[2032] | 1 | MODULE optcv_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[716] | 7 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
| 8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
[3233] | 9 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR,FRACVAR) |
---|
[253] | 10 | |
---|
[2032] | 11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
---|
[2133] | 12 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
---|
[2875] | 13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, & |
---|
[3641] | 14 | igas_CH4, igas_CO2, igas_O2 |
---|
[1384] | 15 | use comcstfi_mod, only: g, r, mugaz |
---|
[3641] | 16 | use callkeys_mod, only: kastprof,continuum,graybody,callgasvis,varspec, & |
---|
| 17 | generic_continuum_database |
---|
[2543] | 18 | use recombin_corrk_mod, only: corrk_recombin, gasv_recomb |
---|
[2582] | 19 | use tpindex_mod, only: tpindex |
---|
[253] | 20 | |
---|
[716] | 21 | implicit none |
---|
[253] | 22 | |
---|
[716] | 23 | !================================================================== |
---|
| 24 | ! |
---|
| 25 | ! Purpose |
---|
| 26 | ! ------- |
---|
| 27 | ! Calculates shortwave optical constants at each level. |
---|
| 28 | ! |
---|
| 29 | ! Authors |
---|
| 30 | ! ------- |
---|
| 31 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 32 | ! |
---|
| 33 | !================================================================== |
---|
| 34 | ! |
---|
| 35 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
[1715] | 36 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
---|
[716] | 37 | ! LAYER: WBAR, DTAU, COSBAR |
---|
| 38 | ! LEVEL: TAU |
---|
| 39 | ! |
---|
| 40 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
| 41 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
| 42 | ! |
---|
| 43 | ! TLEV(L) - Temperature at the layer boundary |
---|
| 44 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
| 45 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
| 46 | ! |
---|
| 47 | !------------------------------------------------------------------- |
---|
[253] | 48 | |
---|
| 49 | |
---|
[2972] | 50 | real*8,intent(out) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[1715] | 51 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
[2972] | 52 | real*8,intent(out) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
| 53 | real*8,intent(out) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
| 54 | real*8,intent(in) :: PLEV(L_LEVELS) |
---|
| 55 | real*8,intent(in) :: TMID(L_LEVELS), PMID(L_LEVELS) |
---|
| 56 | real*8,intent(out) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
| 57 | real*8,intent(out) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
[253] | 58 | |
---|
[716] | 59 | ! for aerosols |
---|
[2972] | 60 | real*8,intent(in) :: QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 61 | real*8,intent(in) :: QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 62 | real*8,intent(in) :: GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
| 63 | real*8,intent(in) :: TAUAERO(L_LEVELS,NAERKIND) |
---|
| 64 | |
---|
| 65 | ! local arrays (saved for convenience as need be allocated) |
---|
| 66 | real*8,save,allocatable :: TAUAEROLK(:,:,:) |
---|
| 67 | real*8,save,allocatable :: TAEROS(:,:,:) |
---|
| 68 | !$OMP THREADPRIVATE(TAUAEROLK,TAEROS) |
---|
[253] | 69 | |
---|
[873] | 70 | integer L, NW, NG, K, LK, IAER |
---|
[716] | 71 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 72 | real*8 ANS, TAUGAS |
---|
[2972] | 73 | real*8,intent(in) :: TAURAY(L_NSPECTV) |
---|
[716] | 74 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
| 75 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 76 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[253] | 77 | |
---|
[2972] | 78 | real*8,intent(out) :: taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
[918] | 79 | real*8 DCONT,DAERO |
---|
[1715] | 80 | real*8 DRAYAER |
---|
[873] | 81 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 82 | double precision p_cross |
---|
[253] | 83 | |
---|
[716] | 84 | ! variable species mixing ratio variables |
---|
[2972] | 85 | real*8,intent(in) :: QVAR(L_LEVELS) |
---|
| 86 | real*8,intent(in) :: MUVAR(L_LEVELS) |
---|
[3233] | 87 | real*8,intent(in) :: FRACVAR(ngasmx,L_LEVELS) |
---|
[2972] | 88 | real*8 :: WRATIO(L_LEVELS) |
---|
[873] | 89 | real*8 KCOEF(4) |
---|
[716] | 90 | integer NVAR(L_LEVELS) |
---|
[1725] | 91 | |
---|
| 92 | ! temporary variables to reduce memory access time to gasv |
---|
| 93 | real*8 tmpk(2,2) |
---|
| 94 | real*8 tmpkvar(2,2,2) |
---|
[253] | 95 | |
---|
[716] | 96 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 97 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
