpdt(1:ngrid,1:nlay) = 0 |
---|
330 | subpdqcloudco2(1:ngrid,1:nlay,1:nq) = 0 |
---|
331 | subpdtcloudco2(1:ngrid,1:nlay) = 0 |
---|
332 | c$$$ |
---|
333 | c$$$ call WRITEDIAGFI(ngrid,"pzlay","pzlay","km",3, |
---|
334 | c$$$ & pzlay) |
---|
335 | c$$$ call WRITEDIAGFI(ngrid,"pplay","pplay","Pa",3, |
---|
336 | c$$$ & pplay) |
---|
337 | |
---|
338 | wq(:,:)=0 |
---|
339 | ! default value if no ice |
---|
340 | rhocloudco2(1:ngrid,1:nlay) = rho_dust |
---|
341 | rhocloudco2t(1:ngrid,1:nlay) = rho_dust |
---|
342 | epaisseur(1:ngrid,1:nlay)=0 |
---|
343 | masse(1:ngrid,1:nlay)=0 |
---|
344 | |
---|
345 | sav_trac(1:ngrid,1:nlay,1:nq)=0 |
---|
346 | pdqsed(1:ngrid,1:nlay,1:nq)=0 |
---|
347 | |
---|
348 | do l=1,nlay |
---|
349 | do ig=1, ngrid |
---|
350 | masse(ig,l)=(pplev(ig,l) - pplev(ig,l+1)) /g |
---|
351 | epaisseur(ig,l)= pzlev(ig,l+1) - pzlev(ig,l) |
---|
352 | enddo |
---|
353 | enddo |
---|
354 | |
---|
355 | !CLFvaryingCO2=.true. |
---|
356 | |
---|
357 | c------------------------------------------------------------------- |
---|
358 | c 0. Representation of sub-grid water ice clouds |
---|
359 | c------------------ |
---|
360 | IF (CLFvaryingCO2) THEN |
---|
361 | spant=spantCO2 ! delta T for the temprature distribution |
---|
362 | mincloud=0.1 ! min cloudfrac when there is ice |
---|
363 | ! IF (flagcloudco2) THEN |
---|
364 | ! write(*,*) "CLFCO2 Delta T", spant |
---|
365 | ! write(*,*) "CLFCO2 mincloud", mincloud |
---|
366 | ! flagcloudco2=.false. |
---|
367 | ! END IF |
---|
368 | |
---|
369 | c-----Tendencies |
---|
370 | DO l=1,nlay |
---|
371 | DO ig=1,ngrid |
---|
372 | zt(ig,l)=pt(ig,l)+ pdt(ig,l)*ptimestep |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | DO l=1,nlay |
---|
376 | DO ig=1,ngrid |
---|
377 | DO iq=1,nq |
---|
378 | zq(ig,l,iq)=pq(ig,l,iq)+pdq(ig,l,iq)*ptimestep |
---|
379 | ENDDO |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | zqvap=zq(:,:,igcm_co2) |
---|
383 | zqice=zq(:,:,igcm_co2_ice) |
---|
384 | !! AS : this routine is not present? |
---|
385 | ! CALL tcondco2(ngrid,nlay,pplay,zqvap,tcond) |
---|
386 | ! A tester: CALL tcondco2(ngrid,nlay,pplay,zqvap,tcond) |
---|
387 | zdelt=spant |
---|
388 | DO l=1,nlay |
---|
389 | DO ig=1,ngrid |
---|
390 | IF (tcond(ig,l) .ge. (zt(ig,l)+zdelt)) THEN !Toute la fraction est saturée |
---|
391 | zteff(ig,l)=zt(ig,l) |
---|
392 | cloudfrac(ig,l)=1. |
---|
393 | ELSE IF (tcond(ig,l) .le. (zt(ig,l)-zdelt)) THEN !Rien n'est saturé |
---|
394 | zteff(ig,l)=zt(ig,l)-zdelt |
---|
395 | cloudfrac(ig,l)=mincloud |
---|
396 | ELSE |
---|
397 | cloudfrac(ig,l)=(tcond(ig,l)-zt(ig,l)+zdelt)/ |
---|
398 | & (2.0*zdelt) |
---|
399 | zteff(ig,l)=(tcond(ig,l)+zt(ig,l)-zdelt)/2. !Ja Temperature moyenne de la fraction nuageuse |
---|
400 | |
---|
401 | END IF |
---|
402 | zteff(ig,l)=zteff(ig,l)-pdt(ig,l)*ptimestep |
---|
403 | IF (cloudfrac(ig,l).le. mincloud) THEN |
---|
404 | cloudfrac(ig,l)=mincloud |
---|
405 | ELSE IF (cloudfrac(ig,l).ge. 1) THEN |
---|
406 | cloudfrac(ig,l)=1. |
---|
407 | END IF |
---|
408 | ENDDO |
---|
409 | ENDDO |
---|
410 | ! Totalcloud frac of the column missing here |
---|
411 | c----------------------- |
---|
412 | c-----No sub-grid cloud representation (CLFvarying=false) |
---|
413 | ELSE |
---|
414 | DO l=1,nlay |
---|
415 | DO ig=1,ngrid |
---|
416 | zteff(ig,l)=pt(ig,l) |
---|
417 | END DO |
---|
418 | END DO |
---|
419 | END IF ! end if (CLFvaryingco2)-------------------------------------------- |
---|
420 | c 1. Tendencies: |
---|
421 | c------------------ |
---|
422 | |
---|
423 | c------ Effective tracers quantities in the cloud fraction |
---|
424 | IF (CLFvaryingCO2) THEN |
---|
425 | pqeff(:,:,:)=pq(:,:,:) ! prevent from buggs (A. Pottier) |
---|
426 | |
---|
427 | c pqeff(:,:,igcm_ccn_mass) =pq(:,:,igcm_ccn_mass)/ |
---|
428 | c & cloudfrac(:,:) |
---|
429 | c pqeff(:,:,igcm_ccn_number)= |
---|
430 | c & pq(:,:,igcm_ccn_number)/cloudfrac(:,:) |
---|
431 | c pqeff(:,:,igcm_h2o_ice)= pq(:,:,igcm_h2o_ice)/ |
---|
432 | c & cloudfrac(:,:) |
---|
433 | pqeff(:,:,igcm_ccnco2_mass) =pq(:,:,igcm_ccnco2_mass)/ |
---|
434 | & cloudfrac(:,:) |
---|
435 | pqeff(:,:,igcm_ccnco2_number)= |
---|
436 | & pq(:,:,igcm_ccnco2_number)/cloudfrac(:,:) |
---|
437 | pqeff(:,:,igcm_co2_ice)= pq(:,:,igcm_co2_ice)/ |
