1 | MODULE conduction_mod |
---|
2 | |
---|
3 | IMPLICIT NONE |
---|
4 | |
---|
5 | CONTAINS |
---|
6 | |
---|
7 | SUBROUTINE conduction(ngrid,nlayer,nq,ptimestep,pplay,pplev,zt, & |
---|
8 | tsurf,zzlev,zzlay,muvar,qvar,firstcall,zdtconduc) |
---|
9 | |
---|
10 | use comcstfi_mod, only: r, cpp, mugaz |
---|
11 | use callkeys_mod, only: phitop,zztop,a_coeff,s_coeff,force_conduction |
---|
12 | use gases_h |
---|
13 | |
---|
14 | !======================================================================= |
---|
15 | ! |
---|
16 | ! Molecular thermal conduction |
---|
17 | ! |
---|
18 | ! N. Descamp, F. Forget 05/1999 |
---|
19 | ! |
---|
20 | !======================================================================= |
---|
21 | |
---|
22 | !----------------------------------------------------------------------- |
---|
23 | ! Declarations: |
---|
24 | !----------------------------------------------------------------------- |
---|
25 | |
---|
26 | ! Arguments: |
---|
27 | ! ---------- |
---|
28 | |
---|
29 | INTEGER,intent(in) :: ngrid ! number of atmospheric columns |
---|
30 | INTEGER,intent(in) :: nlayer ! number of atmospheric layers |
---|
31 | INTEGER,intent(in) :: nq ! number of tracers |
---|
32 | REAL,intent(in) :: ptimestep |
---|
33 | REAL,intent(in) :: pplay(ngrid,nlayer) ! pressure at middle of layers (Pa) |
---|
34 | REAL,intent(in) :: pplev(ngrid,nlayer+1) ! (Pa) |
---|
35 | REAL,intent(in) :: zzlay(ngrid,nlayer) ! (m) |
---|
36 | REAL,intent(in) :: zzlev(ngrid,nlayer+1) ! (m) |
---|
37 | REAL,intent(in) :: zt(ngrid,nlayer) ! Temperature [K] |
---|
38 | REAL,intent(in) :: tsurf(ngrid) ! Surface temperature [K] |
---|
39 | REAL,intent(in) :: muvar(ngrid,nlayer+1) ! Molar mass (kg.mol-1) |
---|
40 | REAL,intent(in) :: qvar(ngrid,nlayer,nq) ! Tracers (kg/kg) |
---|
41 | LOGICAL,intent(in) :: firstcall ! Signals first call to physics. |
---|
42 | |
---|
43 | REAL,intent(out) :: zdtconduc(ngrid,nlayer) ! [K.s-1] |
---|
44 | |
---|
45 | ! Local: |
---|
46 | ! ------ |
---|
47 | |
---|
48 | INTEGER :: i,ig,l,igas,kgas |
---|
49 | REAL :: alpha(ngrid,nlayer) |
---|
50 | REAL :: lambda(ngrid,nlayer) |
---|
51 | REAL :: muvol(ngrid,nlayer) ! kg.m-3 |
---|
52 | REAL :: C(ngrid,nlayer) |
---|
53 | REAL :: D(ngrid,nlayer) |
---|
54 | REAL :: den(ngrid,nlayer) |
---|
55 | REAL :: pdt(ngrid,nlayer) |
---|
56 | REAL :: zlev(ngrid,nlayer+1) |
---|
57 | REAL,ALLOCATABLE,SAVE :: akk(:) ! Akk conductivity coefficient for each species |
---|
58 | REAL,ALLOCATABLE,SAVE :: skk(:) ! skk conductivity coefficient for each species |
---|
59 | REAL,ALLOCATABLE,SAVE :: molar_mass(:) ! molar mass of each species (kg.m-3) |
---|
60 | REAL,ALLOCATABLE,SAVE :: akk_visc(:) ! Akk viscosity coefficient for each species |
---|
61 | REAL,ALLOCATABLE,SAVE :: skk_visc(:) ! skk viscosity coefficient for each species |
---|
62 | REAL,ALLOCATABLE,SAVE :: molar_frac(:,:,:) ! Molar fraction of each species (mol/mol) |
---|
63 | REAL :: mass_frac(ngrid,nlayer,ngasmx) ! Mass fraction of each species (kg/kg) |
---|
64 | REAL :: lambda_i(ngrid,nlayer,ngasmx) ! Conductivity of each species (W.m-1.K-1) |
---|
65 | REAL :: nu_i(ngrid,nlayer,ngasmx) ! Viscosity of each species (Pa.s) |
---|
66 | REAL :: G_ik(ngrid,nlayer) |
---|
67 | REAL :: somme(ngrid,nlayer) |
---|
68 | LOGICAL,ALLOCATABLE,SAVE :: here(:) |
---|
69 | |
---|
70 | |
---|
