[2032] | 1 | MODULE optci_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
[716] | 7 | subroutine optci(PLEV,TLEV,DTAUI,TAUCUMI, & |
---|
| 8 | QXIAER,QSIAER,GIAER,COSBI,WBARI,TAUAERO, & |
---|
| 9 | TMID,PMID,TAUGSURF,QVAR,MUVAR) |
---|
[135] | 10 | |
---|
[2032] | 11 | use radinc_h, only: L_LEVELS, L_NLAYRAD, L_NSPECTI, L_NGAUSS, & |
---|
| 12 | L_NLEVRAD, L_REFVAR, naerkind |
---|
[2133] | 13 | use radcommon_h, only: gasi,tlimit,wrefVAR,Cmk,tgasref,pfgasref,wnoi,scalep,indi,glat_ig |
---|
[2875] | 14 | use gases_h, only: gfrac, ngasmx, igas_N2, igas_He, igas_H2O, igas_H2, & |
---|
| 15 | igas_CH4, igas_CO2 |
---|
[1384] | 16 | use comcstfi_mod, only: g, r, mugaz |
---|
[2520] | 17 | use callkeys_mod, only: kastprof,continuum,graybody |
---|
[2543] | 18 | use recombin_corrk_mod, only: corrk_recombin, gasi_recomb |
---|
[2582] | 19 | use tpindex_mod, only: tpindex |
---|
| 20 | |
---|
[716] | 21 | implicit none |
---|
[135] | 22 | |
---|
[716] | 23 | !================================================================== |
---|
| 24 | ! |
---|
| 25 | ! Purpose |
---|
| 26 | ! ------- |
---|
| 27 | ! Calculates longwave optical constants at each level. For each |
---|
| 28 | ! layer and spectral interval in the IR it calculates WBAR, DTAU |
---|
| 29 | ! and COSBAR. For each level it calculates TAU. |
---|
| 30 | ! |
---|
[2133] | 31 | ! TAUCUMI(L,LW) is the cumulative optical depth at level L (or alternatively |
---|
[716] | 32 | ! at the *bottom* of layer L), LW is the spectral wavelength interval. |
---|
| 33 | ! |
---|
| 34 | ! TLEV(L) - Temperature at the layer boundary (i.e., level) |
---|
| 35 | ! PLEV(L) - Pressure at the layer boundary (i.e., level) |
---|
| 36 | ! |
---|
| 37 | ! Authors |
---|
| 38 | ! ------- |
---|
| 39 | ! Adapted from the NASA Ames code by R. Wordsworth (2009) |
---|
| 40 | ! |
---|
| 41 | !================================================================== |
---|
[135] | 42 | |
---|
| 43 | |
---|
[2957] | 44 | real*8,intent(out) :: DTAUI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
[1715] | 45 | real*8 DTAUKI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
[716] | 46 | real*8 TAUI(L_NLEVRAD,L_NSPECTI,L_NGAUSS) |
---|
[2957] | 47 | real*8,intent(out) :: TAUCUMI(L_LEVELS,L_NSPECTI,L_NGAUSS) |
---|
| 48 | real*8,intent(in) :: PLEV(L_LEVELS) |
---|
| 49 | real*8,intent(in) :: TLEV(L_LEVELS) ! not used |
---|
| 50 | real*8,intent(in) :: TMID(L_LEVELS) |
---|
| 51 | real*8,intent(in) :: PMID(L_LEVELS) |
---|
| 52 | real*8,intent(out) :: COSBI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
| 53 | real*8,intent(out) :: WBARI(L_NLAYRAD,L_NSPECTI,L_NGAUSS) |
---|
[135] | 54 | |
---|
[716] | 55 | ! for aerosols |
---|
[2957] | 56 | real*8,intent(in) :: QXIAER(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 57 | real*8,intent(in) :: QSIAER(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 58 | real*8,intent(in) :: GIAER(L_LEVELS,L_NSPECTI,NAERKIND) |
