1 | SUBROUTINE conduction(ngrid,nlayer,ptimestep,pplay,pplev,pt,pdt, |
---|
2 | $ tsurf,zzlev,zzlay,zdtconduc) |
---|
3 | |
---|
4 | use conc_mod, only: Akknew, rnew, cpnew |
---|
5 | IMPLICIT NONE |
---|
6 | |
---|
7 | c======================================================================= |
---|
8 | c |
---|
9 | c Molecular thermal conduction |
---|
10 | c |
---|
11 | c N. Descamp, F. Forget 05/1999 |
---|
12 | c |
---|
13 | c======================================================================= |
---|
14 | |
---|
15 | c----------------------------------------------------------------------- |
---|
16 | c declarations: |
---|
17 | c----------------------------------------------------------------------- |
---|
18 | |
---|
19 | c arguments: |
---|
20 | c ---------- |
---|
21 | |
---|
22 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
23 | integer,intent(in) :: nlayer ! number of atmospheric layers |
---|
24 | real,intent(in) :: ptimestep |
---|
25 | REAL,intent(in) :: pplay(ngrid,nlayer) |
---|
26 | real,intent(in) :: pplev(ngrid,nlayer+1) |
---|
27 | REAL,intent(in) :: zzlay(ngrid,nlayer) |
---|
28 | real,intent(in) :: zzlev(ngrid,nlayer+1) |
---|
29 | REAL,intent(in) :: pt(ngrid,nlayer) |
---|
30 | real,intent(in) :: pdt(ngrid,nlayer) |
---|
31 | real,intent(in) :: tsurf(ngrid) |
---|
32 | |
---|
33 | real,intent(out) :: zdtconduc(ngrid,nlayer) |
---|
34 | |
---|
35 | c local: |
---|
36 | c ------ |
---|
37 | |
---|
38 | INTEGER i,ig,l |
---|
39 | real Akk |
---|
40 | real,save :: phitop |
---|
41 | real m,tmean |
---|
42 | REAL alpha(nlayer) |
---|
43 | real zt(nlayer) |
---|
44 | REAL lambda(nlayer) |
---|
45 | real muvol(nlayer) |
---|
46 | REAL C(nlayer) |
---|
47 | real D(nlayer) |
---|
48 | real den(nlayer) |
---|
49 | REAL pdtc(nlayer) |
---|
50 | real zlay(nlayer) |
---|
51 | real zlev(nlayer+1) |
---|
52 | |
---|
53 | c constants used locally |
---|
54 | c --------------------- |
---|
55 | c The atmospheric conductivity is a function of temperature T : |
---|
56 | c conductivity = Akk* T**skk |
---|
57 | REAL,PARAMETER :: skk=0.69 |
---|
58 | |
---|
59 | logical,save :: firstcall=.true. |
---|
60 | |
---|
61 | !$OMP THREADPRIVATE(phitop,firstcall) |
---|
62 | |
---|
63 | c----------------------------------------------------------------------- |
---|
64 | c calcul des coefficients alpha et lambda |
---|
65 | c----------------------------------------------------------------------- |
---|
66 | |
---|
67 | IF (firstcall) THEN |
---|
68 | ! write (*,*)'conduction: coeff to compute molecular', |
---|
69 | ! & ' conductivity Akk,skk' |
---|
70 | ! write(*,*) Akk,skk |
---|
71 | ! NB: Akk is undefined at this stage |
---|
72 | write (*,*)'conduction: coeff to compute molecular', |
---|
73 | & ' conductivity skk = ', skk |
---|
74 | |
---|
75 | ! Initialize phitop |
---|
76 | phitop=0.0 |
---|
77 | |
---|
78 | firstcall = .false. |
---|
79 | ENDIF ! of IF (firstcall) |
---|
80 | |
---|
