[2032] | 1 | MODULE optci_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[716] | 7 | subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & |
---|
| 8 | QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & |
---|
[3233] | 9 | TMID,PMID,TAUGSURF,QVAR,MUVAR,FRACVAR) |
---|
[135] | 10 | |
---|
[2032] | 11 | use radinc_h, only: L_LEVELS, L_NLAYRAD, L_NSPECTI, L_NGAUSS, & |
---|
| 12 | L_NLEVRAD, L_REFVAR, naerkind |
---|
[2133] | 13 | use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep,indi,glat_ig |
---|
[2875] | 14 | use gases_h, only: gfrac, ngasmx, igas_N2, igas_He, igas_H2O, igas_H2, & |
---|
| 15 | igas_CH4, igas_CO2 |
---|
[1384] | 16 | use comcstfi_mod, only: g, r, mugaz |
---|
[3233] | 17 | use callkeys_mod, only: kastprof,continuum,graybody,varspec |
---|
[2543] | 18 | use recombin_corrk_mod, only: corrk_recombin, gasi_recomb |
---|
[2582] | 19 | use tpindex_mod, only: tpindex |
---|
| 20 | |
---|
[716] | 21 | implicit none |
---|
[135] | 22 | |
---|
[716] | 23 | !================================================================== |
---|
| 24 | ! |
---|
| 25 | ! Purpose |
---|
| 26 | ! ------- |
---|
| 27 | ! Calculates longwave optical constants at each level. For each |
---|
| 28 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
---|
| 29 | ! and COSBAR. For each level it calculates TAU. |
---|
| 30 | ! |
---|
[2133] | 31 | ! TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively |
---|
[716] | 32 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
---|
| 33 | ! |
---|
| 34 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
---|
| 35 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
---|
| 36 | ! |
---|
| 37 | ! Authors |
---|
| 38 | ! ------- |
---|
| 39 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 40 | ! |
---|
| 41 | !================================================================== |
---|
[135] | 42 | |
---|
| 43 | |
---|
[2957] | 44 | real*8,intent(out) :: DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
[1715] | 45 | real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
[716] | 46 | real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) |
---|
[2957] | 47 | real*8,intent(out) :: TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 48 | real*8,intent(in) :: PLEV(L_LEVELS) |
---|
| 49 | real*8,intent(in) :: TLEV(L_LEVELS) ! not used |
---|
| 50 | real*8,intent(in) :: TMID(L_LEVELS) |
---|
| 51 | real*8,intent(in) :: PMID(L_LEVELS) |
---|
| 52 | real*8,intent(out) :: COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 53 | real*8,intent(out) :: WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
[135] | 54 | |
---|
[716] | 55 | ! for aerosols |
---|
[2957] | 56 | real*8,intent(in) :: QXIAER(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 57 | real*8,intent(in) :: QSIAER(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 58 | real*8,intent(in) :: GIAER(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 59 | real*8,intent(in) :: TAUAERO(L_LEVELS,NAERKIND) |
---|
[135] | 60 | |
---|
[2972] | 61 | ! local variables (saved for convenience as need be allocated) |
---|
| 62 | real*8,save,allocatable :: TAUAEROLK(:,:,:) |
---|
| 63 | real*8,save,allocatable :: TAEROS(:,:,:) |
---|
| 64 | !$OMP THREADPRIVATE(TAUAEROLK,TAEROS) |
---|
| 65 | |
---|
[716] | 66 | integer L, NW, NG, K, LK, IAER |
---|
| 67 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 68 | real*8 ANS, TAUGAS |
---|
| 69 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 70 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[135] | 71 | |
---|
[2957] | 72 | real*8,intent(out) :: taugsurf(L_NSPECTI,L_NGAUSS-1) |
---|
[918] | 73 | real*8 DCONT,DAERO |
---|
[716] | 74 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 75 | double precision p_cross |
---|