---|
438 | & cloudfrac(:,:) |
---|
439 | |
---|
440 | ELSE |
---|
441 | pqeff(:,:,:)=pq(:,:,:) |
---|
442 | c pqeff(:,:,igcm_ccn_mass)= pq(:,:,igcm_ccn_mass) |
---|
443 | c pqeff(:,:,igcm_ccn_number)= pq(:,:,igcm_ccn_number) |
---|
444 | c pqeff(:,:,igcm_h2o_ice)= pq(:,:,igcm_h2o_ice) |
---|
445 | c pqeff(:,:,igcm_ccnco2_mass)= pq(:,:,igcm_ccnco2_mass) |
---|
446 | c pqeff(:,:,igcm_ccnco2_number)= pq(:,:,igcm_ccnco2_number) |
---|
447 | c pqeff(:,:,igcm_co2_ice)= pq(:,:,igcm_co2_ice) |
---|
448 | END IF |
---|
449 | tempo_traceur_t(1:ngrid,1:nlay)=zteff(1:ngrid,1:nlay) |
---|
450 | tempo_traceurs(1:ngrid,1:nlay,1:nq)=pqeff(1:ngrid,1:nlay,1:nq) |
---|
451 | |
---|
452 | c------------------------------------------------------------------ |
---|
453 | c Time subsampling for microphysics |
---|
454 | c------------------------------------------------------------------ |
---|
455 | DO microstep=1,imicro |
---|
456 | c------ Temperature tendency subpdt |
---|
457 | ! Each microtimestep we give the cloud scheme a stepped entry subpdt instead of pdt |
---|
458 | ! If imicro=1 subpdt is the same as pdt |
---|
459 | DO l=1,nlay |
---|
460 | DO ig=1,ngrid |
---|
461 | |
---|
462 | subpdt(ig,l) = subpdt(ig,l) |
---|
463 | & + pdt(ig,l) ! At each micro timestep we add pdt in order to have a stepped entry |
---|
464 | subpdq(ig,l,igcm_dust_mass) = |
---|
465 | & subpdq(ig,l,igcm_dust_mass) |
---|
466 | & + pdq(ig,l,igcm_dust_mass) |
---|
467 | subpdq(ig,l,igcm_dust_number) = |
---|
468 | & subpdq(ig,l,igcm_dust_number) |
---|
469 | & + pdq(ig,l,igcm_dust_number) |
---|
470 | subpdq(ig,l,igcm_ccnco2_mass) = |
---|
471 | & subpdq(ig,l,igcm_ccnco2_mass) |
---|
472 | & + pdq(ig,l,igcm_ccnco2_mass) |
---|
473 | subpdq(ig,l,igcm_ccnco2_number) = |
---|
474 | & subpdq(ig,l,igcm_ccnco2_number) |
---|
475 | & + pdq(ig,l,igcm_ccnco2_number) |
---|
476 | subpdq(ig,l,igcm_co2_ice) = |
---|
477 | & subpdq(ig,l,igcm_co2_ice) |
---|
478 | & + pdq(ig,l,igcm_co2_ice) |
---|
479 | subpdq(ig,l,igcm_co2) = |
---|
480 | & subpdq(ig,l,igcm_co2) |
---|
481 | & + pdq(ig,l,igcm_co2) |
---|
482 | subpdq(ig,l,igcm_h2o_ice) = |
---|
483 | & subpdq(ig,l,igcm_h2o_ice) |
---|
484 | & + pdq(ig,l,igcm_h2o_ice) |
---|
485 | subpdq(ig,l,igcm_ccn_mass) = |
---|
486 | & subpdq(ig,l,igcm_ccn_mass) |
---|
487 | & + pdq(ig,l,igcm_ccn_mass) |
---|
488 | subpdq(ig,l,igcm_ccn_number) = |
---|
489 | & subpdq(ig,l,igcm_ccn_number) |
---|
490 | & + pdq(ig,l,igcm_ccn_number) |
---|
491 | ENDDO |
---|
492 | ENDDO |
---|
493 | |
---|
494 | c add meteoritic flux of dust (old version) |
---|
495 | cNew version (John Plane values) are added in improvedCO2clouds |
---|
496 | !convert meteo_alt (in km) to z-level |
---|
497 | !pzlay altitudes of the layers |
---|
498 | c$$$!zlev altitudes (nlayl+1) of the boundaries |
---|
499 | c$$$ if (meteo_flux_number .ge. 0) then |
---|
500 | c$$$ do ig=1, ngrid |
---|
501 | c$$$ l=1 |
---|
502 | c$$$ do while ( (((meteo_alt .ge. pplev(ig,l)) .and. |
---|
503 | c$$$ & (meteo_alt .le. pplev(ig,l+1))) .eq. .false.) |
---|
504 | c$$$ & .and. (l .lt. nlay) ) |
---|
505 | c$$$ l=l+1 |
---|
506 | c$$$ enddo |
---|
507 | c$$$ meteo_lvl=l |
---|
508 | c$$$ subpdq(ig,meteo_lvl,igcm_dust_mass)= |
---|
509 | c$$$ & subpdq(ig,meteo_lvl,igcm_dust_mass) |
---|
510 | c$$$ & +meteo_flux_mass |
---|
511 | c$$$ subpdq(ig,meteo_lvl,igcm_dust_number)= |
---|
512 | c$$$ & subpdq(ig,meteo_lvl,igcm_dust_number) |
---|
513 | c$$$ & +meteo_flux_number |
---|
514 | c$$$ enddo |
---|
515 | c$$$ endif |
---|
516 | c------------------------------------------------------------------- |
---|
517 | c 2. Main call to the cloud schemes: |
---|
518 | c------------------------------------------------ |
---|
519 | CALL improvedCO2clouds(ngrid,nlay,microtimestep, |
---|
520 | & pplay,pzlev,zteff,subpdt, |
---|
521 | & pqeff,subpdq,subpdqcloudco2,subpdtcloudco2, |
---|
522 | & nq,tauscaling,memdMMccn,memdMMh2o,memdNNccn) |
---|
523 | c------------------------------------------------------------------- |
---|
524 | c 3. Updating tendencies after cloud scheme: |
---|
525 | c----------------------------------------------- |
---|
526 | DO l=1,nlay |
---|
527 | DO ig=1,ngrid |
---|
528 | subpdt(ig,l) = |
---|
529 | & subpdt(ig,l) + subpdtcloudco2(ig,l) |
