[3235] | 1 | MODULE conduction_mod |
---|
| 2 | |
---|
| 3 | IMPLICIT NONE |
---|
| 4 | |
---|
| 5 | CONTAINS |
---|
| 6 | |
---|
| 7 | SUBROUTINE conduction(ngrid,nlayer,nq,ptimestep,pplay,pplev,zt, & |
---|
| 8 | tsurf,zzlev,zzlay,muvar,qvar,firstcall,zdtconduc) |
---|
| 9 | |
---|
| 10 | use comcstfi_mod, only: r, cpp, mugaz |
---|
| 11 | use callkeys_mod, only: phitop,zztop,a_coeff,s_coeff,force_conduction |
---|
| 12 | use gases_h |
---|
| 13 | |
---|
| 14 | !======================================================================= |
---|
| 15 | ! |
---|
| 16 | ! Molecular thermal conduction |
---|
| 17 | ! |
---|
| 18 | ! N. Descamp, F. Forget 05/1999 |
---|
| 19 | ! |
---|
| 20 | !======================================================================= |
---|
| 21 | |
---|
| 22 | !----------------------------------------------------------------------- |
---|
| 23 | ! Declarations: |
---|
| 24 | !----------------------------------------------------------------------- |
---|
| 25 | |
---|
| 26 | ! Arguments: |
---|
| 27 | ! ---------- |
---|
| 28 | |
---|
| 29 | INTEGER,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 30 | INTEGER,intent(in) :: nlayer ! number of atmospheric layers |
---|
| 31 | INTEGER,intent(in) :: nq ! number of tracers |
---|
| 32 | REAL,intent(in) :: ptimestep |
---|
| 33 | REAL,intent(in) :: pplay(ngrid,nlayer) ! pressure at middle of layers (Pa) |
---|
| 34 | REAL,intent(in) :: pplev(ngrid,nlayer+1) ! (Pa) |
---|
| 35 | REAL,intent(in) :: zzlay(ngrid,nlayer) ! (m) |
---|
| 36 | REAL,intent(in) :: zzlev(ngrid,nlayer+1) ! (m) |
---|
| 37 | REAL,intent(in) :: zt(ngrid,nlayer) ! Temperature [K] |
---|
| 38 | REAL,intent(in) :: tsurf(ngrid) ! Surface temperature [K] |
---|
| 39 | REAL,intent(in) :: muvar(ngrid,nlayer+1) ! Molar mass (kg.mol-1) |
---|
| 40 | REAL,intent(in) :: qvar(ngrid,nlayer,nq) ! Tracers (kg/kg) |
---|
| 41 | LOGICAL,intent(in) :: firstcall ! Signals first call to physics. |
---|
| 42 | |
---|
| 43 | REAL,intent(out) :: zdtconduc(ngrid,nlayer) ! [K.s-1] |
---|
| 44 | |
---|
| 45 | ! Local: |
---|
| 46 | ! ------ |
---|
| 47 | |
---|
| 48 | INTEGER :: i,ig,l,igas,kgas |
---|
| 49 | REAL :: alpha(ngrid,nlayer) |
---|
| 50 | REAL :: lambda(ngrid,nlayer) |
---|
| 51 | REAL :: muvol(ngrid,nlayer) ! kg.m-3 |
---|
| 52 | REAL :: C(ngrid,nlayer) |
---|
| 53 | REAL :: D(ngrid,nlayer) |
---|
| 54 | REAL :: den(ngrid,nlayer) |
---|
| 55 | REAL :: pdt(ngrid,nlayer) |
---|
| 56 | REAL :: zlev(ngrid,nlayer+1) |
---|
| 57 | REAL,ALLOCATABLE,SAVE :: akk(:) ! Akk conductivity coefficient for each species |
---|
| 58 | REAL,ALLOCATABLE,SAVE :: skk(:) ! skk conductivity coefficient for each species |