---|
| 59 | real*8,intent(in) :: TAUAERO(L_LEVELS,NAERKIND) |
---|
[135] | 60 | |
---|
[2972] | 61 | ! local variables (saved for convenience as need be allocated) |
---|
| 62 | real*8,save,allocatable :: TAUAEROLK(:,:,:) |
---|
| 63 | real*8,save,allocatable :: TAEROS(:,:,:) |
---|
| 64 | !$OMP THREADPRIVATE(TAUAEROLK,TAEROS) |
---|
| 65 | |
---|
[716] | 66 | integer L, NW, NG, K, LK, IAER |
---|
| 67 | integer MT(L_LEVELS), MP(L_LEVELS), NP(L_LEVELS) |
---|
| 68 | real*8 ANS, TAUGAS |
---|
| 69 | real*8 DPR(L_LEVELS), U(L_LEVELS) |
---|
| 70 | real*8 LCOEF(4), LKCOEF(L_LEVELS,4) |
---|
[135] | 71 | |
---|
[2957] | 72 | real*8,intent(out) :: taugsurf(L_NSPECTI,L_NGAUSS-1) |
---|
[918] | 73 | real*8 DCONT,DAERO |
---|
[716] | 74 | double precision wn_cont, p_cont, p_air, T_cont, dtemp, dtempc |
---|
| 75 | double precision p_cross |
---|
[135] | 76 | |
---|
[716] | 77 | ! variable species mixing ratio variables |
---|
[2957] | 78 | real*8,intent(in) :: QVAR(L_LEVELS) |
---|
| 79 | real*8,intent(in) :: MUVAR(L_LEVELS) |
---|
| 80 | real*8 WRATIO(L_LEVELS) |
---|
[716] | 81 | real*8 KCOEF(4) |
---|
| 82 | integer NVAR(L_LEVELS) |
---|
[1725] | 83 | |
---|
| 84 | ! temporary variables to reduce memory access time to gasi |
---|
| 85 | real*8 tmpk(2,2) |
---|
| 86 | real*8 tmpkvar(2,2,2) |
---|
[135] | 87 | |
---|
[716] | 88 | ! temporary variables for multiple aerosol calculation |
---|
[918] | 89 | real*8 atemp |
---|
| 90 | real*8 btemp(L_NLAYRAD,L_NSPECTI) |
---|
[135] | 91 | |
---|
[716] | 92 | ! variables for k in units m^-1 |
---|
[873] | 93 | real*8 dz(L_LEVELS) |
---|
| 94 | !real*8 rho !! see test below |
---|
[135] | 95 | |
---|
[716] | 96 | integer igas, jgas |
---|
[253] | 97 | |
---|
[873] | 98 | integer interm |
---|
[2972] | 99 | |
---|
| 100 | logical :: firstcall=.true. |
---|
| 101 | !$OMP THREADPRIVATE(firstcall) |
---|
[873] | 102 | |
---|
[716] | 103 | !--- Kasting's CIA ---------------------------------------- |
---|
| 104 | !real*8, parameter :: Ci(L_NSPECTI)=[ & |
---|
| 105 | ! 3.8E-5, 1.2E-5, 2.8E-6, 7.6E-7, 4.5E-7, 2.3E-7, & |
---|
| 106 | ! 5.4E-7, 1.6E-6, 0.0, & |
---|
| 107 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 108 | ! 0.0, 4.0E-7, 4.0E-6, 1.4E-5, & |
---|
| 109 | ! 1.0E-5, 1.2E-6, 2.0E-7, 5.0E-8, 3.0E-8, 0.0 ] |
---|
| 110 | !real*8, parameter :: Ti(L_NSPECTI)=[ -2.2, -1.9, & |
---|
| 111 | ! -1.7, -1.7, -1.7, -1.7, -1.7, -1.7, & |
---|
| 112 | ! 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
| 113 | ! -1.7,-1.7,-1.7,-1.7,-1.7,-1.7,-1.7, -1.7,0.0 ] |
---|
| 114 | !---------------------------------------------------------- |
---|
[253] | 115 | |
---|
[2972] | 116 | if (firstcall) then |
---|
| 117 | ! allocate local arrays of size "naerkind" (which are also |
