1 | MODULE optcv_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE OPTCV(DTAUV,TAUV,TAUCUMV,PLEV, & |
---|
8 | QXVAER,QSVAER,GVAER,WBARV,COSBV, & |
---|
9 | TAURAY,TAUAERO,TMID,PMID,TAUGSURF,QVAR,MUVAR,FRACVAR) |
---|
10 | |
---|
11 | use radinc_h, only: L_NLAYRAD, L_NLEVRAD, L_LEVELS, L_NSPECTV, L_NGAUSS, L_REFVAR, NAERKIND |
---|
12 | use radcommon_h, only: gasv, tlimit, wrefVAR, Cmk, tgasref, pfgasref,wnov,scalep,indv,glat_ig |
---|
13 | use gases_h, only: gfrac, ngasmx, igas_H2, igas_H2O, igas_He, igas_N2, & |
---|
14 | igas_CH4, igas_CO2, igas_O2 |
---|
15 | use comcstfi_mod, only: g, r, mugaz |
---|
16 | use callkeys_mod, only: kastprof,continuum,graybody,callgasvis,varspec, & |
---|
17 | generic_continuum_database |
---|
18 | use recombin_corrk_mod, only: corrk_recombin, gasv_recomb |
---|
19 | use tpindex_mod, only: tpindex |
---|
20 | |
---|
21 | implicit none |
---|
22 | |
---|
23 | !================================================================== |
---|
24 | ! |
---|
25 | ! Purpose |
---|
26 | ! ------- |
---|
27 | ! Calculates shortwave optical constants at each level. |
---|
28 | ! |
---|
29 | ! Authors |
---|
30 | ! ------- |
---|
31 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
32 | ! |
---|
33 | !================================================================== |
---|
34 | ! |
---|
35 | ! THIS SUBROUTINE SETS THE OPTICAL CONSTANTS IN THE VISUAL |
---|
36 | ! IT CALCULATES FOR EACH LAYER, FOR EACH SPECTRAL INTERVAL IN THE VISUAL |
---|
37 | ! LAYER: WBAR, DTAU, COSBAR |
---|
38 | ! LEVEL: TAU |
---|
39 | ! |
---|
40 | ! TAUV(L,NW,NG) is the cumulative optical depth at the top of radiation code |
---|
41 | ! layer L. NW is spectral wavelength interval, ng the Gauss point index. |
---|
42 | ! |
---|
43 | ! TLEV(L) - Temperature at the layer boundary |
---|
44 | ! PLEV(L) - Pressure at the layer boundary (i.e. level) |
---|
45 | ! GASV(NT,NPS,NW,NG) - Visible k-coefficients |
---|
46 | ! |
---|
47 | !------------------------------------------------------------------- |
---|
48 | |
---|
49 | |
---|
50 | real*8,intent(out) :: DTAUV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
51 | real*8 DTAUKV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
52 | real*8,intent(out) :: TAUV(L_NLEVRAD,L_NSPECTV,L_NGAUSS) |
---|
53 | real*8,intent(out) :: TAUCUMV(L_LEVELS,L_NSPECTV,L_NGAUSS) |
---|
54 | real*8,intent(in) :: PLEV(L_LEVELS) |
---|
55 | real*8,intent(in) :: TMID(L_LEVELS), PMID(L_LEVELS) |
---|
56 | real*8,intent(out) :: COSBV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
57 | real*8,intent(out) :: WBARV(L_NLAYRAD,L_NSPECTV,L_NGAUSS) |
---|
58 | |
---|
59 | ! for aerosols |
---|
60 | real*8,intent(in) :: QXVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
61 | real*8,intent(in) :: QSVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
62 | real*8,intent(in) :: GVAER(L_LEVELS,L_NSPECTV,NAERKIND) |
---|
63 | real*8,intent(in) :: TAUAERO(L_LEVELS,NAERKIND) |
---|
64 | |
---|
65 | ! local arrays (saved for convenience as need be allocated) |
---|
66 | real*8,save,allocatable :: TAUAEROLK(:,:,:) |
---|
67 | real*8,save,allocatable :: TAEROS(:,:,:) |
---|
68 | !$OMP THREADPRIVATE(TAUAEROLK,TAEROS) |
---|
69 | |
---|
70 | integer L, NW, NG, K, LK, IAER |
---|
71 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
72 | real*8 ANS, TAUGAS |
---|
73 | real*8,intent(in) :: TAURAY(L_NSPECTV) |
---|
74 | real*8 TRAY(L_LEVELS,L_NSPECTV) |
---|
75 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
76 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
77 | |
---|
78 | real*8,intent(out) :: taugsurf(L_NSPECTV,L_NGAUSS-1) |
---|