---|
530 | subpdq(ig,l,igcm_dust_mass) = |
---|
531 | & subpdq(ig,l,igcm_dust_mass) |
---|
532 | & + subpdqcloudco2(ig,l,igcm_dust_mass) |
---|
533 | subpdq(ig,l,igcm_dust_number) = |
---|
534 | & subpdq(ig,l,igcm_dust_number) |
---|
535 | & + subpdqcloudco2(ig,l,igcm_dust_number) |
---|
536 | subpdq(ig,l,igcm_ccnco2_mass) = |
---|
537 | & subpdq(ig,l,igcm_ccnco2_mass) |
---|
538 | & + subpdqcloudco2(ig,l,igcm_ccnco2_mass) |
---|
539 | subpdq(ig,l,igcm_ccnco2_number) = |
---|
540 | & subpdq(ig,l,igcm_ccnco2_number) |
---|
541 | & + subpdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
542 | subpdq(ig,l,igcm_co2_ice) = |
---|
543 | & subpdq(ig,l,igcm_co2_ice) |
---|
544 | & + subpdqcloudco2(ig,l,igcm_co2_ice) |
---|
545 | subpdq(ig,l,igcm_co2) = |
---|
546 | & subpdq(ig,l,igcm_co2) |
---|
547 | & + subpdqcloudco2(ig,l,igcm_co2) |
---|
548 | subpdq(ig,l,igcm_h2o_ice) = |
---|
549 | & subpdq(ig,l,igcm_h2o_ice) |
---|
550 | & + subpdqcloudco2(ig,l,igcm_h2o_ice) |
---|
551 | subpdq(ig,l,igcm_ccn_mass) = |
---|
552 | & subpdq(ig,l,igcm_ccn_mass) |
---|
553 | & + subpdqcloudco2(ig,l,igcm_ccn_mass) |
---|
554 | subpdq(ig,l,igcm_ccn_number) = |
---|
555 | & subpdq(ig,l,igcm_ccn_number) |
---|
556 | & + subpdqcloudco2(ig,l,igcm_ccn_number) |
---|
557 | ENDDO |
---|
558 | ENDDO |
---|
559 | |
---|
560 | !Sedimentation |
---|
561 | !Update traceurs, compute rsed |
---|
562 | |
---|
563 | DO l=1, nlay |
---|
564 | DO ig=1,ngrid |
---|
565 | tempo_traceur_t(ig,l)=zteff(ig,l)+subpdt(ig,l) |
---|
566 | & *microtimestep |
---|
567 | tempo_traceurs(ig,l,:)=pqeff(ig,l,:) |
---|
568 | & +subpdq(ig,l,:)*microtimestep |
---|
569 | |
---|
570 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4* |
---|
571 | & tempo_traceur_t(ig,l)-2.87e-6* |
---|
572 | & tempo_traceur_t(ig,l)*tempo_traceur_t(ig,l)) |
---|
573 | |
---|
574 | rho_ice_co2=rho_ice_co2T(ig,l) |
---|
575 | Niceco2=max(tempo_traceurs(ig,l,igcm_co2_ice),1.e-30) |
---|
576 | Nccnco2=max(tempo_traceurs(ig,l,igcm_ccnco2_number), |
---|
577 | & 1.e-30) |
---|
578 | Qccnco2=max(tempo_traceurs(ig,l,igcm_ccnco2_mass), |
---|
579 | & 1.e-30) |
---|
580 | mdustJA= tempo_traceurs(ig,l,igcm_dust_mass) |
---|
581 | ndustJA=tempo_traceurs(ig,l,igcm_dust_number) |
---|
582 | if ((Nccnco2 .lt. tauscaling(ig)) .or. (Qccnco2 .lt. |
---|
583 | & 1.e-30 *tauscaling(ig))) then |
---|
584 | rdust(ig,l)=1.e-10 |
---|
585 | else |
---|
586 | rdust(ig,l)=(3./4./pi/2500.*Qccnco2/Nccnco2)**(1./3.) |
---|
587 | rdust(ig,l)=max(rdust(ig,l),1.e-10) |
---|
588 | c rdust(ig,l)=min(rdust(ig,l),5.e-6) |
---|
589 | end if |
---|
590 | rhocloudco2t(ig,l) = (Niceco2 *rho_ice_co2 |
---|
591 | & + Qccnco2*tauscaling(ig)*rho_dust) |
---|
592 | & / (Niceco2 + Qccnco2*tauscaling(ig)) |
---|
593 | |
---|
594 | rhocloudco2t(ig,l)=min(max(rhocloudco2t(ig,l) |
---|
595 | & ,rho_ice_co2),rho_dust) |
---|
596 | riceco2(ig,l)=(Niceco2*3.0/ |
---|
597 | & (4.0*rho_ice_co2*pi*Nccnco2 |
---|
598 | & *tauscaling(ig)) +rdust(ig,l)*rdust(ig,l) |
---|
599 | & *rdust(ig,l))**(1.0/3.0) |
---|
600 | riceco2(ig,l)=max(1.e-10,riceco2(ig,l)) |
---|
601 | |
---|
602 | rsedcloudco2(ig,l)=max(riceco2(ig,l)* |
---|
603 | & (1.+nuiceco2_sed)*(1.+nuiceco2_sed)*(1.+nuiceco2_sed), |
---|
604 | & rdust(ig,l)) |
---|
605 | |
---|
606 | ENDDO |
---|
607 | ENDDO |
---|
608 | |
---|
609 | ! Gravitational sedimentation |
---|
610 | |
---|
611 | sav_trac(:,:,igcm_co2_ice)=tempo_traceurs(:,:,igcm_co2_ice) |
---|
612 | sav_trac(:,:,igcm_ccnco2_mass)= |
---|
613 | & tempo_traceurs(:,:,igcm_ccnco2_mass) |
---|
614 | sav_trac(:,:,igcm_ccnco2_number)= |
---|
615 | & tempo_traceurs(:,:,igcm_ccnco2_number) |
---|
616 | |
---|
617 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
618 | & microtimestep,pplev,masse,epaisseur,tempo_traceur_t, |
---|
619 | & rsedcloudco2,rhocloudco2t, |
---|
620 | & tempo_traceurs(:,:,igcm_co2_ice),wq,beta) ! 3 traceurs |
---|
621 | |
---|
622 | ! sedim at the surface of co2 ice : keep track of it for physiq_mod |
---|
623 | do ig=1,ngrid |
---|
624 | pdqs_sedco2(ig)=pdqs_sedco2(ig)+ wq(ig,1)/microtimestep |
---|
625 | end do |
---|
626 | |
---|
627 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
628 | & microtimestep,pplev,masse,epaisseur,tempo_traceur_t, |
---|