---|
| 118 | ! "saved" so that this is done only once in for all even if |
---|
| 119 | ! we don't need to store the value from a time step to the next) |
---|
| 120 | allocate(TAUAEROLK(L_LEVELS,L_NSPECTI,NAERKIND)) |
---|
| 121 | allocate(TAEROS(L_LEVELS,L_NSPECTI,NAERKIND)) |
---|
| 122 | firstcall=.false. |
---|
| 123 | endif ! of if (firstcall) |
---|
| 124 | |
---|
[873] | 125 | !! AS: to save time in computing continuum (see bilinearbig) |
---|
| 126 | IF (.not.ALLOCATED(indi)) THEN |
---|
[878] | 127 | ALLOCATE(indi(L_NSPECTI,ngasmx,ngasmx)) |
---|
[873] | 128 | indi = -9999 ! this initial value means "to be calculated" |
---|
| 129 | ENDIF |
---|
| 130 | |
---|
[716] | 131 | !======================================================================= |
---|
| 132 | ! Determine the total gas opacity throughout the column, for each |
---|
| 133 | ! spectral interval, NW, and each Gauss point, NG. |
---|
[135] | 134 | |
---|
[716] | 135 | taugsurf(:,:) = 0.0 |
---|
| 136 | dpr(:) = 0.0 |
---|
| 137 | lkcoef(:,:) = 0.0 |
---|
[135] | 138 | |
---|
[716] | 139 | do K=2,L_LEVELS |
---|
| 140 | DPR(k) = PLEV(K)-PLEV(K-1) |
---|
[135] | 141 | |
---|
[716] | 142 | !--- Kasting's CIA ---------------------------------------- |
---|
| 143 | !dz(k)=dpr(k)*189.02*TMID(K)/(0.03720*PMID(K)) |
---|
| 144 | ! this is CO2 path length (in cm) as written by Francois |
---|
| 145 | ! delta_z = delta_p * R_specific * T / (g * P) |
---|
| 146 | ! But Kasting states that W is in units of _atmosphere_ cm |
---|
| 147 | ! So we do |
---|
| 148 | !dz(k)=dz(k)*(PMID(K)/1013.25) |
---|
| 149 | !dz(k)=dz(k)/100.0 ! in m for SI calc |
---|
| 150 | !---------------------------------------------------------- |
---|
[135] | 151 | |
---|
[716] | 152 | ! if we have continuum opacities, we need dz |
---|
| 153 | if(kastprof)then |
---|
[961] | 154 | dz(k) = dpr(k)*(1000.0d0*8.3145d0/muvar(k))*TMID(K)/(g*PMID(K)) |
---|
[1016] | 155 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) |
---|
[716] | 156 | else |
---|
[1194] | 157 | dz(k) = dpr(k)*R*TMID(K)/(glat_ig*PMID(K))*mugaz/muvar(k) |
---|
[1016] | 158 | U(k) = Cmk*DPR(k)*mugaz/muvar(k) ! only Cmk line in optci.F |
---|
| 159 | !JL13 the mugaz/muvar factor takes into account water meanmolecular weight if water is present |
---|
[716] | 160 | endif |
---|
[135] | 161 | |
---|
[716] | 162 | call tpindex(PMID(K),TMID(K),QVAR(K),pfgasref,tgasref,WREFVAR, & |
---|
| 163 | LCOEF,MT(K),MP(K),NVAR(K),WRATIO(K)) |
---|
[135] | 164 | |
---|
[716] | 165 | do LK=1,4 |
---|
| 166 | LKCOEF(K,LK) = LCOEF(LK) |
---|
| 167 | end do |
---|
[918] | 168 | end do ! levels |
---|
[253] | 169 | |
---|
[1715] | 170 | ! Spectral dependance of aerosol absorption |
---|
[918] | 171 | do iaer=1,naerkind |
---|
[716] | 172 | DO NW=1,L_NSPECTI |
---|
[918] | 173 | do K=2,L_LEVELS |
---|