79 | real*8 DCONT,DAERO |
---|
80 | real*8 DRAYAER |
---|
81 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
82 | double precision p_cross |
---|
83 | |
---|
84 | ! variable species mixing ratio variables |
---|
85 | real*8,intent(in) :: QVAR(L_LEVELS) |
---|
86 | real*8,intent(in) :: MUVAR(L_LEVELS) |
---|
87 | real*8,intent(in) :: FRACVAR(ngasmx,L_LEVELS) |
---|
88 | real*8 :: WRATIO(L_LEVELS) |
---|
89 | real*8 KCOEF(4) |
---|
90 | integer NVAR(L_LEVELS) |
---|
91 | |
---|
92 | ! temporary variables to reduce memory access time to gasv |
---|
93 | real*8 tmpk(2,2) |
---|
94 | real*8 tmpkvar(2,2,2) |
---|
95 | |
---|
96 | ! temporary variables for multiple aerosol calculation |
---|
97 | real*8 atemp(L_NLAYRAD,L_NSPECTV) |
---|
98 | real*8 btemp(L_NLAYRAD,L_NSPECTV) |
---|
99 | real*8 ctemp(L_NLAYRAD,L_NSPECTV) |
---|
100 | |
---|
101 | ! variables for k in units m^-1 |
---|
102 | real*8 dz(L_LEVELS) |
---|
103 | |
---|
104 | |
---|
105 | integer igas, jgas |
---|
106 | |
---|
107 | integer interm |
---|
108 | |
---|
109 | logical :: firstcall=.true. |
---|
110 | !$OMP THREADPRIVATE(firstcall) |
---|
111 | |
---|
112 | if (firstcall) then |
---|
113 | ! allocate local arrays of size "naerkind" (which are also |
---|
114 | ! "saved" so that this is done only once in for all even if |
---|
115 | ! we don't need to store the value from a time step to the next) |
---|
116 | allocate(TAUAEROLK(L_LEVELS,L_NSPECTV,NAERKIND)) |
---|
117 | allocate(TAEROS(L_LEVELS,L_NSPECTV,NAERKIND)) |
---|
118 | firstcall=.false. |
---|
119 | endif ! of if (firstcall) |
---|
120 | |
---|
121 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
122 | IF (.not.ALLOCATED(indv)) THEN |
---|
123 | ALLOCATE(indv(L_NSPECTV,ngasmx,ngasmx)) |
---|
124 | indv = -9999 ! this initial value means "to be calculated" |
---|
125 | ENDIF |
---|
126 | |
---|
127 | !======================================================================= |
---|
128 | ! Determine the total gas opacity throughout the column, for each |
---|
129 | ! spectral interval, NW, and each Gauss point, NG. |
---|
130 | ! Calculate the continuum opacities, i.e., those that do not depend on |
---|
131 | ! NG, the Gauss index. |
---|
132 | |
---|
133 | taugsurf(:,:) = 0.0 |
---|
134 | dpr(:) = 0.0 |
---|
135 | lkcoef(:,:) = 0.0 |
---|
136 | |
---|
137 | do K=2,L_LEVELS |
---|
138 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
139 | |
---|
140 | ! if we have continuum opacities, we need dz |
---|
141 | if(kastprof)then |
---|
142 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
143 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
144 | else |
---|
145 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
146 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
147 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
148 | endif |
---|
149 | |
---|
150 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
151 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
152 | |
---|
153 | do LK=1,4 |
---|
154 | LKCOEF(K,LK) = LCOEF(LK) |
---|
155 | end do |
---|
156 | end do ! levels |
---|
157 | |
---|
158 | ! Spectral dependance of aerosol absorption |
---|
159 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
160 | ! but visible does not handle very well diffusion in first layer. |
---|
161 | ! The tauaero and tauray are thus set to 0 (a small value for rayleigh because the code crashes otherwise) |
---|
162 | ! in the 4 first semilayers in optcv, but not optci. |
---|
163 | ! This solves random variations of the sw heating at the model top. |
---|
164 | do iaer=1,naerkind |
---|
165 | do NW=1,L_NSPECTV |
---|