[135] | 76 | |
---|
[716] | 77 | ! variable species mixing ratio variables |
---|
[2957] | 78 | real*8,intent(in) :: QVAR(L_LEVELS) |
---|
| 79 | real*8,intent(in) :: MUVAR(L_LEVELS) |
---|
[3233] | 80 | real*8,intent(in) :: FRACVAR(ngasmx,L_LEVELS) |
---|
[2957] | 81 | real*8 WRATIO(L_LEVELS) |
---|
[716] | 82 | real*8 KCOEF(4) |
---|
| 83 | integer NVAR(L_LEVELS) |
---|
[1725] | 84 | |
---|
| 85 | ! temporary variables to reduce memory access time to gasi |
---|
| 86 | real*8 tmpk(2,2) |
---|
| 87 | real*8 tmpkvar(2,2,2) |
---|
[135] | 88 | |
---|
[716] | 89 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 90 | real*8 atemp |
---|
| 91 | real*8 btemp(L_NLAYRAD,L_NSPECTI) |
---|
[135] | 92 | |
---|
[716] | 93 | ! variables for k in units m^-1 |
---|
[873] | 94 | real*8 dz(L_LEVELS) |
---|
| 95 | !real*8 rho !! see test below |
---|
[135] | 96 | |
---|
[716] | 97 | integer igas, jgas |
---|
[253] | 98 | |
---|
[873] | 99 | integer interm |
---|
[2972] | 100 | |
---|
| 101 | logical :: firstcall=.true. |
---|
| 102 | !$OMP THREADPRIVATE(firstcall) |
---|
[873] | 103 | |
---|
[716] | 104 | !--- Kasting's CIA ---------------------------------------- |
---|
| 105 | !real*8, parameter :: Ci(L_NSPECTI)=[ & |
---|
| 106 | ! 3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7, & |
---|
| 107 | ! 5.4E-7, 1.6E-6, 0.0, & |
---|
| 108 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 109 | ! 0.0, 4.0E-7, 4.0E-6, 1.4E-5, & |
---|
| 110 | ! 1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ] |
---|
| 111 | !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9, & |
---|
| 112 | ! -1.7, -1.7, -1.7, -1.7, -1.7, -1.7, & |
---|
| 113 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 114 | ! -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ] |
---|
| 115 | !---------------------------------------------------------- |
---|
[253] | 116 | |
---|
[2972] | 117 | if (firstcall) then |
---|
| 118 | ! allocate local arrays of size "naerkind" (which are also |
---|
| 119 | ! "saved" so that this is done only once in for all even if |
---|
| 120 | ! we don't need to store the value from a time step to the next) |
---|
| 121 | allocate(TAUAEROLK(L_LEVELS,L_NSPECTI,NAERKIND)) |
---|
| 122 | allocate(TAEROS(L_LEVELS,L_NSPECTI,NAERKIND)) |
---|
| 123 | firstcall=.false. |
---|
| 124 | endif ! of if (firstcall) |
---|
| 125 | |
---|
[873] | 126 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 127 | IF (.not.ALLOCATED(indi)) THEN |
---|
[878] | 128 | ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) |
---|
[873] | 129 | indi = -9999 ! this initial value means "to be calculated" |
---|
| 130 | ENDIF |
---|
| 131 | |
---|
[716] | 132 | !======================================================================= |
---|
| 133 | ! Determine the total gas opacity throughout the column, for each |
---|
| 134 | ! spectral interval, NW, and each Gauss point, NG. |
---|
[135] | 135 | |
---|
[716] | 136 | taugsurf(:,:) = 0.0 |
---|
| 137 | dpr(:) = 0.0 |
---|
| 138 | lkcoef(:,:) = 0.0 |
---|
[135] | 139 | |
---|
[716] | 140 | do K=2,L_LEVELS |
---|
| 141 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[135] | 142 | |
---|
[716] | 143 | !--- Kasting's CIA ---------------------------------------- |
---|
| 144 | !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K)) |
---|
| 145 | ! this is CO2 path length (in cm) as written by Francois |
---|
| 146 | ! delta_z = delta_p * R_specific * T / (g * P) |
---|
| 147 | ! But Kasting states that W is in units of _atmosphere_ cm |
---|
| 148 | ! So we do |
---|
| 149 | !dz(k)=dz(k)*(PMID(K)/1013.25) |
---|
| 150 | !dz(k)=dz(k)/100.0 ! in m for SI calc |
---|
| 151 | !---------------------------------------------------------- |
---|
[135] | 152 | |
---|
[716] | 153 | ! if we have continuum opacities, we need dz |