629 | & rsedcloudco2,rhocloudco2t, |
---|
630 | & tempo_traceurs(:,:,igcm_ccnco2_mass),wq,beta) |
---|
631 | |
---|
632 | call newsedim(ngrid,nlay,ngrid*nlay,ngrid*nlay, |
---|
633 | & microtimestep,pplev,masse,epaisseur,tempo_traceur_t, |
---|
634 | & rsedcloudco2,rhocloudco2t, |
---|
635 | & tempo_traceurs(:,:,igcm_ccnco2_number),wq,beta) |
---|
636 | |
---|
637 | DO l = 1, nlay !Compute tendencies |
---|
638 | DO ig=1,ngrid |
---|
639 | pdqsed(ig,l,igcm_ccnco2_mass)= |
---|
640 | & (tempo_traceurs(ig,l,igcm_ccnco2_mass)- |
---|
641 | & sav_trac(ig,l,igcm_ccnco2_mass))/microtimestep |
---|
642 | pdqsed(ig,l,igcm_ccnco2_number)= |
---|
643 | & (tempo_traceurs(ig,l,igcm_ccnco2_number)- |
---|
644 | & sav_trac(ig,l,igcm_ccnco2_number))/microtimestep |
---|
645 | pdqsed(ig,l,igcm_co2_ice)= |
---|
646 | & (tempo_traceurs(ig,l,igcm_co2_ice)- |
---|
647 | & sav_trac(ig,l,igcm_co2_ice))/microtimestep |
---|
648 | ENDDO |
---|
649 | ENDDO |
---|
650 | !pdqsed est la tendance due a la sedimentation |
---|
651 | |
---|
652 | DO l=1,nlay |
---|
653 | DO ig=1,ngrid |
---|
654 | subpdq(ig,l,igcm_ccnco2_mass) = |
---|
655 | & subpdq(ig,l,igcm_ccnco2_mass) |
---|
656 | & +pdqsed(ig,l,igcm_ccnco2_mass) |
---|
657 | subpdq(ig,l,igcm_ccnco2_number) = |
---|
658 | & subpdq(ig,l,igcm_ccnco2_number) |
---|
659 | & +pdqsed(ig,l,igcm_ccnco2_number) |
---|
660 | subpdq(ig,l,igcm_co2_ice) = |
---|
661 | & subpdq(ig,l,igcm_co2_ice) |
---|
662 | & +pdqsed(ig,l,igcm_co2_ice) |
---|
663 | ENDDO |
---|
664 | ENDDO |
---|
665 | |
---|
666 | ENDDO ! of DO microstep=1,imicro |
---|
667 | |
---|
668 | c------------------------------------------------------------------- |
---|
669 | c 6. Compute final tendencies after time loop: |
---|
670 | c------------------------------------------------ |
---|
671 | c CO2 flux at surface (kg.m-2.s-1) |
---|
672 | do ig=1,ngrid |
---|
673 | pdqs_sedco2(ig)=pdqs_sedco2(ig)/real(imicro) |
---|
674 | enddo |
---|
675 | |
---|
676 | c------ Temperature tendency pdtcloud |
---|
677 | DO l=1,nlay |
---|
678 | DO ig=1,ngrid |
---|
679 | pdtcloudco2(ig,l) = |
---|
680 | & subpdt(ig,l)/real(imicro)-pdt(ig,l) |
---|
681 | ENDDO |
---|
682 | ENDDO |
---|
683 | |
---|
684 | c------ Tracers tendencies pdqcloud |
---|
685 | DO l=1,nlay |
---|
686 | DO ig=1,ngrid |
---|
687 | |
---|
688 | pdqcloudco2(ig,l,igcm_co2_ice) = |
---|
689 | & subpdq(ig,l,igcm_co2_ice)/real(imicro) |
---|
690 | & - pdq(ig,l,igcm_co2_ice) |
---|
691 | pdqcloudco2(ig,l,igcm_co2) = |
---|
692 | & subpdq(ig,l,igcm_co2)/real(imicro) |
---|
693 | & - pdq(ig,l,igcm_co2) |
---|
694 | pdqcloudco2(ig,l,igcm_h2o_ice) = |
---|
695 | & subpdq(ig,l,igcm_h2o_ice)/real(imicro) |
---|
696 | & - pdq(ig,l,igcm_h2o_ice) |
---|
697 | ENDDO |
---|
698 | ENDDO |
---|
699 | |
---|
700 | DO l=1,nlay |
---|
701 | DO ig=1,ngrid |
---|
702 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = |
---|
703 | & subpdq(ig,l,igcm_ccnco2_mass)/real(imicro) |
---|
704 | & - pdq(ig,l,igcm_ccnco2_mass) |
---|
705 | pdqcloudco2(ig,l,igcm_ccnco2_number) = |
---|
706 | & subpdq(ig,l,igcm_ccnco2_number)/real(imicro) |
---|
707 | & - pdq(ig,l,igcm_ccnco2_number) |
---|
708 | pdqcloudco2(ig,l,igcm_ccn_mass) = |
---|
709 | & subpdq(ig,l,igcm_ccn_mass)/real(imicro) |
---|
710 | & - pdq(ig,l,igcm_ccn_mass) |
---|
711 | pdqcloudco2(ig,l,igcm_ccn_number) = |
---|
712 | & subpdq(ig,l,igcm_ccn_number)/real(imicro) |
---|
713 | & - pdq(ig,l,igcm_ccn_number) |
---|
714 | ENDDO |
---|
715 | ENDDO |
---|
716 | |
---|
717 | |
---|
718 | DO l=1,nlay |
---|
719 | DO ig=1,ngrid |
---|
720 | pdqcloudco2(ig,l,igcm_dust_mass) = |
---|
721 | & subpdq(ig,l,igcm_dust_mass)/real(imicro) |
---|
722 | & - pdq(ig,l,igcm_dust_mass) |
---|
723 | pdqcloudco2(ig,l,igcm_dust_number) = |
---|
724 | & subpdq(ig,l,igcm_dust_number)/real(imicro) |
---|
725 | & - pdq(ig,l,igcm_dust_number) |
---|
726 | ENDDO |
---|
727 | ENDDO |
---|
728 | |
---|
729 | c------- Due to stepped entry, other processes tendencies can add up to negative values |
---|
730 | c------- Therefore, enforce positive values and conserve mass |
---|
731 | |
---|
732 | |
---|
733 | |
---|
734 | DO l=1,nlay |
---|
735 | DO ig=1,ngrid |
---|
736 | IF ((pqeff(ig,l,igcm_ccnco2_number) + |
---|
737 | & ptimestep* (pdq(ig,l,igcm_ccnco2_number) + |