166 | TAEROS(1:4,NW,IAER)=0.d0 |
---|
167 | do K=5,L_LEVELS |
---|
168 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXVAER(K,NW,IAER) |
---|
169 | end do ! levels |
---|
170 | end do |
---|
171 | end do |
---|
172 | |
---|
173 | ! Rayleigh scattering |
---|
174 | do NW=1,L_NSPECTV |
---|
175 | TRAY(1:4,NW) = 1d-30 |
---|
176 | do K=5,L_LEVELS |
---|
177 | TRAY(K,NW) = TAURAY(NW) * DPR(K) |
---|
178 | end do ! levels |
---|
179 | end do |
---|
180 | |
---|
181 | ! we ignore K=1... |
---|
182 | do K=2,L_LEVELS |
---|
183 | |
---|
184 | do NW=1,L_NSPECTV |
---|
185 | |
---|
186 | DRAYAER = TRAY(K,NW) |
---|
187 | ! DRAYAER is Tau RAYleigh scattering, plus AERosol opacity |
---|
188 | do iaer=1,naerkind |
---|
189 | DRAYAER = DRAYAER + TAEROS(K,NW,IAER) |
---|
190 | end do |
---|
191 | |
---|
192 | DCONT = 0.0 ! continuum absorption |
---|
193 | |
---|
194 | if(continuum.and.(.not.graybody).and.callgasvis)then |
---|
195 | ! include continua if necessary |
---|
196 | |
---|
197 | if(generic_continuum_database)then |
---|
198 | T_cont = dble(TMID(k)) |
---|
199 | do igas=1,ngasmx |
---|
200 | |
---|
201 | if(gfrac(igas).eq.-1)then ! variable |
---|
202 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
203 | elseif(varspec) then |
---|
204 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
205 | else |
---|
206 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
207 | endif |
---|
208 | |
---|
209 | dtemp=0.0 |
---|
210 | |
---|
211 | if (igas .eq. igas_N2) then |
---|
212 | call interpolate_continuum('',igas_N2,igas_N2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
213 | do jgas=1,ngasmx |
---|
214 | if (jgas .eq. igas_H2) then |
---|
215 | call interpolate_continuum('',igas_N2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
216 | elseif (jgas .eq. igas_O2) then |
---|
217 | call interpolate_continuum('',igas_N2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
218 | elseif (jgas .eq. igas_CH4) then |
---|
219 | call interpolate_continuum('',igas_N2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
220 | endif |
---|
221 | enddo |
---|
222 | elseif (igas .eq. igas_O2) then |
---|
223 | call interpolate_continuum('',igas_O2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
224 | do jgas=1,ngasmx |
---|
225 | if (jgas .eq. igas_CO2) then |
---|
226 | call interpolate_continuum('',igas_CO2,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
227 | endif |
---|
228 | enddo |
---|
229 | elseif (igas .eq. igas_H2) then |
---|
230 | call interpolate_continuum('',igas_H2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
231 | do jgas=1,ngasmx |
---|
232 | if (jgas .eq. igas_CH4) then |
---|
233 | call interpolate_continuum('',igas_H2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
234 | elseif (jgas .eq. igas_He) then |
---|
235 | call interpolate_continuum('',igas_H2,igas_He,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
236 | endif |
---|
237 | enddo |
---|
238 | elseif (igas .eq. igas_CH4) then |
---|
239 | call interpolate_continuum('',igas_CH4,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
240 | elseif (igas .eq. igas_H2O) then |
---|
241 | call interpolate_continuum('',igas_H2O,igas_H2O,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
242 | do jgas=1,ngasmx |
---|
243 | if (jgas .eq. igas_N2) then |
---|
244 | call interpolate_continuum('',igas_H2O,igas_N2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
245 | elseif (jgas .eq. igas_O2) then |
---|
246 | call interpolate_continuum('',igas_H2O,igas_O2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
247 | elseif (jgas .eq. igas_CO2) then |
---|
