source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3939

Last change on this file since 3939 was 3938, checked in by jbclement, 3 months ago

PEM:

  • Correction of the process to balance the H2O flux from and into the atmosphere accross reservoirs: (i) computation of H2O amount going from/in the atmosphere is corrected (missing dt and wrong condition); (ii) computation of the scaling factor is corrected because we need to balance all the icetable/adsorbed/surface ice flux but it affects only sublimating/condensing surface ice flux; (iii) process of balancing is modified to be applied to every flux by scaling instead of applying it only to positive or negative flux by trimming; (iv) balance is now fully processed by the tendency before evolving the ice. This is done through dedicated subroutines.
  • Correction of ice conversion between the layering algorithm and PEM ice variables (density factor was missing).
  • Addition of H2O flux balance and related stopping criterion for the layering algorithm.
  • Few updates for files in the deftank to be in line with the wiki Planeto pages.

JBC

File size: 67.4 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2, stopping_crit_h2o
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice, balance_h2oice_reservoirs
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, &
72                                      rho_co2ice, rho_h2oice, ptrarray,                                              &
73                                      stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str
74use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
75use parse_args_mod,             only: parse_args
76use job_timelimit_mod,          only: timelimit, antetime, timewall
77use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
78use surf_temp,                  only: update_tsurf_nearest_baresoil
79
80#ifndef CPP_STD
81    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
82    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
83                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
84                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
85                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
86    use dimradmars_mod,     only: totcloudfrac, albedo
87    use dust_param_mod,     only: tauscaling
88    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
89    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
90    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
91    use surfini_mod,        only: surfini
92    use comcstfi_h,         only: mugaz
93#else
94    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
95    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
96                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
97                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
98    use aerosol_mod,        only: iniaerosol
99    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
100    use comcstfi_mod,       only: pi, rad, g, r, cpp, rcp, mugaz
101#endif
102
103#ifndef CPP_1D
104    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
105    use iniphysiq_mod,            only: iniphysiq
106    use control_mod,              only: iphysiq, day_step, nsplit_phys
107#else
108    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
109    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
110    use regular_lonlat_mod,       only: init_regular_lonlat
111    use physics_distribution_mod, only: init_physics_distribution
112    use mod_grid_phy_lmdz,        only: regular_lonlat
113    use init_testphys1d_mod,      only: init_testphys1d
114    use comvert_mod,              only: ap, bp
115    use writerestart1D_mod,       only: writerestart1D
116#endif
117
118implicit none
119
120include "dimensions.h"
121include "paramet.h"
122include "comgeom.h"
123include "iniprint.h"
124
125! Same variable names as in the PCM
126integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
127integer, parameter :: nlayer = llm ! Number of vertical layer
128integer            :: ngrid        ! Number of physical grid points
129integer            :: nq           ! Number of tracer
130integer            :: day_ini      ! First day of the simulation
131real               :: pday         ! Physical day
132real               :: time_phys    ! Same as in PCM
133real               :: ptimestep    ! Same as in PCM
134real               :: ztime_fin    ! Same as in PCM
135
136! Variables to read "start.nc"
137character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
138
139! Dynamic variables
140real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
141real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
142real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
143real, dimension(:,:,:), allocatable :: q             ! champs advectes
144real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
145real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
146real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
147real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
148real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
149real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
150real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
151real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
152real                                :: time_0
153
154! Variables to read starfi.nc
155character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
156character(2)            :: str2
157integer                 :: ncid, status                           ! Variable for handling opening of files
158integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
159integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
160
161! Variables to read starfi.nc and write restartfi.nc
162real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
163real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
164real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
165real                            :: total_surface ! Total surface of the planet
166
167! Variables for h2o ice evolution