---|
738 | & pdqcloudco2(ig,l,igcm_ccnco2_number)) |
---|
739 | & .lt. 1.e-20) |
---|
740 | & .or. (pqeff(ig,l,igcm_ccnco2_mass) + |
---|
741 | & ptimestep* (pdq(ig,l,igcm_ccnco2_mass) + |
---|
742 | & pdqcloudco2(ig,l,igcm_ccnco2_mass)) |
---|
743 | & .lt. 1.e-30)) THEN |
---|
744 | |
---|
745 | pdqcloudco2(ig,l,igcm_ccnco2_number) = |
---|
746 | & - pqeff(ig,l,igcm_ccnco2_number)/ptimestep |
---|
747 | & - pdq(ig,l,igcm_ccnco2_number)+1.e-20 |
---|
748 | pdqcloudco2(ig,l,igcm_dust_number) = |
---|
749 | & -pdqcloudco2(ig,l,igcm_ccnco2_number) |
---|
750 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = |
---|
751 | & - pqeff(ig,l,igcm_ccnco2_mass)/ptimestep |
---|
752 | & - pdq(ig,l,igcm_ccnco2_mass)+1.e-30 |
---|
753 | pdqcloudco2(ig,l,igcm_dust_mass) = |
---|
754 | & -pdqcloudco2(ig,l,igcm_ccnco2_mass) |
---|
755 | |
---|
756 | ENDIF |
---|
757 | ENDDO |
---|
758 | ENDDO |
---|
759 | |
---|
760 | |
---|
761 | |
---|
762 | DO l=1,nlay |
---|
763 | DO ig=1,ngrid |
---|
764 | IF ( (pqeff(ig,l,igcm_dust_number) + |
---|
765 | & ptimestep* (pdq(ig,l,igcm_dust_number) + |
---|
766 | & pdqcloudco2(ig,l,igcm_dust_number)) .le. 1.e-30) |
---|
767 | & .or. (pqeff(ig,l,igcm_dust_mass)+ |
---|
768 | & ptimestep* (pdq(ig,l,igcm_dust_mass) + |
---|
769 | & pdqcloudco2(ig,l,igcm_dust_mass)) |
---|
770 | & .le. 1.e-30)) then |
---|
771 | |
---|
772 | pdqcloudco2(ig,l,igcm_dust_number) = |
---|
773 | & - pqeff(ig,l,igcm_dust_number)/ptimestep |
---|
774 | & - pdq(ig,l,igcm_dust_number)+1.e-30 |
---|
775 | pdqcloudco2(ig,l,igcm_ccnco2_number) = |
---|
776 | & -pdqcloudco2(ig,l,igcm_dust_number) |
---|
777 | pdqcloudco2(ig,l,igcm_dust_mass) = |
---|
778 | & - pqeff(ig,l,igcm_dust_mass)/ptimestep |
---|
779 | & - pdq(ig,l,igcm_dust_mass) +1.e-30 |
---|
780 | pdqcloudco2(ig,l,igcm_ccnco2_mass) = |
---|
781 | & -pdqcloudco2(ig,l,igcm_dust_mass) |
---|
782 | |
---|
783 | ENDIF |
---|
784 | ENDDO |
---|
785 | ENDDO |
---|
786 | !pq+ptime*(pdq+pdqc)=1 ! pdqc=1-pq/ptime-pdq |
---|
787 | c$$$ |
---|
788 | c$$$ |
---|
789 | c$$$ DO l=1,nlay |
---|
790 | c$$$ DO ig=1,ngrid |
---|
791 | c$$$ IF (pq(ig,l,igcm_co2_ice) + ptimestep* |
---|
792 | c$$$ & (pdq(ig,l,igcm_co2_ice) + pdqcloudco2(ig,l,igcm_co2_ice)) |
---|
793 | c$$$ & .lt. 1.e-30) THEN |
---|
794 | c$$$ pdqcloudco2(ig,l,igcm_co2_ice) = |
---|
795 | c$$$ & - pq(ig,l,igcm_co2_ice)/ptimestep - pdq(ig,l,igcm_co2_ice) |
---|
796 | c$$$ pdqcloudco2(ig,l,igcm_co2) = -pdqcloudco2(ig,l,igcm_co2_ice) |
---|
797 | c$$$ !write(*,*) "WARNING CO2 ICE in co2cloud.F" |
---|
798 | c$$$ |
---|
799 | c$$$ ENDIF |
---|
800 | c$$$ IF (pq(ig,l,igcm_co2) + ptimestep* |
---|
801 | c$$$ & (pdq(ig,l,igcm_co2) + pdqcloudco2(ig,l,igcm_co2)) |
---|
802 | c$$$ & .lt. 0.5) THEN |
---|
803 | c$$$ pdqcloudco2(ig,l,igcm_co2) = |
---|
804 | c$$$ & - pdq(ig,l,igcm_co2_ice) !- pdq(ig,l,igcm_co2) |
---|
805 | c$$$c pdqcloudco2(ig,l,igcm_co2_ice) = -pdqcloudco2(ig,l,igcm_co2) |
---|
806 | c$$$ pdqcloudco2(ig,l,igcm_co2_ice) = |
---|
807 | c$$$ & - pq(ig,l,igcm_co2_ice)/ptimestep - pdq(ig,l,igcm_co2_ice) |
---|
808 | c$$$ ! write(*,*) "WARNING CO2 in co2cloud.F" |
---|
809 | c$$$ ENDIF |
---|
810 | c$$$ ENDDO |
---|
811 | c$$$ ENDDO |
---|
812 | c$$$ |
---|
813 | |
---|
814 | DO l=1, nlay |
---|
815 | DO ig=1,ngrid |
---|
816 | |
---|
817 | c call updaterice_microco2( |
---|
818 | c & pq(ig,l,igcm_co2_ice) + ! ice mass |
---|
819 | c & (pdq(ig,l,igcm_co2_ice) + ! ice mass |
---|
820 | c & pdqcloudco2(ig,l,igcm_co2_ice))*ptimestep, ! ice mass |
---|
821 | c & pq(ig,l,igcm_ccnco2_mass) + ! ccn mass |
---|
822 | c & (pdq(ig,l,igcm_ccnco2_mass) + ! ccn mass |
---|
823 | c & pdqcloudco2(ig,l,igcm_ccnco2_mass))*ptimestep, ! ccn mass |
---|
824 | c & pq(ig,l,igcm_ccnco2_number) + ! ccn number |
---|
825 | c & (pdq(ig,l,igcm_ccnco2_number) + ! ccn number |
---|
826 | c & pdqcloudco2(ig,l,igcm_ccnco2_number))*ptimestep, ! ccn number |
---|
827 | c & tauscaling(ig),riceco2(ig,l),rhocloudco2(ig,l)) |
---|
828 | c write(*,*) "in co2clouds, riceco2(ig,l)= ",riceco2(ig,l) |
---|
829 | Niceco2=pqeff(ig,l,igcm_co2_ice) + |
---|
830 | & (pdq(ig,l,igcm_co2_ice) + |
---|
831 | & pdqcloudco2(ig,l,igcm_co2_ice))*ptimestep |
---|
832 | Nco2=pqeff(ig,l,igcm_co2) + |
---|
833 | & (pdq(ig,l,igcm_co2) + |
---|