| 98 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
| 99 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
[253] | 100 | |
---|
[716] | 101 | ! variables for k in units m^-1 |
---|
[873] | 102 | real*8 dz(L_LEVELS) |
---|
[253] | 103 | |
---|
[2131] | 104 | |
---|
[716] | 105 | integer igas, jgas |
---|
[253] | 106 | |
---|
[873] | 107 | integer interm |
---|
| 108 | |
---|
[2972] | 109 | logical :: firstcall=.true. |
---|
| 110 | !$OMP THREADPRIVATE(firstcall) |
---|
| 111 | |
---|
| 112 | if (firstcall) then |
---|
| 113 | ! allocate local arrays of size "naerkind" (which are also |
---|
| 114 | ! "saved" so that this is done only once in for all even if |
---|
| 115 | ! we don't need to store the value from a time step to the next) |
---|
| 116 | allocate(TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND)) |
---|
| 117 | allocate(TAEROS(L_LEVELS,L_NSPECTV,NAERKIND)) |
---|
| 118 | firstcall=.false. |
---|
| 119 | endif ! of if (firstcall) |
---|
| 120 | |
---|
[873] | 121 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 122 | IF (.not.ALLOCATED(indv)) THEN |
---|
[878] | 123 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
[873] | 124 | indv = -9999 ! this initial value means "to be calculated" |
---|
| 125 | ENDIF |
---|
| 126 | |
---|
[716] | 127 | !======================================================================= |
---|
| 128 | ! Determine the total gas opacity throughout the column, for each |
---|
| 129 | ! spectral interval, NW, and each Gauss point, NG. |
---|
| 130 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
| 131 | ! NG, the Gauss index. |
---|
[253] | 132 | |
---|
[716] | 133 | taugsurf(:,:) = 0.0 |
---|
| 134 | dpr(:) = 0.0 |
---|
| 135 | lkcoef(:,:) = 0.0 |
---|
[253] | 136 | |
---|
[716] | 137 | do K=2,L_LEVELS |
---|
| 138 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[253] | 139 | |
---|
[716] | 140 | ! if we have continuum opacities, we need dz |
---|
| 141 | if(kastprof)then |
---|
[1016] | 142 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
| 143 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
[716] | 144 | else |
---|
[1194] | 145 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
[1016] | 146 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
| 147 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
[716] | 148 | endif |
---|
[253] | 149 | |
---|
[716] | 150 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 151 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[253] | 152 | |
---|
[716] | 153 | do LK=1,4 |
---|
| 154 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 155 | end do |
---|
[918] | 156 | end do ! levels |
---|
[253] | 157 | |
---|
[1715] | 158 | ! Spectral dependance of aerosol absorption |
---|
[1987] | 159 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 160 | ! but visible does not handle very well diffusion in first layer. |
---|
| 161 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
---|
| 162 | ! in the 4 first semilayers in optcv, but not optci. |
---|
| 163 | ! This solves random variations of the sw heating at the model top. |
---|
[918] | 164 | do iaer=1,naerkind |
---|
| 165 | do NW=1,L_NSPECTV |
---|
[1987] | 166 | TAEROS(1:4,NW,IAER)=0.d0 |
---|
| 167 | do K=5,L_LEVELS |
---|
[873] | 168 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
[918] | 169 | end do ! levels |
---|
| 170 | end do |
---|
| 171 | end do |
---|
[1715] | 172 | |
---|
| 173 | ! Rayleigh scattering |
---|
[918] | 174 | do NW=1,L_NSPECTV |
---|
[1987] | 175 | TRAY(1:4,NW) = 1d-30 |
---|
| 176 | do K=5,L_LEVELS |
---|
[873] | 177 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
[918] | 178 | end do ! levels |
---|
| 179 | end do |
---|
| 180 | |
---|
[716] | 181 | ! we ignore K=1... |
---|
| 182 | do K=2,L_LEVELS |
---|
[873] | 183 | |
---|
[716] | 184 | do NW=1,L_NSPECTV |
---|
[253] | 185 | |
---|
[1715] | 186 | DRAYAER = TRAY(K,NW) |
---|
| 187 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
[716] | 188 | do iaer=1,naerkind |
---|
[1715] | 189 | DRAYAER = DRAYAER + TAEROS(K,NW,IAER) |
---|
[716] | 190 | end do |
---|
[253] | 191 | |
---|
[716] | 192 | DCONT = 0.0 ! continuum absorption |
---|
[253] | 193 | |
---|
[873] | 194 | if(continuum.and.(.not.graybody).and.callgasvis)then |
---|
[716] | 195 | ! include continua if necessary |
---|
[3641] | 196 | |
---|
| 197 | if(generic_continuum_database)then |
---|
| 198 | T_cont = dble(TMID(k)) |
---|
| 199 | do igas=1,ngasmx |
---|
| 200 | |
---|
| 201 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 202 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 203 | elseif(varspec) then |
---|
| 204 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