71 | !----------------------------------------------------------------------- |
---|
72 | ! The atmospheric conductivity is a function of temperature T : |
---|
73 | ! conductivity = Akk* T**skk |
---|
74 | !----------------------------------------------------------------------- |
---|
75 | |
---|
76 | |
---|
77 | !----------------------------------------------------------------------- |
---|
78 | ! |
---|
79 | ! Calculation of alpha and lambda coefficients |
---|
80 | ! |
---|
81 | !----------------------------------------------------------------------- |
---|
82 | |
---|
83 | |
---|
84 | zlev(:,:) = zzlev(:,:) |
---|
85 | zlev(:,nlayer+1)= zzlev(:,nlayer)+zztop |
---|
86 | |
---|
87 | if(firstcall) then |
---|
88 | if(.not.force_conduction) then |
---|
89 | allocate(akk(ngasmx),skk(ngasmx),molar_mass(ngasmx),here(ngasmx)) |
---|
90 | allocate(akk_visc(ngasmx),skk_visc(ngasmx),molar_frac(ngrid,nlayer,ngasmx)) |
---|
91 | do igas=1,ngasmx |
---|
92 | if(igas.eq.igas_H2) then |
---|
93 | !Interpolated from Mehl et al., (2010) |
---|
94 | !valid between 20 and 1000 K (max 7 percent of error) |
---|
95 | !Equilibrium at local temperature (ortho/para effect takes into account) |
---|
96 | akk(igas) = 0.001539 |
---|
97 | skk(igas) = 0.8265 |
---|
98 | molar_mass(igas) = 2.01e-3 |
---|
99 | akk_visc(igas) = 1.2613e-7 |
---|
100 | skk_visc(igas) = 0.7445 |
---|
101 | molar_frac(:,:,igas) = gfrac(igas) |
---|
102 | here(igas) = .true. |
---|
103 | elseif(igas.eq.igas_He) then |
---|
104 | !Interpolated from Hurly et al., (2007) |
---|
105 | !valid between 20 and 1000 K (max 3 percent of error) |
---|
106 | akk(igas) = 0.003530 |
---|
107 | skk(igas) = 0.6655 |
---|
108 | molar_mass(igas) = 4.003e-3 |
---|
109 | akk_visc(igas) = 4.5054e-7 |
---|
110 | skk_visc(igas) = 0.6658 |
---|
111 | molar_frac(:,:,igas) = gfrac(igas) |
---|
112 | here(igas) = .true. |
---|
113 | ! Add more molecules here and the reference PLEASE! |
---|
114 | else |
---|
115 | akk(igas) = 0.0 |
---|
116 | skk(igas) = 0.0 |
---|
117 | molar_mass(igas) = 0.0 |
---|
118 | akk_visc(igas) = 0.0 |
---|
119 | skk_visc(igas) = 0.0 |
---|
120 | molar_frac(:,:,igas) = 0.0 |
---|
121 | here(igas) = .false. |
---|
122 | endif |
---|
123 | enddo |
---|
124 | endif |
---|
125 | endif |
---|
126 | |
---|
127 | if(force_conduction) then |
---|
128 | lambda(:,1) = a_coeff*tsurf(:)**s_coeff / zzlay(:,1) |
---|
129 | DO i = 2 , nlayer |
---|
130 | lambda(:,i) = a_coeff*zt(:,i)**s_coeff / (zzlay(:,i)-zzlay(:,i-1)) |
---|
131 | ENDDO |
---|
132 | else |
---|
133 | ! Total conductivity is not equal to sum of conductivities of different species |
---|
134 | ! We use the semi-empirical formulation from Mason et al., (1959) |
---|
135 | mass_frac = 0.0 |
---|
136 | do igas=1,ngasmx |
---|
137 | if(gfrac(igas).eq.-1) then |
---|
138 | mass_frac(:,:,igas) = qvar(:,:,igas) |
---|
139 | else |
---|
140 | mass_frac(:,:,igas) = molar_frac(:,:,igas)*molar_mass(igas)/muvar(:,:) |
---|
141 | endif |
---|
142 | enddo |
---|
143 | lambda_i(:,:,:) = 0.0 |
---|
144 | nu_i(:,:,:) = 0.0 |
---|
145 | somme(:,:) = 0.0 |
---|
146 | do igas=1,ngasmx |
---|
147 | if(.not.(here(igas))) cycle |
---|
148 | lambda_i(:,:,igas) = akk(igas)*zt(:,:)**skk(igas) |
---|
149 | lambda_i(:,1,igas) = akk(igas)*tsurf(:)**skk(igas) |
---|
150 | nu_i(:,:,igas) = akk_visc(igas)*zt(:,:)**skk_visc(igas) |
---|