---|
| 154 | if(kastprof)then |
---|
[961] | 155 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
[1016] | 156 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
[716] | 157 | else |
---|
[1194] | 158 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
[1016] | 159 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
| 160 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
[716] | 161 | endif |
---|
[135] | 162 | |
---|
[716] | 163 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 164 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[135] | 165 | |
---|
[716] | 166 | do LK=1,4 |
---|
| 167 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 168 | end do |
---|
[918] | 169 | end do ! levels |
---|
[253] | 170 | |
---|
[1715] | 171 | ! Spectral dependance of aerosol absorption |
---|
[918] | 172 | do iaer=1,naerkind |
---|
[716] | 173 | DO NW=1,L_NSPECTI |
---|
[918] | 174 | do K=2,L_LEVELS |
---|
[716] | 175 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) |
---|
[918] | 176 | end do ! levels |
---|
[716] | 177 | END DO |
---|
[918] | 178 | end do |
---|
[135] | 179 | |
---|
[918] | 180 | do NW=1,L_NSPECTI |
---|
[135] | 181 | |
---|
[918] | 182 | do K=2,L_LEVELS |
---|
[1715] | 183 | |
---|
| 184 | DAERO=SUM(TAEROS(K,NW,1:naerkind)) ! aerosol absorption |
---|
[873] | 185 | |
---|
[1715] | 186 | DCONT = 0.0d0 ! continuum absorption |
---|
[135] | 187 | |
---|
[873] | 188 | if(continuum.and.(.not.graybody))then |
---|
[716] | 189 | ! include continua if necessary |
---|
| 190 | wn_cont = dble(wnoi(nw)) |
---|
| 191 | T_cont = dble(TMID(k)) |
---|
| 192 | do igas=1,ngasmx |
---|
[135] | 193 | |
---|
[716] | 194 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 195 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
[3233] | 196 | elseif(varspec) then |
---|
| 197 | p_cont = dble(PMID(k)*scalep*FRACVAR(igas,k)*(1.-QVAR(k))) |
---|
[716] | 198 | else |
---|
| 199 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 200 | endif |
---|
[253] | 201 | |
---|
[961] | 202 | dtemp=0.0d0 |
---|
[716] | 203 | if(igas.eq.igas_N2)then |
---|
[305] | 204 | |
---|
[878] | 205 | interm = indi(nw,igas,igas) |
---|
| 206 | call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 207 | indi(nw,igas,igas) = interm |
---|
[253] | 208 | |
---|
[716] | 209 | elseif(igas.eq.igas_H2)then |
---|
[253] | 210 | |
---|
[716] | 211 | ! first do self-induced absorption |
---|
[878] | 212 | interm = indi(nw,igas,igas) |
---|
[873] | 213 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 214 | indi(nw,igas,igas) = interm |
---|
[253] | 215 | |
---|
[716] | 216 | ! then cross-interactions with other gases |
---|
| 217 | do jgas=1,ngasmx |
---|
[3233] | 218 | if(varspec) then |
---|
| 219 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
| 220 | else |
---|
| 221 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 222 | endif |
---|
[961] | 223 | dtempc = 0.0d0 |
---|
[716] | 224 | if(jgas.eq.igas_N2)then |
---|
[878] | 225 | interm = indi(nw,igas,jgas) |
---|
| 226 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 227 | indi(nw,igas,jgas) = interm |
---|
[2860] | 228 | elseif(jgas.eq.igas_CO2)then |
---|
| 229 | interm = indi(nw,igas,jgas) |
---|
| 230 | call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 231 | indi(nw,igas,jgas) = interm |
---|
[716] | 232 | elseif(jgas.eq.igas_He)then |
---|
[878] | 233 | interm = indi(nw,igas,jgas) |
---|
[873] | 234 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
[878] | 235 | indi(nw,igas,jgas) = interm |
---|
[716] | 236 | endif |
---|
| 237 | dtemp = dtemp + dtempc |
---|
| 238 | enddo |
---|
[135] | 239 | |
---|
[2655] | 240 | elseif(igas.eq.igas_CH4)then |
---|
| 241 | |
---|
| 242 | ! first do self-induced absorption |