248 | call interpolate_continuum('',igas_H2O,igas_CO2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
249 | endif |
---|
250 | enddo |
---|
251 | elseif (igas .eq. igas_CO2) then |
---|
252 | call interpolate_continuum('',igas_CO2,igas_CO2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
253 | do jgas=1,ngasmx |
---|
254 | if (jgas .eq. igas_H2) then |
---|
255 | call interpolate_continuum('',igas_CO2,igas_H2,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
256 | elseif (jgas .eq. igas_CH4) then |
---|
257 | call interpolate_continuum('',igas_CO2,igas_CH4,'VI',nw,T_cont,p_cont,p_cont,dtemp,.false.) |
---|
258 | endif |
---|
259 | enddo |
---|
260 | endif |
---|
261 | |
---|
262 | DCONT = DCONT + dtemp |
---|
263 | |
---|
264 | enddo ! igas=1,ngasmx |
---|
265 | |
---|
266 | else ! generic_continuum_database |
---|
267 | |
---|
268 | |
---|
269 | wn_cont = dble(wnov(nw)) |
---|
270 | T_cont = dble(TMID(k)) |
---|
271 | do igas=1,ngasmx |
---|
272 | |
---|
273 | if(gfrac(igas).eq.-1)then ! variable |
---|
274 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
275 | elseif(varspec) then |
---|
276 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
277 | else |
---|
278 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
279 | endif |
---|
280 | |
---|
281 | dtemp=0.0 |
---|
282 | if(igas.eq.igas_N2)then |
---|
283 | |
---|
284 | interm = indv(nw,igas,igas) |
---|
285 | ! call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
286 | indv(nw,igas,igas) = interm |
---|
287 | ! only goes to 500 cm^-1, so unless we're around a cold brown dwarf, this is irrelevant in the visible |
---|
288 | |
---|
289 | elseif(igas.eq.igas_H2)then |
---|
290 | |
---|
291 | ! first do self-induced absorption |
---|
292 | interm = indv(nw,igas,igas) |
---|
293 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
294 | indv(nw,igas,igas) = interm |
---|
295 | |
---|
296 | ! then cross-interactions with other gases |
---|
297 | do jgas=1,ngasmx |
---|
298 | if(varspec) then |
---|
299 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
300 | else |
---|
301 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
302 | endif |
---|
303 | dtempc = 0.0 |
---|
304 | if(jgas.eq.igas_N2)then |
---|
305 | interm = indv(nw,igas,jgas) |
---|
306 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
307 | indv(nw,igas,jgas) = interm |
---|
308 | ! should be irrelevant in the visible |
---|
309 | elseif(jgas.eq.igas_CO2)then |
---|
310 | interm = indv(nw,igas,jgas) |
---|
311 | call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
312 | indv(nw,igas,jgas) = interm |
---|
313 | ! might not be relevant in the visible |
---|
314 | elseif(jgas.eq.igas_He)then |
---|
315 | interm = indv(nw,igas,jgas) |
---|
316 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
317 | indv(nw,igas,jgas) = interm |
---|
318 | endif |
---|
319 | dtemp = dtemp + dtempc |
---|
320 | enddo |
---|
321 | |
---|
322 | elseif(igas.eq.igas_CH4)then |
---|
323 | |
---|
324 | ! first do self-induced absorption |
---|
325 | interm = indv(nw,igas,igas) |
---|
326 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
327 | indv(nw,igas,igas) = interm |
---|
328 | |
---|
329 | ! then cross-interactions with other gases |
---|
330 | do jgas=1,ngasmx |
---|
331 | if(varspec) then |
---|
332 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
333 | else |
---|
334 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
335 | endif |
---|
336 | dtempc = 0.0d0 |
---|
337 | if(jgas.eq.igas_H2)then |
---|
338 | interm = indv(nw,igas,jgas) |
---|
339 | call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
340 | indv(nw,igas,jgas) = interm |