[716] | 174 | TAEROS(K,NW,IAER) = TAUAERO(K,IAER) * QXIAER(K,NW,IAER) |
---|
[918] | 175 | end do ! levels |
---|
[716] | 176 | END DO |
---|
[918] | 177 | end do |
---|
[135] | 178 | |
---|
[918] | 179 | do NW=1,L_NSPECTI |
---|
[135] | 180 | |
---|
[918] | 181 | do K=2,L_LEVELS |
---|
[1715] | 182 | |
---|
| 183 | DAERO=SUM(TAEROS(K,NW,1:naerkind)) ! aerosol absorption |
---|
[873] | 184 | |
---|
[1715] | 185 | DCONT = 0.0d0 ! continuum absorption |
---|
[135] | 186 | |
---|
[873] | 187 | if(continuum.and.(.not.graybody))then |
---|
[716] | 188 | ! include continua if necessary |
---|
| 189 | wn_cont = dble(wnoi(nw)) |
---|
| 190 | T_cont = dble(TMID(k)) |
---|
| 191 | do igas=1,ngasmx |
---|
[135] | 192 | |
---|
[716] | 193 | if(gfrac(igas).eq.-1)then ! variable |
---|
| 194 | p_cont = dble(PMID(k)*scalep*QVAR(k)) ! qvar = mol/mol |
---|
| 195 | else |
---|
| 196 | p_cont = dble(PMID(k)*scalep*gfrac(igas)*(1.-QVAR(k))) |
---|
| 197 | endif |
---|
[253] | 198 | |
---|
[961] | 199 | dtemp=0.0d0 |
---|
[716] | 200 | if(igas.eq.igas_N2)then |
---|
[305] | 201 | |
---|
[878] | 202 | interm = indi(nw,igas,igas) |
---|
| 203 | call interpolateN2N2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 204 | indi(nw,igas,igas) = interm |
---|
[253] | 205 | |
---|
[716] | 206 | elseif(igas.eq.igas_H2)then |
---|
[253] | 207 | |
---|
[716] | 208 | ! first do self-induced absorption |
---|
[878] | 209 | interm = indi(nw,igas,igas) |
---|
[873] | 210 | call interpolateH2H2(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
[878] | 211 | indi(nw,igas,igas) = interm |
---|
[253] | 212 | |
---|
[716] | 213 | ! then cross-interactions with other gases |
---|
| 214 | do jgas=1,ngasmx |
---|
| 215 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
[961] | 216 | dtempc = 0.0d0 |
---|
[716] | 217 | if(jgas.eq.igas_N2)then |
---|
[878] | 218 | interm = indi(nw,igas,jgas) |
---|
| 219 | call interpolateN2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 220 | indi(nw,igas,jgas) = interm |
---|
[2860] | 221 | elseif(jgas.eq.igas_CO2)then |
---|
| 222 | interm = indi(nw,igas,jgas) |
---|
| 223 | call interpolateCO2H2(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 224 | indi(nw,igas,jgas) = interm |
---|
[716] | 225 | elseif(jgas.eq.igas_He)then |
---|
[878] | 226 | interm = indi(nw,igas,jgas) |
---|
[873] | 227 | call interpolateH2He(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
[878] | 228 | indi(nw,igas,jgas) = interm |
---|
[716] | 229 | endif |
---|
| 230 | dtemp = dtemp + dtempc |
---|
| 231 | enddo |
---|
[135] | 232 | |
---|
[2655] | 233 | elseif(igas.eq.igas_CH4)then |
---|
| 234 | |
---|
| 235 | ! first do self-induced absorption |
---|
| 236 | interm = indi(nw,igas,igas) |
---|
| 237 | call interpolateCH4CH4(wn_cont,T_cont,p_cont,dtemp,.false.,interm) |
---|
| 238 | indi(nw,igas,igas) = interm |
---|