168real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
169real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
170real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
171real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
172logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
173real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
174real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
175real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
176real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
177real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
178real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
179real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
180integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
181real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
182real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
183integer                               :: timelen              ! # time samples
184real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
185real, dimension(:,:),    allocatable  :: d_h2oice_new         ! Adjusted tendencies to keep balance between donor and recipient
186real                                  :: S_atm_2_h2o, S_h2o_2_atm, S_atm_2_h2oice, S_h2oice_2_atm ! Variables to balance H2O
187
188! Variables for co2 ice evolution
189real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
190real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
191real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
192logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
193real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
194real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
195logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
196real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
197real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
198real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
199real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
200real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
201
202! Variables for the evolution of layered layerings_map
203type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
204type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
205logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
206real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
207
208! Variables for slopes
209integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
210integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
211
212! Variables for surface and soil
213real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
214real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
215real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
216real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
217real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
218real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
219real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
220real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
221real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
222real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
223real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
224real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
225real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
226real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
227real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
228real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
229real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
230logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
231real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
232real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
233real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
234real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
235real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
236real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
237real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
238real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
239
240! Some variables for the PEM run
241real, parameter       :: year_step = 1   ! Timestep for the pem
242real                  :: i_myear_leg     ! Number of iteration
243real                  :: n_myear_leg     ! Maximum number of iterations before stopping
244real                  :: i_myear         ! Global number of Martian years of the chained simulations
245real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
246real                  :: timestep        ! Timestep [s]
247integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
248integer(kind = 8)     :: c1, c2          ! Counts of processor clock
249character(8)          :: date
250character(10)         :: time
251character(5)          :: zone
252integer, dimension(8) :: values
253character(128)        :: dir = ' '
254character(32)         :: logname = ' '
255character(32)         :: hostname = ' '
256
257#ifdef CPP_STD
258    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
259    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
260    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
262    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
263    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
264    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
265    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
266    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
267    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
268    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
269    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
270    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
271    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
272    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
273#endif
274
275#ifdef CPP_1D
276    integer            :: nsplit_phys
277    integer, parameter :: jjm_value = jjm - 1
278    integer            :: day_step
279
280    ! Dummy variables to use the subroutine 'init_testphys1d'