---|
| 59 | REAL,ALLOCATABLE,SAVE :: molar_mass(:) ! molar mass of each species (kg.m-3) |
---|
| 60 | REAL,ALLOCATABLE,SAVE :: akk_visc(:) ! Akk viscosity coefficient for each species |
---|
| 61 | REAL,ALLOCATABLE,SAVE :: skk_visc(:) ! skk viscosity coefficient for each species |
---|
| 62 | REAL,ALLOCATABLE,SAVE :: molar_frac(:,:,:) ! Molar fraction of each species (mol/mol) |
---|
| 63 | REAL :: mass_frac(ngrid,nlayer,ngasmx) ! Mass fraction of each species (kg/kg) |
---|
| 64 | REAL :: lambda_i(ngrid,nlayer,ngasmx) ! Conductivity of each species (W.m-1.K-1) |
---|
| 65 | REAL :: nu_i(ngrid,nlayer,ngasmx) ! Viscosity of each species (Pa.s) |
---|
| 66 | REAL :: G_ik(ngrid,nlayer) |
---|
| 67 | REAL :: somme(ngrid,nlayer) |
---|
| 68 | LOGICAL,ALLOCATABLE,SAVE :: here(:) |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | !----------------------------------------------------------------------- |
---|
| 72 | ! The atmospheric conductivity is a function of temperature T : |
---|
| 73 | ! conductivity = Akk* T**skk |
---|
| 74 | !----------------------------------------------------------------------- |
---|
| 75 | |
---|
| 76 | |
---|
| 77 | !----------------------------------------------------------------------- |
---|
| 78 | ! |
---|
| 79 | ! Calculation of alpha and lambda coefficients |
---|
| 80 | ! |
---|
| 81 | !----------------------------------------------------------------------- |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | zlev(:,:) = zzlev(:,:) |
---|
| 85 | zlev(:,nlayer+1)= zzlev(:,nlayer)+zztop |
---|
| 86 | |
---|
| 87 | if(firstcall) then |
---|
| 88 | if(.not.force_conduction) then |
---|
| 89 | allocate(akk(ngasmx),skk(ngasmx),molar_mass(ngasmx),here(ngasmx)) |
---|
| 90 | allocate(akk_visc(ngasmx),skk_visc(ngasmx),molar_frac(ngrid,nlayer,ngasmx)) |
---|
| 91 | do igas=1,ngasmx |
---|
| 92 | if(igas.eq.igas_H2) then |
---|
| 93 | !Interpolated from Mehl et al., (2010) |
---|
| 94 | !valid between 20 and 1000 K (max 7 percent of error) |
---|
| 95 | !Equilibrium at local temperature (ortho/para effect takes into account) |
---|
| 96 | akk(igas) = 0.001539 |
---|
| 97 | skk(igas) = 0.8265 |
---|
| 98 | molar_mass(igas) = 2.01e-3 |
---|
| 99 | akk_visc(igas) = 1.2613e-7 |
---|
| 100 | skk_visc(igas) = 0.7445 |
---|
| 101 | molar_frac(:,:,igas) = gfrac(igas) |
---|
| 102 | here(igas) = .true. |
---|
| 103 | elseif(igas.eq.igas_He) then |
---|
| 104 | !Interpolated from Hurly et al., (2007) |
---|
| 105 | !valid between 20 and 1000 K (max 3 percent of error) |
---|
| 106 | akk(igas) = 0.003530 |
---|
| 107 | skk(igas) = 0.6655 |
---|
| 108 | molar_mass(igas) = 4.003e-3 |