151 | nu_i(:,1,igas) = akk_visc(igas)*tsurf(:)**skk_visc(igas) |
---|
152 | enddo |
---|
153 | do igas=1,ngasmx |
---|
154 | if(.not.(here(igas))) cycle |
---|
155 | G_ik(:,:) = 0.0 |
---|
156 | do kgas=1,ngasmx |
---|
157 | if(.not.(here(kgas))) cycle |
---|
158 | if(kgas.ne.igas) then |
---|
159 | G_ik(:,:) = G_ik(:,:) + (mass_frac(:,:,kgas)/mass_frac(:,:,igas))*(1.065/(2.*SQRT(2.)))*(1.+molar_mass(igas)/molar_mass(kgas))**(-1./2.)* & |
---|
160 | (1.+((nu_i(:,:,igas)*molar_mass(kgas)/(nu_i(:,:,kgas)*molar_mass(igas)))**(1./2.))*(molar_mass(igas)/molar_mass(kgas))**(1./4.))**2 |
---|
161 | endif |
---|
162 | enddo |
---|
163 | somme(:,:) = somme(:,:) + lambda_i(:,:,igas)/(1+G_ik(:,:)) |
---|
164 | enddo |
---|
165 | lambda(:,1) = somme(:,1) / zzlay(:,1) |
---|
166 | DO i = 2 , nlayer |
---|
167 | lambda(:,i) = somme(:,i) / (zzlay(:,i)-zzlay(:,i-1)) |
---|
168 | ENDDO |
---|
169 | endif |
---|
170 | |
---|
171 | DO i=1,nlayer-1 |
---|
172 | muvol(:,i)=pplay(:,i)/(r*zt(:,i)) |
---|
173 | alpha(:,i)=cpp*(muvol(:,i)/ptimestep) & |
---|
174 | *(zlev(:,i+1)-zlev(:,i)) |
---|
175 | ENDDO |
---|
176 | |
---|
177 | muvol(:,nlayer)=pplay(:,nlayer)/(r*zt(:,nlayer)) |
---|
178 | alpha(:,nlayer)=cpp*(muvol(:,nlayer)/ptimestep) & |
---|
179 | *(zlev(:,nlayer+1)-zlev(:,nlayer)) |
---|
180 | |
---|
181 | !-------------------------------------------------------------------- |
---|
182 | ! |
---|
183 | ! Calculation of C and D coefficients |
---|
184 | ! |
---|
185 | !------------------------------------------------------------------- |
---|
186 | |
---|
187 | den(:,1)=alpha(:,1)+lambda(:,2)+lambda(:,1) |
---|
188 | C(:,1) =lambda(:,1)*(tsurf(:)-zt(:,1)) & |
---|
189 | +lambda(:,2)*(zt(:,2)-zt(:,1)) |
---|
190 | C(:,1) =C(:,1)/den(:,1) |
---|
191 | D(:,1) =lambda(:,2)/den(:,1) |
---|
192 | |
---|
193 | DO i = 2,nlayer-1 |
---|
194 | den(:,i)=alpha(:,i)+lambda(:,i+1) |
---|
195 | den(:,i)=den(:,i)+lambda(:,i)*(1-D(:,i-1)) |
---|
196 | |
---|
197 | C(:,i) =lambda(:,i+1)*(zt(:,i+1)-zt(:,i)) & |
---|
198 | +lambda(:,i)*(zt(:,i-1)-zt(:,i)+C(:,i-1)) |
---|
199 | C(:,i) =C(:,i)/den(:,i) |
---|
200 | |
---|
201 | D(:,i) =lambda(:,i+1) / den(:,i) |
---|
202 | ENDDO |
---|
203 | |
---|
204 | den(:,nlayer)=alpha(:,nlayer) + lambda(:,nlayer) & |
---|
205 | * (1-D(:,nlayer-1)) |
---|
206 | C(:,nlayer) =C(:,nlayer-1)+zt(:,nlayer-1)-zt(:,nlayer) |
---|
207 | C(:,nlayer) =(C(:,nlayer)*lambda(:,nlayer)+phitop) & |
---|
208 | / den(:,nlayer) |
---|
209 | |
---|
210 | !---------------------------------------------------------------------- |
---|
211 | ! |
---|
212 | ! Calculation of new temperature pdt |
---|
213 | ! |
---|
214 | !---------------------------------------------------------------------- |
---|
215 | |
---|
216 | DO i=1,nlayer |
---|
217 | pdt(:,i)=0. |
---|
218 | ENDDO |
---|
219 | pdt(:,nlayer)=C(:,nlayer) |
---|
220 | DO i=nlayer-1,1,-1 |
---|
221 | pdt(:,i)=C(:,i)+D(:,i)*pdt(:,i+1) |
---|
222 | ENDDO |
---|
223 | !----------------------------------------------------------------------- |
---|
224 | ! |
---|
225 | ! Calculation of zdtconduc |
---|
226 | ! |
---|
227 | !----------------------------------------------------------------------- |
---|
228 | |
---|
229 | DO i=1,nlayer |
---|
230 | zdtconduc(:,i)=pdt(:,i)/ptimestep |
---|
231 | ENDDO |
---|
232 | |
---|
233 | END subroutine conduction |
---|
234 | |
---|
235 | END MODULE conduction_mod |
---|