| 239 | |
---|
| 240 | ! then cross-interactions with other gases |
---|
| 241 | do jgas=1,ngasmx |
---|
| 242 | p_cross = dble(PMID(k)*scalep*gfrac(jgas)*(1.-QVAR(k))) |
---|
| 243 | dtempc = 0.0d0 |
---|
| 244 | if(jgas.eq.igas_H2)then |
---|
| 245 | interm = indi(nw,igas,jgas) |
---|
| 246 | call interpolateH2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 247 | indi(nw,igas,jgas) = interm |
---|
[2861] | 248 | elseif(jgas.eq.igas_CO2)then |
---|
| 249 | interm = indi(nw,igas,jgas) |
---|
| 250 | call interpolateCO2CH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 251 | indi(nw,igas,jgas) = interm |
---|
[2655] | 252 | elseif(jgas.eq.igas_He)then |
---|
| 253 | interm = indi(nw,igas,jgas) |
---|
| 254 | call interpolateHeCH4(wn_cont,T_cont,p_cross,p_cont,dtempc,.false.,interm) |
---|
| 255 | indi(nw,igas,jgas) = interm |
---|
| 256 | endif |
---|
| 257 | dtemp = dtemp + dtempc |
---|
| 258 | enddo |
---|
| 259 | |
---|
[2520] | 260 | elseif(igas.eq.igas_H2O.and.T_cont.gt.100.0)then |
---|
| 261 | ! Compute self and foreign (with air) continuum of H2O |
---|
[716] | 262 | p_air = dble(PMID(k)*scalep) - p_cont ! note assumes background is air! |
---|
[2520] | 263 | interm = indi(nw,igas,igas) |
---|
| 264 | call interpolateH2O_self_foreign(wn_cont,T_cont,p_cont,p_air,dtemp,.false.,interm) ! MTCKD v3.3 |
---|
| 265 | indi(nw,igas,igas) = interm |
---|
[135] | 266 | |
---|
[716] | 267 | endif |
---|
[135] | 268 | |
---|
[716] | 269 | DCONT = DCONT + dtemp |
---|
[135] | 270 | |
---|
[716] | 271 | enddo |
---|
[135] | 272 | |
---|
[716] | 273 | ! Oobleck test |
---|
| 274 | !rho = PMID(k)*scalep / (TMID(k)*286.99) |
---|
| 275 | !if(WNOI(nw).gt.300.0 .and. WNOI(nw).lt.500.0)then |
---|
| 276 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 277 | !elseif(WNOI(nw).gt.500.0 .and. WNOI(nw).lt.700.0)then |
---|
| 278 | ! DCONT = 1000*dpr(k) * 1.0 * 4.6e-4 / g |
---|
| 279 | ! DCONT = rho * 1.0 * 4.6e-4 |
---|
| 280 | !elseif(WNOI(nw).gt.700.0 .and. WNOI(nw).lt.900.0)then |
---|
| 281 | ! DCONT = rho * 0.125 * 4.6e-4 |
---|
| 282 | !endif |
---|
[135] | 283 | |
---|
[716] | 284 | DCONT = DCONT*dz(k) |
---|
[135] | 285 | |
---|
[716] | 286 | endif |
---|
[135] | 287 | |
---|
[716] | 288 | do ng=1,L_NGAUSS-1 |
---|
[135] | 289 | |
---|
[716] | 290 | ! Now compute TAUGAS |
---|
[135] | 291 | |
---|
[716] | 292 | ! Interpolate between water mixing ratios |
---|
| 293 | ! WRATIO = 0.0 if the requested water amount is equal to, or outside the |
---|
| 294 | ! the water data range |
---|
[253] | 295 | |
---|
[716] | 296 | if(L_REFVAR.eq.1)then ! added by RW for special no variable case |
---|
[1725] | 297 | |
---|
| 298 | ! JVO 2017 : added tmpk because the repeated calls to gasi/v increased dramatically |
---|
| 299 | ! the execution time of optci/v -> ~ factor 2 on the whole radiative |
---|