| 205 | else |
---|
| 206 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 207 | endif |
---|
| 208 | |
---|
| 209 | dtemp=0.0 |
---|
| 210 | |
---|
| 211 | if (igas .eq. igas_N2) then |
---|
| 212 | call interpolate_continuum('',igas_N2,igas_N2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 213 | do jgas=1,ngasmx |
---|
| 214 | if (jgas .eq. igas_H2) then |
---|
| 215 | call interpolate_continuum('',igas_N2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 216 | elseif (jgas .eq. igas_O2) then |
---|
| 217 | call interpolate_continuum('',igas_N2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 218 | elseif (jgas .eq. igas_CH4) then |
---|
| 219 | call interpolate_continuum('',igas_N2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 220 | endif |
---|
| 221 | enddo |
---|
| 222 | elseif (igas .eq. igas_O2) then |
---|
| 223 | call interpolate_continuum('',igas_O2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 224 | do jgas=1,ngasmx |
---|
| 225 | if (jgas .eq. igas_CO2) then |
---|
| 226 | call interpolate_continuum('',igas_CO2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 227 | endif |
---|
| 228 | enddo |
---|
| 229 | elseif (igas .eq. igas_H2) then |
---|
| 230 | call interpolate_continuum('',igas_H2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 231 | do jgas=1,ngasmx |
---|
| 232 | if (jgas .eq. igas_CH4) then |
---|
| 233 | call interpolate_continuum('',igas_H2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 234 | elseif (jgas .eq. igas_He) then |
---|
| 235 | call interpolate_continuum('',igas_H2,igas_He,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 236 | endif |
---|
| 237 | enddo |
---|
| 238 | elseif (igas .eq. igas_CH4) then |
---|
| 239 | call interpolate_continuum('',igas_CH4,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 240 | elseif (igas .eq. igas_H2O) then |
---|
| 241 | call interpolate_continuum('',igas_H2O,igas_H2O,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 242 | do jgas=1,ngasmx |
---|
| 243 | if (jgas .eq. igas_N2) then |
---|
| 244 | call interpolate_continuum('',igas_H2O,igas_N2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 245 | elseif (jgas .eq. igas_O2) then |
---|
| 246 | call interpolate_continuum('',igas_H2O,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 247 | elseif (jgas .eq. igas_CO2) then |
---|
| 248 | call interpolate_continuum('',igas_H2O,igas_CO2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 249 | endif |
---|
| 250 | enddo |
---|
| 251 | elseif (igas .eq. igas_CO2) then |
---|
| 252 | call interpolate_continuum('',igas_CO2,igas_CO2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 253 | do jgas=1,ngasmx |
---|
| 254 | if (jgas .eq. igas_H2) then |
---|
| 255 | call interpolate_continuum('',igas_CO2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 256 | elseif (jgas .eq. igas_CH4) then |
---|
| 257 | call interpolate_continuum('',igas_CO2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
| 258 | endif |
---|
| 259 | enddo |
---|
| 260 | endif |
---|
| 261 | |
---|
| 262 | DCONT = DCONT + dtemp |
---|
| 263 | |
---|
| 264 | enddo ! igas=1,ngasmx |
---|
| 265 | |
---|
| 266 | else ! generic_continuum_database |
---|
| 267 | |
---|
| 268 | |
---|
[716] | 269 | wn_cont = dble(wnov(nw)) |
---|
| 270 | T_cont = dble(TMID(k)) |
---|
| 271 | do igas=1,ngasmx |
---|
[305] | 272 | |
---|
[716] | 273 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 274 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
[3233] | 275 | elseif(varspec) then |
---|
| 276 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
[716] | 277 | else |
---|
| 278 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 279 | endif |
---|
[305] | 280 | |
---|
[716] | 281 | dtemp=0.0 |
---|
| 282 | if(igas.eq.igas_N2)then |
---|
[253] | 283 | |
---|
[878] | 284 | interm = indv(nw,igas,igas) |
---|
| 285 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 286 | indv(nw,igas,igas) = interm |
---|
[716] | 287 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
---|
[253] | 288 | |
---|
[716] | 289 | elseif(igas.eq.igas_H2)then |
---|
[253] | 290 | |
---|
[716] | 291 | ! first do self-induced absorption |
---|
[878] | 292 | interm = indv(nw,igas,igas) |
---|
[873] | 293 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 294 | indv(nw,igas,igas) = interm |
---|
[253] | 295 | |
---|
[716] | 296 | ! then cross-interactions with other gases |
---|
| 297 | do jgas=1,ngasmx |
---|
[3233] | 298 | if(varspec) then |
---|
| 299 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
| 300 | else |
---|
| 301 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 302 | endif |