834 | & pdqcloudco2(ig,l,igcm_co2))*ptimestep |
---|
835 | Nccnco2=max((pqeff(ig,l,igcm_ccnco2_number) + |
---|
836 | & (pdq(ig,l,igcm_ccnco2_number) + |
---|
837 | & pdqcloudco2(ig,l,igcm_ccnco2_number))*ptimestep)* |
---|
838 | & tauscaling(ig),1.e-30) |
---|
839 | Qccnco2=max((pqeff(ig,l,igcm_ccnco2_mass) + |
---|
840 | & (pdq(ig,l,igcm_ccnco2_mass) + |
---|
841 | & pdqcloudco2(ig,l,igcm_ccnco2_mass))*ptimestep)* |
---|
842 | & tauscaling(ig),1.e-30) |
---|
843 | |
---|
844 | if (Nccnco2 .lt. 0.1) then |
---|
845 | rdust(ig,l)=1.e-10 |
---|
846 | else |
---|
847 | |
---|
848 | rdust(ig,l)= Qccnco2 |
---|
849 | & *0.75/pi/rho_dust |
---|
850 | & / Nccnco2 |
---|
851 | rdust(ig,l)= rdust(ig,l)**(1./3.) |
---|
852 | rdust(ig,l)=max(1.e-10,rdust(ig,l)) |
---|
853 | c rdust(ig,l)=min(5.e-6,rdust(ig,l)) |
---|
854 | endif |
---|
855 | myT=zteff(ig,l)+(pdt(ig,l)+pdtcloudco2(ig,l))*ptimestep |
---|
856 | rho_ice_co2T(ig,l)=1000.*(1.72391-2.53e-4* |
---|
857 | & myT-2.87e-6* myT* myT) |
---|
858 | rho_ice_co2=rho_ice_co2T(ig,l) |
---|
859 | |
---|
860 | lw = l0 + l1 * myT + l2 *myT**2 + |
---|
861 | & l3 * myT**3 + l4 * myT**4 !J.kg-1 |
---|
862 | |
---|
863 | riceco2(ig,l)=(Niceco2*3.0/ |
---|
864 | & (4.0*rho_ice_co2*pi*Nccnco2) |
---|
865 | & +rdust(ig,l)*rdust(ig,l) |
---|
866 | & *rdust(ig,l) )**(1.0/3.0) |
---|
867 | c & .or. (riceco2(ig,l) .le. rdust(ig,l)) |
---|
868 | if ( (Niceco2 .le. 1.e-25).or. (Nccnco2 .le. 0.1) )THEN !anciennement 200 |
---|
869 | c riceco2(ig,l)=0. |
---|
870 | |
---|
871 | c & .or. (Nccnco2 .le. 1.) |
---|
872 | c endif |
---|
873 | !Flux chaleur latente <0 quand sublimation |
---|
874 | |
---|
875 | pdtcloudco2(ig,l)= pdtcloudco2(ig,l)-Niceco2*lw/cpp/ptimestep |
---|
876 | c$$$ !NO CLOUD : RESET TRACERS AND CONSERVE MASS |
---|
877 | c if (pq(ig,l,igcm_co2_ice)+(pdq(ig,l,igcm_co2_ice)+ |
---|
878 | c & pdqcloudco2(ig,l,igcm_co2_ice))*ptimestep .le. 0.) then |
---|
879 | c pdqcloudco2(ig,l,igcm_co2)=0. |
---|
880 | c pdqcloudco2(ig,l,igcm_co2_ice)=0. |
---|
881 | c else |
---|
882 | pdqcloudco2(ig,l,igcm_co2_ice)=-1.*pqeff(ig,l,igcm_co2_ice) |
---|
883 | & /ptimestep-pdq(ig,l,igcm_co2_ice) |
---|
884 | pdqcloudco2(ig,l,igcm_co2)=-1.* |
---|
885 | & pdqcloudco2(ig,l,igcm_co2_ice) |
---|
886 | c endif |
---|
887 | ! Reverse h2o ccn and ices into h2o tracers |
---|
888 | if (memdMMccn(ig,l) .gt. 0) then |
---|
889 | pdqcloudco2(ig,l,igcm_ccn_mass)=memdMMccn(ig,l)/ptimestep |
---|
890 | else |
---|
891 | memdMMccn(ig,l)=0. |
---|
892 | pdqcloudco2(ig,l,igcm_ccn_mass)=0. |
---|
893 | endif |
---|
894 | if (memdNNccn(ig,l) .gt. 0) then |
---|
895 | pdqcloudco2(ig,l,igcm_ccn_number)=memdNNccn(ig,l)/ptimestep |
---|
896 | else |
---|
897 | memdNNccn(ig,l)=0. |
---|
898 | pdqcloudco2(ig,l,igcm_ccn_number)=0. |
---|
899 | endif |
---|
900 | if (memdMMh2o(ig,l) .gt. 0) then |
---|
901 | pdqcloudco2(ig,l,igcm_h2o_ice)=memdMMh2o(ig,l)/ptimestep |
---|
902 | else |
---|
903 | memdMMh2o(ig,l)=0. |
---|
904 | pdqcloudco2(ig,l,igcm_h2o_ice)=0. |
---|
905 | endif |
---|
906 | c if (pq(ig,l,igcm_ccnco2_mass)+(pdq(ig,l,igcm_ccnco2_mass)+ |
---|
907 | c & pdqcloudco2(ig,l,igcm_ccnco2_mass))*ptimestep |
---|
908 | c & .le. 1.e-30) then |
---|
909 | c pdqcloudco2(ig,l,igcm_ccnco2_mass)=0. |
---|
910 | c pdqcloudco2(ig,l,igcm_ccnco2_number)=0. |
---|
911 | c pdqcloudco2(ig,l,igcm_co2)=0. |
---|
912 | c pdqcloudco2(ig,l,igcm_co2_ice)=0. |
---|
913 | c else |
---|
914 | pdqcloudco2(ig,l,igcm_ccnco2_mass)= |
---|
915 | & -1.*pqeff(ig,l,igcm_ccnco2_mass) |
---|
916 | & /ptimestep-pdq(ig,l,igcm_ccnco2_mass) |
---|
917 | c endif |
---|
918 | c if (pq(ig,l,igcm_ccnco2_number)+ |
---|
919 | c & (pdq(ig,l,igcm_ccnco2_number)+ |
---|
920 | c & pdqcloudco2(ig,l,igcm_ccnco2_number)) |
---|
921 | c & *ptimestep.le. 1.e-30) |
---|
922 | c & then |
---|
923 | c pdqcloudco2(ig,l,igcm_ccnco2_mass)=0. |
---|
924 | c pdqcloudco2(ig,l,igcm_ccnco2_number)=0. |
---|
925 | c pdqcloudco2(ig,l,igcm_co2)=0. |
---|
926 | c pdqcloudco2(ig,l,igcm_co2_ice)=0. |
---|
927 | c else |
---|
928 | pdqcloudco2(ig,l,igcm_ccnco2_number)= |
---|
929 | & -1.*pqeff(ig,l,igcm_ccnco2_number) |
---|
930 | & /ptimestep-pdq(ig,l,igcm_ccnco2_number) |
---|
931 | c endif |
---|
932 | c if (pq(ig,l,igcm_dust_number)+ |
---|
