SUBROUTINE conduction(ngrid,nlayer,ptimestep,pplay,pplev,pt,pdt, $ tsurf,zzlev,zzlay,zdtconduc) use conc_mod, only: Akknew, rnew, cpnew IMPLICIT NONE c======================================================================= c c Molecular thermal conduction c c N. Descamp, F. Forget 05/1999 c c======================================================================= c----------------------------------------------------------------------- c declarations: c----------------------------------------------------------------------- c arguments: c ---------- integer,intent(in) :: ngrid ! number of atmospheric columns integer,intent(in) :: nlayer ! number of atmospheric layers real,intent(in) :: ptimestep REAL,intent(in) :: pplay(ngrid,nlayer) real,intent(in) :: pplev(ngrid,nlayer+1) REAL,intent(in) :: zzlay(ngrid,nlayer) real,intent(in) :: zzlev(ngrid,nlayer+1) REAL,intent(in) :: pt(ngrid,nlayer) real,intent(in) :: pdt(ngrid,nlayer) real,intent(in) :: tsurf(ngrid) real,intent(out) :: zdtconduc(ngrid,nlayer) c local: c ------ INTEGER i,ig,l real Akk real,save :: phitop real m,tmean REAL alpha(nlayer) real zt(nlayer) REAL lambda(nlayer) real muvol(nlayer) REAL C(nlayer) real D(nlayer) real den(nlayer) REAL pdtc(nlayer) real zlay(nlayer) real zlev(nlayer+1) c constants used locally c --------------------- c The atmospheric conductivity is a function of temperature T : c conductivity = Akk* T**skk REAL,PARAMETER :: skk=0.69 logical,save :: firstcall=.true. !$OMP THREADPRIVATE(phitop,firstcall) c----------------------------------------------------------------------- c calcul des coefficients alpha et lambda c----------------------------------------------------------------------- IF (firstcall) THEN ! write (*,*)'conduction: coeff to compute molecular', ! & ' conductivity Akk,skk' ! write(*,*) Akk,skk ! NB: Akk is undefined at this stage write (*,*)'conduction: coeff to compute molecular', & ' conductivity skk = ', skk ! Initialize phitop phitop=0.0 firstcall = .false. ENDIF ! of IF (firstcall) do ig=1,ngrid zt(1)=pt(ig,1)+pdt(ig,1)*ptimestep zlay(1)=zzlay(ig,1) zlev(1)=zzlev(ig,1) do i=2,nlayer zt(i)=pt(ig,i)+pdt(ig,i)*ptimestep zlay(i)=zzlay(ig,i) zlev(i)=zzlev(ig,i) enddo zlev(nlayer+1)= zlev(nlayer)+10000. Akk=Akknew(ig,1) lambda(1) = Akk*tsurf(ig)**skk/zlay(1) DO i = 2 , nlayer Akk=Akknew(ig,i) lambda(i)=Akk*zt(i)**skk/(zlay(i)-zlay(i-1)) ENDDO DO i=1,nlayer-1 muvol(i)=pplay(ig,i)/(rnew(ig,i)*zt(i)) alpha(i)=cpnew(ig,i)*(muvol(i)/ptimestep) $ *(zlev(i+1)-zlev(i)) ENDDO muvol(nlayer)=pplay(ig,nlayer)/(rnew(ig,nlayer)*zt(nlayer)) alpha(nlayer)=cpnew(ig,i)*(muvol(nlayer)/ptimestep) $ *(zlev(nlayer+1)-zlev(nlayer)) c-------------------------------------------------------------------- c c calcul des coefficients C et D c c------------------------------------------------------------------- den(1)=alpha(1)+lambda(2)+lambda(1) C(1)=lambda(1)*(tsurf(ig)-zt(1))+lambda(2)*(zt(2)-zt(1)) C(1)=C(1)/den(1) D(1)=lambda(2)/den(1) DO i = 2,nlayer-1 den(i)=alpha(i)+lambda(i+1) den(i)=den(i)+lambda(i)*(1-D(i-1)) C(i) =lambda(i+1)*(zt(i+1)-zt(i)) $ +lambda(i)*(zt(i-1)-zt(i)+C(i-1)) C(i) =C(i)/den(i) D(i) =lambda(i+1) / den(i) ENDDO den(nlayer)=alpha(nlayer) + lambda(nlayer) * (1-D(nlayer-1)) C(nlayer)=C(nlayer-1)+zt(nlayer-1)-zt(nlayer) C(nlayer)=(C(nlayer)*lambda(nlayer)+phitop) / den(nlayer) c---------------------------------------------------------------------- c c calcul de la nouvelle temperature ptconduc c c---------------------------------------------------------------------- DO i=1,nlayer pdtc(i)=0. ENDDO pdtc(nlayer)=C(nlayer) DO i=nlayer-1,1,-1 pdtc(i)=C(i)+D(i)*pdtc(i+1) ENDDO c----------------------------------------------------------------------- c c calcul de la tendance zdtconduc c c----------------------------------------------------------------------- DO i=1,nlayer zdtconduc(ig,i)=pdtc(i)/ptimestep ENDDO enddo ! of do ig=1,ngrid RETURN END