| 300 | ! transfer on the tested simulations ! |
---|
| 301 | |
---|
[2543] | 302 | IF (corrk_recombin) THEN ! added by JVO |
---|
| 303 | tmpk = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) ! contains the mix of recombined species |
---|
| 304 | ELSE |
---|
| 305 | tmpk = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,1,NW,NG) |
---|
| 306 | ENDIF |
---|
[1725] | 307 | |
---|
| 308 | KCOEF(1) = tmpk(1,1) ! KCOEF(1) = GASI(MT(K),MP(K),1,NW,NG) |
---|
| 309 | KCOEF(2) = tmpk(1,2) ! KCOEF(2) = GASI(MT(K),MP(K)+1,1,NW,NG) |
---|
| 310 | KCOEF(3) = tmpk(2,2) ! KCOEF(3) = GASI(MT(K)+1,MP(K)+1,1,NW,NG) |
---|
| 311 | KCOEF(4) = tmpk(2,1) ! KCOEF(4) = GASI(MT(K)+1,MP(K),1,NW,NG) |
---|
| 312 | |
---|
[716] | 313 | else |
---|
[135] | 314 | |
---|
[2543] | 315 | IF (corrk_recombin) THEN ! added by JVO |
---|
| 316 | tmpkvar = GASI_RECOMB(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 317 | ELSE |
---|
| 318 | tmpkvar = GASI(MT(K):MT(K)+1,MP(K):MP(K)+1,NVAR(K):NVAR(K)+1,NW,NG) |
---|
| 319 | ENDIF |
---|
[135] | 320 | |
---|
[1725] | 321 | KCOEF(1) = tmpkvar(1,1,1) + WRATIO(K) * & |
---|
| 322 | ( tmpkvar(1,1,2)-tmpkvar(1,1,1) ) |
---|
[135] | 323 | |
---|
[1725] | 324 | KCOEF(2) = tmpkvar(1,2,1) + WRATIO(K) * & |
---|
| 325 | ( tmpkvar(1,2,2)-tmpkvar(1,2,1) ) |
---|
[135] | 326 | |
---|
[1725] | 327 | KCOEF(3) = tmpkvar(2,2,1) + WRATIO(K) * & |
---|
| 328 | ( tmpkvar(2,2,2)-tmpkvar(2,2,1) ) |
---|
| 329 | |
---|
| 330 | KCOEF(4) = tmpkvar(2,1,1) + WRATIO(K) * & |
---|
| 331 | ( tmpkvar(2,1,2)-tmpkvar(2,1,1) ) |
---|
[873] | 332 | |
---|
[716] | 333 | endif |
---|
[135] | 334 | |
---|
[716] | 335 | ! Interpolate the gaseous k-coefficients to the requested T,P values |
---|
[135] | 336 | |
---|
[716] | 337 | ANS = LKCOEF(K,1)*KCOEF(1) + LKCOEF(K,2)*KCOEF(2) + & |
---|
| 338 | LKCOEF(K,3)*KCOEF(3) + LKCOEF(K,4)*KCOEF(4) |
---|
[135] | 339 | |
---|
[716] | 340 | TAUGAS = U(k)*ANS |
---|
[135] | 341 | |
---|
[716] | 342 | TAUGSURF(NW,NG) = TAUGSURF(NW,NG) + TAUGAS + DCONT |
---|
[918] | 343 | DTAUKI(K,nw,ng) = TAUGAS & |
---|
| 344 | + DCONT & ! For parameterized continuum absorption |
---|
| 345 | + DAERO ! For aerosol absorption |
---|
[135] | 346 | |
---|
[716] | 347 | end do |
---|
[135] | 348 | |
---|
[716] | 349 | ! Now fill in the "clear" part of the spectrum (NG = L_NGAUSS), |
---|
| 350 | ! which holds continuum opacity only |
---|
[135] | 351 | |
---|
[716] | 352 | NG = L_NGAUSS |
---|
[918] | 353 | DTAUKI(K,nw,ng) = 0.d0 & |
---|
| 354 | + DCONT & ! For parameterized continuum absorption |
---|
| 355 | + DAERO ! For aerosol absorption |
---|
[135] | 356 | |
---|
[716] | 357 | end do |
---|
| 358 | end do |
---|
[135] | 359 | |
---|
[716] | 360 | !======================================================================= |
---|
| 361 | ! Now the full treatment for the layers, where besides the opacity |