933 | c & (pdq(ig,l,igcm_dust_number)+ |
---|
934 | c & pdqcloudco2(ig,l,igcm_dust_number)) |
---|
935 | c & *ptimestep.le. 1.e-30) |
---|
936 | c & then |
---|
937 | c pdqcloudco2(ig,l,igcm_dust_number)=0. |
---|
938 | c pdqcloudco2(ig,l,igcm_dust_mass)=0. |
---|
939 | c else |
---|
940 | pdqcloudco2(ig,l,igcm_dust_number)= |
---|
941 | & pqeff(ig,l,igcm_ccnco2_number) |
---|
942 | & /ptimestep+pdq(ig,l,igcm_ccnco2_number) |
---|
943 | & -memdNNccn(ig,l)/ptimestep |
---|
944 | c endif |
---|
945 | c if (pq(ig,l,igcm_dust_mass)+ |
---|
946 | c & (pdq(ig,l,igcm_dust_mass)+ |
---|
947 | c & pdqcloudco2(ig,l,igcm_dust_mass)) |
---|
948 | c & *ptimestep .le. 1.e-30) |
---|
949 | c & then |
---|
950 | c pdqcloudco2(ig,l,igcm_dust_number)=0. |
---|
951 | c pdqcloudco2(ig,l,igcm_dust_mass)=0. |
---|
952 | c else |
---|
953 | pdqcloudco2(ig,l,igcm_dust_mass)= |
---|
954 | & pqeff(ig,l,igcm_ccnco2_mass) |
---|
955 | & /ptimestep+pdq(ig,l,igcm_ccnco2_mass) |
---|
956 | & -(memdMMh2o(ig,l)+memdMMccn(ig,l))/ptimestep |
---|
957 | c endif |
---|
958 | memdMMccn(ig,l)=0. |
---|
959 | memdMMh2o(ig,l)=0. |
---|
960 | memdNNccn(ig,l)=0. |
---|
961 | riceco2(ig,l)=0. |
---|
962 | endif |
---|
963 | c Compute opacities |
---|
964 | No=Nccnco2 |
---|
965 | Rn=-log(riceco2(ig,l)) |
---|
966 | n_derf = erf( (rb_cldco2(1)+Rn) *dev2) |
---|
967 | Qext1bins2(ig,l)=0. |
---|
968 | do i = 1, nbinco2_cld !Qext below 50 is negligible |
---|
969 | n_aer(i) = -0.5 * No * n_derf !! this ith previously computed |
---|
970 | n_derf = derf((rb_cldco2(i+1)+Rn) *dev2) |
---|
971 | n_aer(i) = n_aer(i) + 0.5 * No * n_derf |
---|
972 | Qext1bins2(ig,l)=Qext1bins2(ig,l)+Qext1bins(i)*n_aer(i) |
---|
973 | enddo |
---|
974 | !l'opacité de la case ig est la somme sur l de Qext1bins2 |
---|
975 | |
---|
976 | |
---|
977 | !update rice water |
---|
978 | call updaterice_micro( |
---|
979 | & pqeff(ig,l,igcm_h2o_ice) + ! ice mass |
---|
980 | & (pdq(ig,l,igcm_h2o_ice) + ! ice mass |
---|
981 | & pdqcloudco2(ig,l,igcm_h2o_ice))*ptimestep, ! ice mass |
---|
982 | & pqeff(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
983 | & (pdq(ig,l,igcm_ccn_mass) + ! ccn mass |
---|
984 | & pdqcloudco2(ig,l,igcm_ccn_mass))*ptimestep, ! ccn mass |
---|
985 | & pqeff(ig,l,igcm_ccn_number) + ! ccn number |
---|
986 | & (pdq(ig,l,igcm_ccn_number) + ! ccn number |
---|
987 | & pdqcloudco2(ig,l,igcm_ccn_number))*ptimestep, ! ccn number |
---|
988 | & tauscaling(ig),rice(ig,l),rhocloud(ig,l)) |
---|
989 | |
---|
990 | |
---|
991 | call updaterdust( |
---|
992 | & pqeff(ig,l,igcm_dust_mass) + ! dust mass |
---|
993 | & (pdq(ig,l,igcm_dust_mass) + ! dust mass |
---|
994 | & pdqcloudco2(ig,l,igcm_dust_mass))*ptimestep, ! dust mass |
---|
995 | & pqeff(ig,l,igcm_dust_number) + ! dust number |
---|
996 | & (pdq(ig,l,igcm_dust_number) + ! dust number |
---|
997 | & pdqcloudco2(ig,l,igcm_dust_number))*ptimestep, ! dust number |
---|
998 | & rdust(ig,l)) |
---|
999 | |
---|
1000 | ENDDO |
---|
1001 | ENDDO |
---|
1002 | tau1mic(:)=0. |
---|
1003 | do l=1,nlay |
---|
1004 | do ig=1,ngrid |
---|
1005 | tau1mic(ig)=tau1mic(ig)+Qext1bins2(ig,l) |
---|
1006 | enddo |
---|
1007 | enddo |
---|
1008 | |
---|
1009 | c$$$ |
---|
1010 | c$$$ if (riceco2(725,22) .ge. 1.e-10) then |
---|
1011 | c$$$ |
---|
1012 | c$$$ write(*,*) 'DIAGJA co2 ',pqeff(725,22,igcm_co2) + |
---|
1013 | c$$$ & (pdq(725,22,igcm_co2) + |
---|
1014 | c$$$ & pdqcloudco2(725,22,igcm_co2))*ptimestep |
---|
1015 | c$$$ write(*,*) 'DIAGJA co2_ice',pqeff(725,22,igcm_co2_ice) + |
---|
1016 | c$$$ & (pdq(725,22,igcm_co2_ice) + |
---|
1017 | c$$$ & pdqcloudco2(725,22,igcm_co2_ice))*ptimestep |
---|
1018 | c$$$ |
---|
1019 | c$$$ write(*,*) 'DIAGJA riceco2',riceco2(725,22) |
---|
1020 | c$$$ write(*,*) 'DIAGJA T',zteff(725,22) + |
---|
1021 | c$$$ & (pdt(725,22) + pdtcloudco2(725,22))*ptimestep |
---|
1022 | c$$$ write(*,*) 'DIAG pdtcloud',pdtcloudco2(725,22)*ptimestep |
---|
1023 | c$$$ write(*,*) 'DIAGJA ccnNco2',pqeff(725,22,igcm_ccnco2_number)+ |
---|
1024 | c$$$ & (pdq(725,22,igcm_ccnco2_number) + |
---|
1025 | c$$$ & pdqcloudco2(725,22,igcm_ccnco2_number))*ptimestep |
---|
1026 | c$$$ |
---|
1027 | c$$$ write(*,*) 'DIAGJA dustN',pqeff(725,22,igcm_dust_number) + |
---|
1028 | c$$$ & (pdq(725,22,igcm_dust_number) + |