---|
[873] | 303 | dtempc = 0.0 |
---|
| 304 | if(jgas.eq.igas_N2)then |
---|
[878] | 305 | interm = indv(nw,igas,jgas) |
---|
| 306 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 307 | indv(nw,igas,jgas) = interm |
---|
[716] | 308 | ! should be irrelevant in the visible |
---|
[2860] | 309 | elseif(jgas.eq.igas_CO2)then |
---|
| 310 | interm = indv(nw,igas,jgas) |
---|
| 311 | call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 312 | indv(nw,igas,jgas) = interm |
---|
| 313 | ! might not be relevant in the visible |
---|
[716] | 314 | elseif(jgas.eq.igas_He)then |
---|
[878] | 315 | interm = indv(nw,igas,jgas) |
---|
[873] | 316 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
[878] | 317 | indv(nw,igas,jgas) = interm |
---|
[716] | 318 | endif |
---|
[873] | 319 | dtemp = dtemp + dtempc |
---|
[716] | 320 | enddo |
---|
[2655] | 321 | |
---|
| 322 | elseif(igas.eq.igas_CH4)then |
---|
[253] | 323 | |
---|
[2655] | 324 | ! first do self-induced absorption |
---|
| 325 | interm = indv(nw,igas,igas) |
---|
| 326 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 327 | indv(nw,igas,igas) = interm |
---|
| 328 | |
---|
| 329 | ! then cross-interactions with other gases |
---|
| 330 | do jgas=1,ngasmx |
---|
[3233] | 331 | if(varspec) then |
---|
| 332 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
| 333 | else |
---|
| 334 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 335 | endif |
---|
[2655] | 336 | dtempc = 0.0d0 |
---|
| 337 | if(jgas.eq.igas_H2)then |
---|
| 338 | interm = indv(nw,igas,jgas) |
---|
| 339 | call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 340 | indv(nw,igas,jgas) = interm |
---|
[2861] | 341 | elseif(jgas.eq.igas_CO2)then |
---|
| 342 | interm = indv(nw,igas,jgas) |
---|
| 343 | call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 344 | indv(nw,igas,jgas) = interm |
---|
| 345 | ! might not be relevant in the visible |
---|
[2655] | 346 | elseif(jgas.eq.igas_He)then |
---|
| 347 | interm = indv(nw,igas,jgas) |
---|
| 348 | call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 349 | indv(nw,igas,jgas) = interm |
---|
| 350 | endif |
---|
| 351 | dtemp = dtemp + dtempc |
---|
| 352 | enddo |
---|
| 353 | |
---|
[2520] | 354 | elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then |
---|
| 355 | ! Compute self and foreign (with air) continuum of H2O |
---|
[716] | 356 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
[2520] | 357 | interm = indv(nw,igas,igas) |
---|
| 358 | call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 |
---|
| 359 | indv(nw,igas,igas) = interm |
---|
[253] | 360 | |
---|
[716] | 361 | endif |
---|
[253] | 362 | |
---|
[716] | 363 | DCONT = DCONT + dtemp |
---|
[253] | 364 | |
---|
[716] | 365 | enddo |
---|
[253] | 366 | |
---|
[873] | 367 | DCONT = DCONT*dz(k) |
---|
| 368 | |
---|
[3641] | 369 | endif ! generic_continuum_database |
---|
| 370 | endif ! continuum |
---|
| 371 | |
---|
[873] | 372 | do ng=1,L_NGAUSS-1 |
---|
[305] | 373 | |
---|
[873] | 374 | ! Now compute TAUGAS |
---|
[253] | 375 | |
---|
[873] | 376 | ! Interpolate between water mixing ratios |
---|
| 377 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 378 | ! the water data range |
---|
| 379 | |
---|
| 380 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[1725] | 381 | |
---|
| 382 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 383 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 384 | ! transfer on the tested simulations ! |
---|
| 385 | |
---|
[2543] | 386 | IF (corrk_recombin) THEN ! Added by JVO |
---|
| 387 | tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species |
---|
| 388 | ELSE |
---|
| 389 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 390 | ENDIF |
---|
[1725] | 391 | |
---|
| 392 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
| 393 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
| 394 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 395 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
| 396 | |
---|
[716] | 397 | else |
---|
[873] | 398 | |
---|
[2543] | 399 | IF (corrk_recombin) THEN |
---|
| 400 | tmpkvar = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 401 | ELSE |
---|
| 402 | tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 403 | ENDIF |
---|
[253] | 404 | |
---|
[1725] | 405 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
| 406 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
[253] | 407 | |
---|
[1725] | 408 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
| 409 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
[253] | 410 | |
---|
[1725] | 411 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