---|
| 362 | ! we need to calculate the scattering albedo and asymmetry factors |
---|
[135] | 363 | |
---|
[873] | 364 | do iaer=1,naerkind |
---|
[918] | 365 | DO NW=1,L_NSPECTI |
---|
[1715] | 366 | DO K=2,L_LEVELS |
---|
| 367 | TAUAEROLK(K,NW,IAER) = TAUAERO(K,IAER)*QSIAER(K,NW,IAER) ! effect of scattering albedo |
---|
[716] | 368 | ENDDO |
---|
[918] | 369 | ENDDO |
---|
[873] | 370 | end do |
---|
[918] | 371 | |
---|
| 372 | DO NW=1,L_NSPECTI |
---|
[1715] | 373 | DO L=1,L_NLAYRAD-1 |
---|
[918] | 374 | K = 2*L+1 |
---|
| 375 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) + SUM(TAUAEROLK(K+1,NW,1:naerkind)) |
---|
| 376 | END DO ! L vertical loop |
---|
[1715] | 377 | |
---|
| 378 | ! Last level |
---|
| 379 | L = L_NLAYRAD |
---|
| 380 | K = 2*L+1 |
---|
| 381 | btemp(L,NW) = SUM(TAUAEROLK(K,NW,1:naerkind)) |
---|
| 382 | |
---|
[918] | 383 | END DO ! NW spectral loop |
---|
| 384 | |
---|
[135] | 385 | |
---|
[716] | 386 | DO NW=1,L_NSPECTI |
---|
| 387 | NG = L_NGAUSS |
---|
[1715] | 388 | DO L=1,L_NLAYRAD-1 |
---|
[135] | 389 | |
---|
[716] | 390 | K = 2*L+1 |
---|
| 391 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) + DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
[135] | 392 | |
---|
[716] | 393 | atemp = 0. |
---|
[961] | 394 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
[716] | 395 | do iaer=1,naerkind |
---|
| 396 | atemp = atemp + & |
---|
| 397 | GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) + & |
---|
| 398 | GIAER(K+1,NW,IAER) * TAUAEROLK(K+1,NW,IAER) |
---|
| 399 | end do |
---|
[918] | 400 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
[716] | 401 | else |
---|
| 402 | WBARI(L,nw,ng) = 0.0D0 |
---|
[961] | 403 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
[716] | 404 | endif |
---|
[135] | 405 | |
---|
[961] | 406 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
[918] | 407 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
[716] | 408 | else |
---|
| 409 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 410 | end if |
---|
[135] | 411 | |
---|
[716] | 412 | END DO ! L vertical loop |
---|
[1715] | 413 | |
---|
| 414 | ! Last level |
---|
| 415 | |
---|
| 416 | L = L_NLAYRAD |
---|
| 417 | K = 2*L+1 |
---|
| 418 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG) ! + 1.e-50 |
---|
[135] | 419 | |
---|
[1715] | 420 | atemp = 0. |
---|
| 421 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
| 422 | do iaer=1,naerkind |
---|
| 423 | atemp = atemp + GIAER(K,NW,IAER) * TAUAEROLK(K,NW,IAER) |
---|
| 424 | end do |
---|
| 425 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
| 426 | else |
---|
| 427 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 428 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
| 429 | endif |
---|
| 430 | |
---|
| 431 | if(btemp(L,nw) .GT. 0.0d0) then |
---|