---|
1029 | c$$$ & pdqcloudco2(725,22,igcm_dust_number))*ptimestep |
---|
1030 | c$$$ ENDIF |
---|
1031 | c$$$ |
---|
1032 | |
---|
1033 | |
---|
1034 | |
---|
1035 | c A correction if a lot of subliming CO2 fills the 1st layer FF04/2005 |
---|
1036 | c ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
1037 | c Then that should not affect the ice particle radius |
---|
1038 | do ig=1,ngrid |
---|
1039 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,2)))then |
---|
1040 | if(pdpsrf(ig)*ptimestep.gt.0.9*(pplev(ig,1)-pplev(ig,3))) |
---|
1041 | & riceco2(ig,2)=riceco2(ig,3) |
---|
1042 | riceco2(ig,1)=riceco2(ig,2) |
---|
1043 | end if |
---|
1044 | end do |
---|
1045 | |
---|
1046 | |
---|
1047 | DO l=1,nlay |
---|
1048 | DO ig=1,ngrid |
---|
1049 | rsedcloud(ig,l)=max(rice(ig,l)* |
---|
1050 | & (1.+nuice_sed)*(1.+nuice_sed)*(1.+nuice_sed), |
---|
1051 | & rdust(ig,l)) |
---|
1052 | ! rsedcloud(ig,l)=min(rsedcloud(ig,l),1.e-4) |
---|
1053 | ENDDO |
---|
1054 | ENDDO |
---|
1055 | |
---|
1056 | DO l=1,nlay |
---|
1057 | DO ig=1,ngrid |
---|
1058 | rsedcloudco2(ig,l)=max(riceco2(ig,l)* |
---|
1059 | & (1.+nuiceco2_sed)*(1.+nuiceco2_sed)*(1.+nuiceco2_sed), |
---|
1060 | & rdust(ig,l)) |
---|
1061 | c rsedcloudco2(ig,l)=min(rsedcloudco2(ig,l),1.e-5) |
---|
1062 | ENDDO |
---|
1063 | ENDDO |
---|
1064 | |
---|
1065 | call co2sat(ngrid*nlay,zteff+(pdt+pdtcloudco2)*ptimestep |
---|
1066 | & ,pplay,zqsatco2) |
---|
1067 | do l=1,nlay |
---|
1068 | do ig=1,ngrid |
---|
1069 | satuco2(ig,l) = (pqeff(ig,l,igcm_co2) + |
---|
1070 | & (pdq(ig,l,igcm_co2) + |
---|
1071 | & pdqcloudco2(ig,l,igcm_co2))*ptimestep)* |
---|
1072 | & (mmean(ig,l)/44.01)*pplay(ig,l)/zqsatco2(ig,l) |
---|
1073 | !write(*,*) "In CO2 pt,sat ",pt(ig,l),satuco2(ig,l) |
---|
1074 | enddo |
---|
1075 | enddo |
---|
1076 | !Tout ce qui est modifié par la microphysique de CO2 doit être rapporté a cloudfrac |
---|
1077 | IF (CLFvaryingCO2) THEN |
---|
1078 | DO l=1,nlay |
---|
1079 | DO ig=1,ngrid |
---|
1080 | pdqcloudco2(ig,l,igcm_ccn_mass)= |
---|
1081 | & pdqcloudco2(ig,l,igcm_ccn_mass)*cloudfrac(ig,l) |
---|
1082 | pdqcloudco2(ig,l,igcm_ccnco2_mass)= |
---|
1083 | & pdqcloudco2(ig,l,igcm_ccnco2_mass)*cloudfrac(ig,l) |
---|
1084 | pdqcloudco2(ig,l,igcm_ccn_number)= |
---|
1085 | & pdqcloudco2(ig,l,igcm_ccn_number)*cloudfrac(ig,l) |
---|
1086 | pdqcloudco2(ig,l,igcm_ccnco2_number)= |
---|
1087 | & pdqcloudco2(ig,l,igcm_ccnco2_number)*cloudfrac(ig,l) |
---|
1088 | pdqcloudco2(ig,l,igcm_dust_mass)= |
---|
1089 | & pdqcloudco2(ig,l,igcm_dust_mass)*cloudfrac(ig,l) |
---|
1090 | pdqcloudco2(ig,l,igcm_dust_number)= |
---|
1091 | & pdqcloudco2(ig,l,igcm_dust_number)*cloudfrac(ig,l) |
---|
1092 | pdqcloudco2(ig,l,igcm_h2o_ice)= |
---|
1093 | & pdqcloudco2(ig,l,igcm_h2o_ice)*cloudfrac(ig,l) |
---|
1094 | pdqcloudco2(ig,l,igcm_co2_ice)= |
---|
1095 | & pdqcloudco2(ig,l,igcm_co2_ice)*cloudfrac(ig,l) |
---|
1096 | pdqcloudco2(ig,l,igcm_co2)= |
---|
1097 | & pdqcloudco2(ig,l,igcm_co2)*cloudfrac(ig,l) |
---|
1098 | pdtcloudco2(ig,l)=pdtcloudco2(ig,l)*cloudfrac(ig,l) |
---|
1099 | ENDDO |
---|
1100 | ENDDO |
---|
1101 | ENDIF |
---|
1102 | |
---|
1103 | call WRITEDIAGFI(ngrid,"satuco2","vap in satu","kg/kg",3, |
---|
1104 | & satuco2) |
---|
1105 | call WRITEdiagfi(ngrid,"riceco2","ice radius","m" |
---|
1106 | & ,3,riceco2) |
---|
1107 | ! or output in diagfi.nc (for testphys1d) |
---|
1108 | c call WRITEDIAGFI(ngrid,'ps','Surface pressure','Pa',0,ps) |
---|
1109 | c call WRITEDIAGFI(ngrid,'temp','Temperature ', |
---|
1110 | c & 'K JA',1,pt) |
---|
1111 | |
---|
1112 | call WRITEdiagfi(ngrid,"rsedcloudco2","rsed co2","m",3, |
---|
1113 | & rsedcloudco2) |
---|
1114 | |
---|
1115 | call WRITEdiagfi(ngrid,"tau1mic","co2 ice opacity 1 micron"," ",2, |
---|
1116 | & tau1mic) |
---|
1117 | call WRITEdiagfi(ngrid,"cloudfrac","co2 cloud fraction"," ",3, |
---|
1118 | & cloudfrac) |
---|
1119 | ! used for rad. transfer calculations |
---|
1120 | ! nuice is constant because a lognormal distribution is prescribed |
---|
1121 | c nuice(1:ngrid,1:nlay)=nuice_ref |
---|
1122 | |
---|
1123 | |
---|
1124 | |
---|
1125 | c======================================================================= |
---|
1126 | |
---|
1127 | END |
---|
1128 | |
---|