---|
341 | elseif(jgas.eq.igas_CO2)then |
---|
342 | interm = indv(nw,igas,jgas) |
---|
343 | call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
344 | indv(nw,igas,jgas) = interm |
---|
345 | ! might not be relevant in the visible |
---|
346 | elseif(jgas.eq.igas_He)then |
---|
347 | interm = indv(nw,igas,jgas) |
---|
348 | call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
349 | indv(nw,igas,jgas) = interm |
---|
350 | endif |
---|
351 | dtemp = dtemp + dtempc |
---|
352 | enddo |
---|
353 | |
---|
354 | elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then |
---|
355 | ! Compute self and foreign (with air) continuum of H2O |
---|
356 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
357 | interm = indv(nw,igas,igas) |
---|
358 | call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 |
---|
359 | indv(nw,igas,igas) = interm |
---|
360 | |
---|
361 | endif |
---|
362 | |
---|
363 | DCONT = DCONT + dtemp |
---|
364 | |
---|
365 | enddo |
---|
366 | |
---|
367 | DCONT = DCONT*dz(k) |
---|
368 | |
---|
369 | endif ! generic_continuum_database |
---|
370 | endif ! continuum |
---|
371 | |
---|
372 | do ng=1,L_NGAUSS-1 |
---|
373 | |
---|
374 | ! Now compute TAUGAS |
---|
375 | |
---|
376 | ! Interpolate between water mixing ratios |
---|
377 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
378 | ! the water data range |
---|
379 | |
---|
380 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
381 | |
---|
382 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
383 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
384 | ! transfer on the tested simulations ! |
---|
385 | |
---|
386 | IF (corrk_recombin) THEN ! Added by JVO |
---|
387 | tmpk = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species |
---|
388 | ELSE |
---|
389 | tmpk = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
390 | ENDIF |
---|
391 | |
---|
392 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASV(MT(K),MP(K),1,NW,NG) |
---|
393 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASV(MT(K),MP(K)+1,1,NW,NG) |
---|
394 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASV(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
395 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASV(MT(K)+1,MP(K),1,NW,NG) |
---|
396 | |
---|
397 | else |
---|
398 | |
---|
399 | IF (corrk_recombin) THEN |
---|
400 | tmpkvar = GASV_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
401 | ELSE |
---|
402 | tmpkvar = GASV(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
403 | ENDIF |
---|
404 | |
---|
405 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
406 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
407 | |
---|
408 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
409 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
410 | |
---|
411 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
412 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
413 | |
---|
414 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
415 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
416 | |
---|
417 | |
---|
418 | endif |
---|
419 | |
---|
420 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
421 | |
---|
422 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
423 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
424 | |
---|
425 | TAUGAS = U(k)*ANS |
---|
426 | |
---|
427 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
428 | DTAUKV(K,nw,ng) = TAUGAS & |
---|
429 | + DRAYAER & ! DRAYAER includes all scattering contributions |
---|
430 | + DCONT ! For parameterized continuum aborption |
---|
431 | |
---|
432 | end do |