---|
| 243 | interm = indi(nw,igas,igas) |
---|
| 244 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 245 | indi(nw,igas,igas) = interm |
---|
| 246 | |
---|
| 247 | ! then cross-interactions with other gases |
---|
| 248 | do jgas=1,ngasmx |
---|
[3233] | 249 | if(varspec) then |
---|
| 250 | p_cross = dble(PMID(k)*scalep*FRACVAR(jgas,k)*(1.-QVAR(k))) |
---|
| 251 | else |
---|
| 252 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 253 | endif |
---|
[2655] | 254 | dtempc = 0.0d0 |
---|
| 255 | if(jgas.eq.igas_H2)then |
---|
| 256 | interm = indi(nw,igas,jgas) |
---|
| 257 | call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 258 | indi(nw,igas,jgas) = interm |
---|
[2861] | 259 | elseif(jgas.eq.igas_CO2)then |
---|
| 260 | interm = indi(nw,igas,jgas) |
---|
| 261 | call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 262 | indi(nw,igas,jgas) = interm |
---|
[2655] | 263 | elseif(jgas.eq.igas_He)then |
---|
| 264 | interm = indi(nw,igas,jgas) |
---|
| 265 | call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 266 | indi(nw,igas,jgas) = interm |
---|
| 267 | endif |
---|
| 268 | dtemp = dtemp + dtempc |
---|
| 269 | enddo |
---|
| 270 | |
---|
[2520] | 271 | elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then |
---|
| 272 | ! Compute self and foreign (with air) continuum of H2O |
---|
[716] | 273 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
[2520] | 274 | interm = indi(nw,igas,igas) |
---|
| 275 | call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 |
---|
| 276 | indi(nw,igas,igas) = interm |
---|
[135] | 277 | |
---|
[716] | 278 | endif |
---|
[135] | 279 | |
---|
[716] | 280 | DCONT = DCONT + dtemp |
---|
[135] | 281 | |
---|
[716] | 282 | enddo |
---|
[135] | 283 | |
---|
[716] | 284 | ! Oobleck test |
---|
| 285 | !rho = PMID(k)*scalep / (TMID(k)*286.99) |
---|
| 286 | !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then |
---|
| 287 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 288 | !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then |
---|
| 289 | ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g |
---|
| 290 | ! DCONT = rho * 1.0 * 4.6e-4 |
---|
| 291 | !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then |
---|
| 292 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 293 | !endif |
---|
[135] | 294 | |
---|
[716] | 295 | DCONT = DCONT*dz(k) |
---|
[135] | 296 | |
---|
[716] | 297 | endif |
---|
[135] | 298 | |
---|
[716] | 299 | do ng=1,L_NGAUSS-1 |
---|
[135] | 300 | |
---|
[716] | 301 | ! Now compute TAUGAS |
---|
[135] | 302 | |
---|
[716] | 303 | ! Interpolate between water mixing ratios |
---|
| 304 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 305 | ! the water data range |
---|
[253] | 306 | |
---|
[716] | 307 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[1725] | 308 | |
---|
| 309 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 310 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 311 | ! transfer on the tested simulations ! |
---|
| 312 | |
---|
[2543] | 313 | IF (corrk_recombin) THEN ! added by JVO |
---|
| 314 | tmpk = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species |
---|
| 315 | ELSE |
---|
| 316 | tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 317 | ENDIF |
---|
[1725] | 318 | |
---|
| 319 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
---|
| 320 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
---|
| 321 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 322 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
---|
| 323 | |
---|
[716] | 324 | else |
---|
[135] | 325 | |
---|
[2543] | 326 | IF (corrk_recombin) THEN ! added by JVO |
---|
| 327 | tmpkvar = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 328 | ELSE |
---|