| 432 | cosbi(L,NW,NG) = atemp/btemp(L,nw) |
---|
| 433 | else |
---|
| 434 | cosbi(L,NW,NG) = 0.0D0 |
---|
| 435 | end if |
---|
| 436 | |
---|
| 437 | |
---|
[716] | 438 | ! Now the other Gauss points, if needed. |
---|
[135] | 439 | |
---|
[716] | 440 | DO NG=1,L_NGAUSS-1 |
---|
| 441 | IF(TAUGSURF(NW,NG) .gt. TLIMIT) THEN |
---|
[135] | 442 | |
---|
[1715] | 443 | DO L=1,L_NLAYRAD-1 |
---|
[716] | 444 | K = 2*L+1 |
---|
| 445 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)+DTAUKI(K+1,NW,NG)! + 1.e-50 |
---|
| 446 | |
---|
[961] | 447 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
[716] | 448 | |
---|
[918] | 449 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
[716] | 450 | |
---|
| 451 | else |
---|
| 452 | WBARI(L,nw,ng) = 0.0D0 |
---|
[961] | 453 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
[716] | 454 | endif |
---|
| 455 | |
---|
| 456 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 457 | END DO ! L vertical loop |
---|
[1715] | 458 | |
---|
| 459 | ! Last level |
---|
| 460 | L = L_NLAYRAD |
---|
| 461 | K = 2*L+1 |
---|
| 462 | DTAUI(L,nw,ng) = DTAUKI(K,NW,NG)! + 1.e-50 |
---|
| 463 | |
---|
| 464 | if(DTAUI(L,NW,NG) .GT. 1.0D-9) then |
---|
| 465 | |
---|
| 466 | WBARI(L,nw,ng) = btemp(L,nw) / DTAUI(L,NW,NG) |
---|
| 467 | |
---|
| 468 | else |
---|
| 469 | WBARI(L,nw,ng) = 0.0D0 |
---|
| 470 | DTAUI(L,NW,NG) = 1.0D-9 |
---|
| 471 | endif |
---|
| 472 | |
---|
| 473 | cosbi(L,NW,NG) = cosbi(L,NW,L_NGAUSS) |
---|
| 474 | |
---|
[716] | 475 | END IF |
---|
| 476 | |
---|
| 477 | END DO ! NG Gauss loop |
---|
| 478 | END DO ! NW spectral loop |
---|
| 479 | |
---|
| 480 | ! Total extinction optical depths |
---|
| 481 | |
---|
[918] | 482 | DO NG=1,L_NGAUSS ! full gauss loop |
---|
| 483 | DO NW=1,L_NSPECTI |
---|
[716] | 484 | TAUCUMI(1,NW,NG)=0.0D0 |
---|
| 485 | DO K=2,L_LEVELS |
---|
| 486 | TAUCUMI(K,NW,NG)=TAUCUMI(K-1,NW,NG)+DTAUKI(K,NW,NG) |
---|
| 487 | END DO |
---|
| 488 | END DO ! end full gauss loop |
---|
| 489 | END DO |
---|
| 490 | |
---|
| 491 | ! be aware when comparing with textbook results |
---|
| 492 | ! (e.g. Pierrehumbert p. 218) that |
---|
| 493 | ! taucumi does not take the <cos theta>=0.5 factor into |
---|
| 494 | ! account. It is the optical depth for a vertically |
---|
| 495 | ! ascending ray with angle theta = 0. |
---|
| 496 | |
---|
| 497 | !open(127,file='taucum.out') |
---|
| 498 | !do nw=1,L_NSPECTI |
---|
| 499 | ! write(127,*) taucumi(L_LEVELS,nw,L_NGAUSS) |
---|
| 500 | !enddo |
---|
| 501 | !close(127) |
---|
[918] | 502 | |
---|
| 503 | ! print*,'WBARI' |
---|
| 504 | ! print*,WBARI |
---|
| 505 | ! print*,'DTAUI' |
---|
| 506 | ! print*,DTAUI |
---|
| 507 | ! call abort |
---|
[2131] | 508 | |
---|
[716] | 509 | end subroutine optci |
---|
| 510 | |
---|
[2032] | 511 | END MODULE optci_mod |
---|
[716] | 512 | |
---|