81 | do ig=1,ngrid |
---|
82 | |
---|
83 | zt(1)=pt(ig,1)+pdt(ig,1)*ptimestep |
---|
84 | zlay(1)=zzlay(ig,1) |
---|
85 | zlev(1)=zzlev(ig,1) |
---|
86 | |
---|
87 | do i=2,nlayer |
---|
88 | |
---|
89 | zt(i)=pt(ig,i)+pdt(ig,i)*ptimestep |
---|
90 | zlay(i)=zzlay(ig,i) |
---|
91 | zlev(i)=zzlev(ig,i) |
---|
92 | enddo |
---|
93 | |
---|
94 | zlev(nlayer+1)= zlev(nlayer)+10000. |
---|
95 | |
---|
96 | Akk=Akknew(ig,1) |
---|
97 | lambda(1) = Akk*tsurf(ig)**skk/zlay(1) |
---|
98 | |
---|
99 | DO i = 2 , nlayer |
---|
100 | Akk=Akknew(ig,i) |
---|
101 | lambda(i)=Akk*zt(i)**skk/(zlay(i)-zlay(i-1)) |
---|
102 | ENDDO |
---|
103 | DO i=1,nlayer-1 |
---|
104 | muvol(i)=pplay(ig,i)/(rnew(ig,i)*zt(i)) |
---|
105 | alpha(i)=cpnew(ig,i)*(muvol(i)/ptimestep) |
---|
106 | $ *(zlev(i+1)-zlev(i)) |
---|
107 | ENDDO |
---|
108 | |
---|
109 | muvol(nlayer)=pplay(ig,nlayer)/(rnew(ig,nlayer)*zt(nlayer)) |
---|
110 | alpha(nlayer)=cpnew(ig,i)*(muvol(nlayer)/ptimestep) |
---|
111 | $ *(zlev(nlayer+1)-zlev(nlayer)) |
---|
112 | |
---|
113 | c-------------------------------------------------------------------- |
---|
114 | c |
---|
115 | c calcul des coefficients C et D |
---|
116 | c |
---|
117 | c------------------------------------------------------------------- |
---|
118 | |
---|
119 | den(1)=alpha(1)+lambda(2)+lambda(1) |
---|
120 | C(1)=lambda(1)*(tsurf(ig)-zt(1))+lambda(2)*(zt(2)-zt(1)) |
---|
121 | C(1)=C(1)/den(1) |
---|
122 | D(1)=lambda(2)/den(1) |
---|
123 | |
---|
124 | DO i = 2,nlayer-1 |
---|
125 | den(i)=alpha(i)+lambda(i+1) |
---|
126 | den(i)=den(i)+lambda(i)*(1-D(i-1)) |
---|
127 | |
---|
128 | C(i) =lambda(i+1)*(zt(i+1)-zt(i)) |
---|
129 | $ +lambda(i)*(zt(i-1)-zt(i)+C(i-1)) |
---|
130 | C(i) =C(i)/den(i) |
---|
131 | |
---|
132 | D(i) =lambda(i+1) / den(i) |
---|
133 | ENDDO |
---|
134 | |
---|
135 | den(nlayer)=alpha(nlayer) + lambda(nlayer) * (1-D(nlayer-1)) |
---|
136 | C(nlayer)=C(nlayer-1)+zt(nlayer-1)-zt(nlayer) |
---|
137 | C(nlayer)=(C(nlayer)*lambda(nlayer)+phitop) / den(nlayer) |
---|
138 | |
---|
139 | c---------------------------------------------------------------------- |
---|
140 | c |
---|
141 | c calcul de la nouvelle temperature ptconduc |
---|
142 | c |
---|
143 | c---------------------------------------------------------------------- |
---|
144 | |
---|
145 | DO i=1,nlayer |
---|
146 | pdtc(i)=0. |
---|
147 | ENDDO |
---|
148 | pdtc(nlayer)=C(nlayer) |
---|
149 | DO i=nlayer-1,1,-1 |
---|
150 | pdtc(i)=C(i)+D(i)*pdtc(i+1) |
---|
151 | ENDDO |
---|
152 | c----------------------------------------------------------------------- |
---|
153 | c |
---|
154 | c calcul de la tendance zdtconduc |
---|
155 | c |
---|
156 | c----------------------------------------------------------------------- |
---|
157 | |
---|
158 | DO i=1,nlayer |
---|
159 | zdtconduc(ig,i)=pdtc(i)/ptimestep |
---|
160 | ENDDO |
---|
161 | |
---|
162 | enddo ! of do ig=1,ngrid |
---|
163 | |
---|
164 | RETURN |
---|
165 | END |
---|