---|
433 | |
---|
434 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
435 | ! which holds continuum opacity only |
---|
436 | |
---|
437 | NG = L_NGAUSS |
---|
438 | DTAUKV(K,nw,ng) = DRAYAER + DCONT ! Scattering + parameterized continuum absorption |
---|
439 | |
---|
440 | end do |
---|
441 | end do |
---|
442 | |
---|
443 | |
---|
444 | !======================================================================= |
---|
445 | ! Now the full treatment for the layers, where besides the opacity |
---|
446 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
447 | |
---|
448 | !JL18 It seems to be good to have aerosols in the first "radiative layer" of the gcm in the IR |
---|
449 | ! but not in the visible |
---|
450 | ! The tauaero is thus set to 0 in the 4 first semilayers in optcv, but not optci. |
---|
451 | ! This solves random variations of the sw heating at the model top. |
---|
452 | do iaer=1,naerkind |
---|
453 | DO NW=1,L_NSPECTV |
---|
454 | TAUAEROLK(1:4,NW,IAER)=0.d0 |
---|
455 | DO K=5,L_LEVELS |
---|
456 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER) * QSVAER(K,NW,IAER) ! effect of scattering albedo |
---|
457 | ENDDO |
---|
458 | ENDDO |
---|
459 | end do |
---|
460 | |
---|
461 | DO NW=1,L_NSPECTV |
---|
462 | DO L=1,L_NLAYRAD-1 |
---|
463 | K = 2*L+1 |
---|
464 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind))+SUM(GVAER(K+1,NW,1:naerkind) * TAUAEROLK(K+1,NW,1:naerkind)) |
---|
465 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
466 | ctemp(L,NW) = btemp(L,NW) + 0.9999*(TRAY(K,NW) + TRAY(K+1,NW)) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
467 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) + TRAY(K+1,NW) |
---|
468 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
469 | END DO ! L vertical loop |
---|
470 | |
---|
471 | ! Last level |
---|
472 | L = L_NLAYRAD |
---|
473 | K = 2*L+1 |
---|
474 | atemp(L,NW) = SUM(GVAER(K,NW,1:naerkind) * TAUAEROLK(K,NW,1:naerkind)) |
---|
475 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
476 | ctemp(L,NW) = btemp(L,NW) + 0.9999*TRAY(K,NW) ! JVO 2017 : does this 0.999 is really meaningful ? |
---|
477 | btemp(L,NW) = btemp(L,NW) + TRAY(K,NW) |
---|
478 | COSBV(L,NW,1:L_NGAUSS) = atemp(L,NW)/btemp(L,NW) |
---|
479 | |
---|
480 | |
---|
481 | END DO ! NW spectral loop |
---|
482 | |
---|
483 | DO NG=1,L_NGAUSS |
---|
484 | DO NW=1,L_NSPECTV |
---|
485 | DO L=1,L_NLAYRAD-1 |
---|
486 | |
---|
487 | K = 2*L+1 |
---|
488 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) + DTAUKV(K+1,NW,NG) |
---|
489 | WBARV(L,nw,ng) = ctemp(L,NW) / DTAUV(L,nw,ng) |
---|
490 | |
---|
491 | END DO ! L vertical loop |
---|
492 | |
---|
493 | ! Last level |
---|
494 | |
---|
495 | L = L_NLAYRAD |
---|
496 | K = 2*L+1 |
---|
497 | DTAUV(L,nw,ng) = DTAUKV(K,NW,NG) |
---|
498 | |
---|
499 | WBARV(L,NW,NG) = ctemp(L,NW) / DTAUV(L,NW,NG) |
---|
500 | |
---|
501 | END DO ! NW spectral loop |
---|
502 | END DO ! NG Gauss loop |
---|
503 | |
---|
504 | ! Total extinction optical depths |
---|
505 | |
---|
506 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
507 | DO NW=1,L_NSPECTV |
---|
508 | TAUCUMV(1,NW,NG)=0.0D0 |
---|
509 | DO K=2,L_LEVELS |
---|
510 | TAUCUMV(K,NW,NG)=TAUCUMV(K-1,NW,NG)+DTAUKV(K,NW,NG) |
---|
511 | END DO |
---|
512 | |
---|
513 | DO L=1,L_NLAYRAD |
---|
514 | TAUV(L,NW,NG)=TAUCUMV(2*L,NW,NG) |
---|
515 | END DO |
---|
516 | TAUV(L,NW,NG)=TAUCUMV(2*L_NLAYRAD+1,NW,NG) |
---|
517 | END DO |
---|
518 | END DO ! end full gauss loop |
---|
519 | |
---|
520 | |
---|
521 | |
---|
522 | |
---|
523 | end subroutine optcv |
---|
524 | |
---|
525 | END MODULE optcv_mod |
---|