| 412 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
| 413 | |
---|
| 414 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
| 415 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
[873] | 416 | |
---|
[1725] | 417 | |
---|
[716] | 418 | endif |
---|
[253] | 419 | |
---|
[873] | 420 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[253] | 421 | |
---|
[873] | 422 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
[716] | 423 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[253] | 424 | |
---|
[873] | 425 | TAUGAS = U(k)*ANS |
---|
[253] | 426 | |
---|
[716] | 427 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[873] | 428 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
[1715] | 429 | + DRAYAER & ! DRAYAER includes all scattering contributions |
---|
[873] | 430 | + DCONT ! For parameterized continuum aborption |
---|
[253] | 431 | |
---|
[716] | 432 | end do |
---|
[253] | 433 | |
---|
[873] | 434 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 435 | ! which holds continuum opacity only |
---|
[253] | 436 | |
---|
[873] | 437 | NG = L_NGAUSS |
---|
[1715] | 438 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption |
---|
[253] | 439 | |
---|
[716] | 440 | end do |
---|
| 441 | end do |
---|
[253] | 442 | |
---|
| 443 | |
---|
[716] | 444 | !======================================================================= |
---|
| 445 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 446 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[253] | 447 | |
---|
[1987] | 448 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
| 449 | ! but not in the visible |
---|
| 450 | ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
---|
| 451 | ! This solves random variations of the sw heating at the model top. |
---|
[873] | 452 | do iaer=1,naerkind |
---|
[918] | 453 | DO NW=1,L_NSPECTV |
---|
[1987] | 454 | TAUAEROLK(1:4,NW,IAER)=0.d0 |
---|
| 455 | DO K=5,L_LEVELS |
---|
[1715] | 456 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
---|
[918] | 457 | ENDDO |
---|
| 458 | ENDDO |
---|
[873] | 459 | end do |
---|
[253] | 460 | |
---|
[716] | 461 | DO NW=1,L_NSPECTV |
---|
[919] | 462 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 463 | K = 2*L+1 |
---|
| 464 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 465 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
[1715] | 466 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[918] | 467 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
| 468 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 469 | END DO ! L vertical loop |
---|
[919] | 470 | |
---|
[1715] | 471 | ! Last level |
---|
| 472 | L = L_NLAYRAD |
---|
| 473 | K = 2*L+1 |
---|
| 474 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
---|
[919] | 475 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
[1715] | 476 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
[919] | 477 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
| 478 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
| 479 | |
---|
| 480 | |
---|
[918] | 481 | END DO ! NW spectral loop |
---|
| 482 | |
---|
| 483 | DO NG=1,L_NGAUSS |
---|
| 484 | DO NW=1,L_NSPECTV |
---|
[873] | 485 | DO L=1,L_NLAYRAD-1 |
---|
[253] | 486 | |
---|
[873] | 487 | K = 2*L+1 |
---|
| 488 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
[918] | 489 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
[253] | 490 | |
---|
[873] | 491 | END DO ! L vertical loop |
---|
[253] | 492 | |
---|
[1715] | 493 | ! Last level |
---|
[253] | 494 | |
---|
[716] | 495 | L = L_NLAYRAD |
---|
| 496 | K = 2*L+1 |
---|
[919] | 497 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
| 498 | |
---|
| 499 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
[1722] | 500 | |
---|
[918] | 501 | END DO ! NW spectral loop |
---|
| 502 | END DO ! NG Gauss loop |
---|
[716] | 503 | |
---|
| 504 | ! Total extinction optical depths |
---|
| 505 | |
---|
[918] | 506 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 507 | DO NW=1,L_NSPECTV |
---|
[716] | 508 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
| 509 | DO K=2,L_LEVELS |
---|
| 510 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
| 511 | END DO |
---|
[1987] | 512 | |
---|
[2004] | 513 | DO L=1,L_NLAYRAD |
---|
[1987] | 514 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
---|
| 515 | END DO |
---|
[2004] | 516 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
---|
[918] | 517 | END DO |
---|
| 518 | END DO ! end full gauss loop |
---|
[716] | 519 | |
---|
| 520 | |
---|
[2131] | 521 | |
---|
| 522 | |
---|
[2032] | 523 | end subroutine optcv |
---|
[873] | 524 | |
---|
[2032] | 525 | END MODULE optcv_mod |
---|