| 329 | tmpkvar = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 330 | ENDIF |
---|
[135] | 331 | |
---|
[1725] | 332 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
| 333 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
[135] | 334 | |
---|
[1725] | 335 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
| 336 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
[135] | 337 | |
---|
[1725] | 338 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
| 339 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
| 340 | |
---|
| 341 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
| 342 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
[873] | 343 | |
---|
[716] | 344 | endif |
---|
[135] | 345 | |
---|
[716] | 346 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[135] | 347 | |
---|
[716] | 348 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
| 349 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[135] | 350 | |
---|
[716] | 351 | TAUGAS = U(k)*ANS |
---|
[135] | 352 | |
---|
[716] | 353 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[918] | 354 | DTAUKI(K,nw,ng) = TAUGAS & |
---|
| 355 | + DCONT & ! For parameterized continuum absorption |
---|
| 356 | + DAERO ! For aerosol absorption |
---|
[135] | 357 | |
---|
[716] | 358 | end do |
---|
[135] | 359 | |
---|
[716] | 360 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 361 | ! which holds continuum opacity only |
---|
[135] | 362 | |
---|
[716] | 363 | NG = L_NGAUSS |
---|
[918] | 364 | DTAUKI(K,nw,ng) = 0.d0 & |
---|
| 365 | + DCONT & ! For parameterized continuum absorption |
---|
| 366 | + DAERO ! For aerosol absorption |
---|
[135] | 367 | |
---|
[716] | 368 | end do |
---|
| 369 | end do |
---|
[135] | 370 | |
---|
[716] | 371 | !======================================================================= |
---|
| 372 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 373 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[135] | 374 | |
---|
[873] | 375 | do iaer=1,naerkind |
---|
[918] | 376 | DO NW=1,L_NSPECTI |
---|
[1715] | 377 | DO K=2,L_LEVELS |
---|
| 378 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) ! effect of scattering albedo |
---|
[716] | 379 | ENDDO |
---|
[918] | 380 | ENDDO |
---|
[873] | 381 | end do |
---|
[918] | 382 | |
---|
| 383 | DO NW=1,L_NSPECTI |
---|
[1715] | 384 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 385 | K = 2*L+1 |
---|
| 386 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 387 | END DO ! L vertical loop |
---|
[1715] | 388 | |
---|
| 389 | ! Last level |
---|
| 390 | L = L_NLAYRAD |
---|
| 391 | K = 2*L+1 |
---|
| 392 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
| 393 | |
---|
[918] | 394 | END DO ! NW spectral loop |
---|
| 395 | |
---|
[135] | 396 | |
---|
[716] | 397 | DO NW=1,L_NSPECTI |
---|
| 398 | NG = L_NGAUSS |
---|
[1715] | 399 | DO L=1,L_NLAYRAD-1 |
---|
[135] | 400 | |
---|
[716] | 401 | K = 2*L+1 |
---|
| 402 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
[135] | 403 | |
---|
[716] | 404 | atemp = 0. |
---|
[961] | 405 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
[716] | 406 | do iaer=1,naerkind |
---|
| 407 | atemp = atemp + & |
---|
| 408 | GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & |
---|
| 409 | GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 410 | end do |
---|
[918] | 411 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
[716] | 412 | else |
---|
| 413 | WBARI(L,nw,ng) = 0.0D0 |
---|
[961] | 414 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
[716] | 415 | endif |
---|
[135] | 416 | |
---|
[961] | 417 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
[918] | 418 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
[716] | 419 | else |
---|
| 420 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 421 | end if |