---|
| 109 | akk_visc(igas) = 4.5054e-7 |
---|
| 110 | skk_visc(igas) = 0.6658 |
---|
| 111 | molar_frac(:,:,igas) = gfrac(igas) |
---|
| 112 | here(igas) = .true. |
---|
| 113 | ! Add more molecules here and the reference PLEASE! |
---|
| 114 | else |
---|
| 115 | akk(igas) = 0.0 |
---|
| 116 | skk(igas) = 0.0 |
---|
| 117 | molar_mass(igas) = 0.0 |
---|
| 118 | akk_visc(igas) = 0.0 |
---|
| 119 | skk_visc(igas) = 0.0 |
---|
| 120 | molar_frac(:,:,igas) = 0.0 |
---|
| 121 | here(igas) = .false. |
---|
| 122 | endif |
---|
| 123 | enddo |
---|
| 124 | endif |
---|
| 125 | endif |
---|
| 126 | |
---|
| 127 | if(force_conduction) then |
---|
| 128 | lambda(:,1) = a_coeff*tsurf(:)**s_coeff / zzlay(:,1) |
---|
| 129 | DO i = 2 , nlayer |
---|
| 130 | lambda(:,i) = a_coeff*zt(:,i)**s_coeff / (zzlay(:,i)-zzlay(:,i-1)) |
---|
| 131 | ENDDO |
---|
| 132 | else |
---|
| 133 | ! Total conductivity is not equal to sum of conductivities of different species |
---|
| 134 | ! We use the semi-empirical formulation from Mason et al., (1959) |
---|
| 135 | mass_frac = 0.0 |
---|
| 136 | do igas=1,ngasmx |
---|
| 137 | if(gfrac(igas).eq.-1) then |
---|
| 138 | mass_frac(:,:,igas) = qvar(:,:,igas) |
---|
| 139 | else |
---|
| 140 | mass_frac(:,:,igas) = molar_frac(:,:,igas)*molar_mass(igas)/muvar(:,:) |
---|
| 141 | endif |
---|
| 142 | enddo |
---|
| 143 | lambda_i(:,:,:) = 0.0 |
---|
| 144 | nu_i(:,:,:) = 0.0 |
---|
| 145 | somme(:,:) = 0.0 |
---|
| 146 | do igas=1,ngasmx |
---|
| 147 | if(.not.(here(igas))) cycle |
---|
| 148 | lambda_i(:,:,igas) = akk(igas)*zt(:,:)**skk(igas) |
---|
| 149 | lambda_i(:,1,igas) = akk(igas)*tsurf(:)**skk(igas) |
---|
| 150 | nu_i(:,:,igas) = akk_visc(igas)*zt(:,:)**skk_visc(igas) |
---|
| 151 | nu_i(:,1,igas) = akk_visc(igas)*tsurf(:)**skk_visc(igas) |
---|
| 152 | enddo |
---|
| 153 | do igas=1,ngasmx |
---|
| 154 | if(.not.(here(igas))) cycle |
---|
| 155 | G_ik(:,:) = 0.0 |
---|
| 156 | do kgas=1,ngasmx |
---|
| 157 | if(.not.(here(kgas))) cycle |
---|
| 158 | if(kgas.ne.igas) then |
---|
| 159 | G_ik(:,:) = G_ik(:,:) + (mass_frac(:,:,kgas)/mass_frac(:,:,igas))*(1.065/(2.*SQRT(2.)))*(1.+molar_mass(igas)/molar_mass(kgas))**(-1./2.)* & |
---|
| 160 | (1.+((nu_i(:,:,igas)*molar_mass(kgas)/(nu_i(:,:,kgas)*molar_mass(igas)))**(1./2.))*(molar_mass(igas)/molar_mass(kgas))**(1./4.))**2 |
---|
| 161 | endif |
---|
| 162 | enddo |
---|
| 163 | somme(:,:) = somme(:,:) + lambda_i(:,:,igas)/(1+G_ik(:,:)) |
---|
| 164 | enddo |
---|
| 165 | lambda(:,1) = somme(:,1) / zzlay(:,1) |
---|
| 166 | DO i = 2 , nlayer |
---|
| 167 | lambda(:,i) = somme(:,i) / (zzlay(:,i)-zzlay(:,i-1)) |
---|
| 168 | ENDDO |
---|
| 169 | endif |
---|
| 170 | |
---|
| 171 | DO i=1,nlayer-1 |
---|
| 172 | muvol(:,i)=pplay(:,i)/(r*zt(:,i)) |
---|
| 173 | alpha(:,i)=cpp*(muvol(:,i)/ptimestep) & |
---|
| 174 | *(zlev(:,i+1)-zlev(:,i)) |
---|
| 175 | ENDDO |
---|
| 176 | |
---|
| 177 | muvol(:,nlayer)=pplay(:,nlayer)/(r*zt(:,nlayer)) |
---|
| 178 | alpha(:,nlayer)=cpp*(muvol(:,nlayer)/ptimestep) & |
---|
| 179 | *(zlev(:,nlayer+1)-zlev(:,nlayer)) |
---|
| 180 | |
---|
| 181 | !-------------------------------------------------------------------- |
---|
| 182 | ! |
---|
| 183 | ! Calculation of C and D coefficients |
---|
| 184 | ! |
---|
| 185 | !------------------------------------------------------------------- |
---|
| 186 | |
---|
| 187 | den(:,1)=alpha(:,1)+lambda(:,2)+lambda(:,1) |
---|
| 188 | C(:,1) =lambda(:,1)*(tsurf(:)-zt(:,1)) & |
---|
| 189 | +lambda(:,2)*(zt(:,2)-zt(:,1)) |
---|
| 190 | C(:,1) =C(:,1)/den(:,1) |
---|
| 191 | D(:,1) =lambda(:,2)/den(:,1) |
---|
| 192 | |
---|
| 193 | DO i = 2,nlayer-1 |
---|
| 194 | den(:,i)=alpha(:,i)+lambda(:,i+1) |
---|
| 195 | den(:,i)=den(:,i)+lambda(:,i)*(1-D(:,i-1)) |
---|
| 196 | |
---|
| 197 | C(:,i) =lambda(:,i+1)*(zt(:,i+1)-zt(:,i)) & |
---|
| 198 | +lambda(:,i)*(zt(:,i-1)-zt(:,i)+C(:,i-1)) |
---|
| 199 | C(:,i) =C(:,i)/den(:,i) |
---|
| 200 | |
---|
| 201 | D(:,i) =lambda(:,i+1) / den(:,i) |
---|
| 202 | ENDDO |
---|
| 203 | |
---|
| 204 | den(:,nlayer)=alpha(:,nlayer) + lambda(:,nlayer) & |
---|
| 205 | * (1-D(:,nlayer-1)) |
---|
| 206 | C(:,nlayer) =C(:,nlayer-1)+zt(:,nlayer-1)-zt(:,nlayer) |
---|
| 207 | C(:,nlayer) =(C(:,nlayer)*lambda(:,nlayer)+phitop) & |
---|
| 208 | / den(:,nlayer) |
---|
| 209 | |
---|
| 210 | !---------------------------------------------------------------------- |
---|
| 211 | ! |
---|
| 212 | ! Calculation of new temperature pdt |
---|
| 213 | ! |
---|
| 214 | !---------------------------------------------------------------------- |
---|
| 215 | |
---|
| 216 | DO i=1,nlayer |
---|
| 217 | pdt(:,i)=0. |
---|
| 218 | ENDDO |
---|
| 219 | pdt(:,nlayer)=C(:,nlayer) |
---|
| 220 | DO i=nlayer-1,1,-1 |
---|
| 221 | pdt(:,i)=C(:,i)+D(:,i)*pdt(:,i+1) |
---|
| 222 | ENDDO |
---|
| 223 | !----------------------------------------------------------------------- |
---|
| 224 | ! |
---|
| 225 | ! Calculation of zdtconduc |
---|
| 226 | ! |
---|
| 227 | !----------------------------------------------------------------------- |
---|
| 228 | |
---|
| 229 | DO i=1,nlayer |
---|
| 230 | zdtconduc(:,i)=pdt(:,i)/ptimestep |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | END subroutine conduction |
---|
| 234 | |
---|
| 235 | END MODULE conduction_mod |
---|