---|
[135] | 422 | |
---|
[716] | 423 | END DO ! L vertical loop |
---|
[1715] | 424 | |
---|
| 425 | ! Last level |
---|
| 426 | |
---|
| 427 | L = L_NLAYRAD |
---|
| 428 | K = 2*L+1 |
---|
| 429 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50 |
---|
[135] | 430 | |
---|
[1715] | 431 | atemp = 0. |
---|
| 432 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
| 433 | do iaer=1,naerkind |
---|
| 434 | atemp = atemp + GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) |
---|
| 435 | end do |
---|
| 436 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
| 437 | else |
---|
| 438 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 439 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
| 440 | endif |
---|
| 441 | |
---|
| 442 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
| 443 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
| 444 | else |
---|
| 445 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 446 | end if |
---|
| 447 | |
---|
| 448 | |
---|
[716] | 449 | ! Now the other Gauss points, if needed. |
---|
[135] | 450 | |
---|
[716] | 451 | DO NG=1,L_NGAUSS-1 |
---|
| 452 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
---|
[135] | 453 | |
---|
[1715] | 454 | DO L=1,L_NLAYRAD-1 |
---|
[716] | 455 | K = 2*L+1 |
---|
| 456 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
| 457 | |
---|
[961] | 458 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
[716] | 459 | |
---|
[918] | 460 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
[716] | 461 | |
---|
| 462 | else |
---|
| 463 | WBARI(L,nw,ng) = 0.0D0 |
---|
[961] | 464 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
[716] | 465 | endif |
---|
| 466 | |
---|
| 467 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 468 | END DO ! L vertical loop |
---|
[1715] | 469 | |
---|
| 470 | ! Last level |
---|
| 471 | L = L_NLAYRAD |
---|
| 472 | K = 2*L+1 |
---|
| 473 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50 |
---|
| 474 | |
---|
| 475 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
| 476 | |
---|
| 477 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
| 478 | |
---|
| 479 | else |
---|
| 480 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 481 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
| 482 | endif |
---|
| 483 | |
---|
| 484 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 485 | |
---|
[716] | 486 | END IF |
---|
| 487 | |
---|
| 488 | END DO ! NG Gauss loop |
---|
| 489 | END DO ! NW spectral loop |
---|
| 490 | |
---|
| 491 | ! Total extinction optical depths |
---|
| 492 | |
---|
[918] | 493 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 494 | DO NW=1,L_NSPECTI |
---|
[716] | 495 | TAUCUMI(1,NW,NG)=0.0D0 |
---|
| 496 | DO K=2,L_LEVELS |
---|
| 497 | TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
---|
| 498 | END DO |
---|
| 499 | END DO ! end full gauss loop |
---|
| 500 | END DO |
---|
| 501 | |
---|
| 502 | ! be aware when comparing with textbook results |
---|
| 503 | ! (e.g. Pierrehumbert p. 218) that |
---|
| 504 | ! taucumi does not take the <cos theta>=0.5 factor into |
---|
| 505 | ! account. It is the optical depth for a vertically |
---|
| 506 | ! ascending ray with angle theta = 0. |
---|
| 507 | |
---|
| 508 | !open(127,file='taucum.out') |
---|
| 509 | !do nw=1,L_NSPECTI |
---|
| 510 | ! write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS) |
---|
| 511 | !enddo |
---|
| 512 | !close(127) |
---|
[918] | 513 | |
---|
| 514 | ! print*,'WBARI' |
---|
| 515 | ! print*,WBARI |
---|
| 516 | ! print*,'DTAUI' |
---|
| 517 | ! print*,DTAUI |
---|
| 518 | ! call abort |
---|
[2131] | 519 | |
---|
[716] | 520 | end subroutine optci |
---|
| 521 | |
---|
[2032] | 522 | END MODULE optci_mod |
---|
[716] | 523 | |
---|