281    logical                             :: therestart1D, therestartfi, ctrl_h2ovap, ctrl_h2oice
282    integer                             :: ndt, day0
283    real                                :: ptif, pks, day, gru, grv, relaxtime_h2ovap, relaxtime_h2oice
284    real, dimension(:),     allocatable :: zqsat
285    real, dimension(:,:,:), allocatable :: dq, dqdyn
286    real, dimension(nlayer)             :: play, w, qref_h2ovap, qref_h2oice
287    real, dimension(nlayer + 1)         :: plev
288#else
289    integer, parameter                :: jjm_value = jjm
290    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
291    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
292    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
293#endif
294
295! Loop variables
296integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
297real    :: totmass_ini
298logical :: num_str
299
300! CODE
301! Elapsed time with system clock
302call system_clock(count_rate = cr)
303call system_clock(c1)
304
305! Parse command-line options
306call parse_args()
307
308! Header
309write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
310write(*,*) '           +         _______  ________  ____    ____      *           + '
311write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
312write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
313write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
314write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
315write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
316write(*,*) '  .      *          .   *       .   +       *          .        +      .'
317
318! Some user info
319call date_and_time(date,time,zone,values)
320call getcwd(dir)      ! Current directory
321call getlog(logname)  ! User name
322call hostnm(hostname) ! Machine/station name
323write(*,*)
324write(*,*) '********* PEM information *********'
325write(*,*) '+ User     : '//trim(logname)
326write(*,*) '+ Machine  : '//trim(hostname)
327write(*,*) '+ Directory: '//trim(dir)
328write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
329write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
330
331! Parallel variables
332#ifndef CPP_STD
333    is_sequential = .true.
334    is_parallel = .false.
335    is_mpi_root = .true.
336    is_omp_root = .true.
337    is_master = .true.
338#endif
339
340! Some constants
341day_ini = 0
342time_phys = 0.
343ngrid = ngridmx
344A = (1./m_co2 - 1./m_noco2)
345B = 1./m_noco2
346year_day = 669
347daysec = 88775.
348timestep = year_day*daysec*year_step
349
350!----------------------------- INITIALIZATION --------------------------
351!------------------------
352! I   Initialization
353!    I_a Read the "run.def"
354!------------------------
355write(*,*)
356write(*,*) '********* PEM initialization *********'
357write(*,*) '> Reading "run.def" (PEM)'
358#ifndef CPP_1D
359    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
360    call conf_gcm(99,.true.)
361    call infotrac_init
362    nq = nqtot
363    allocate(q(ip1jmp1,llm,nqtot))
364    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
365#else
366    allocate(q(1,llm,nqtot),pdyn(1))
367    allocate(longitude(1),latitude(1),cell_area(1))
368
369    therestart1D = .false. ! Default value
370    inquire(file = 'start1D.txt',exist = therestart1D)
371    if (.not. therestart1D) then
372        write(*,*) 'There is no "start1D.txt" file!'
373        error stop 'Initialization cannot be done for the 1D PEM.'
374    endif
375    therestartfi = .false. ! Default value
376    inquire(file = 'startfi.nc',exist = therestartfi)
377    if (.not. therestartfi) then
378        write(*,*) 'There is no "startfi.nc" file!'
379        error stop 'Initialization cannot be done for the 1D PEM.'
380    endif
381
382    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
383    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
384                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
385                         play,plev,latitude,longitude,cell_area,                                              &
386                         ctrl_h2ovap,relaxtime_h2ovap,qref_h2ovap,ctrl_h2oice,relaxtime_h2oice,qref_h2oice)
387    nsplit_phys = 1
388    day_step = steps_per_sol
389#endif
390
391call conf_pem(i_myear,n_myear)
392
393!------------------------
394! I   Initialization
395!    I_b Read of the "start.nc" and "starfi.nc"
396!------------------------
397! I_b.1 Read "start.nc"
398write(*,*) '> Reading "start.nc"'
399allocate(ps_start0(ngrid))
400#ifndef CPP_1D
401    allocate(pdyn(ip1jmp1))
402    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
403
404    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
405
406    call iniconst ! Initialization of dynamical constants (comconst_mod)
407    call inigeom ! Initialization of geometry
408
409    allocate(ap(nlayer + 1))
410    allocate(bp(nlayer + 1))
411    status = nf90_open(start_name,NF90_NOWRITE,ncid)
412    status = nf90_inq_varid(ncid,"ap",apvarid)
413    status = nf90_get_var(ncid,apvarid,ap)
414    status = nf90_inq_varid(ncid,"bp",bpvarid)
415    status = nf90_get_var(ncid,bpvarid,bp)
416    status = nf90_close(ncid)
417
418    ! Initialization of physics constants and variables (comcstfi_h)
419    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
420#else
421    ps_start0(1) = pdyn(1)
422#endif
423deallocate(pdyn)
424
425! In the PCM, these values are given to the physic by the dynamic.
426! Here we simply read them in the "startfi.nc" file
427status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
428status = nf90_inq_varid(ncid,"longitude",lonvarid)
429status = nf90_get_var(ncid,lonvarid,longitude)
430status = nf90_inq_varid(ncid,"latitude",latvarid)
431status = nf90_get_var(ncid,latvarid,latitude)
432status = nf90_inq_varid(ncid,"area",areavarid)
433status = nf90_get_var(ncid,areavarid,cell_area)
434status = nf90_inq_varid(ncid,"soildepth",sdvarid)
435status = nf90_get_var(ncid,sdvarid,mlayer)
436status = nf90_close(ncid)
437
438! I_b.2 Read the "startfi.nc"
439! First we read the initial state (starfi.nc)
440#ifndef CPP_STD
441    write(*,*) '> Reading "startfi.nc"'
442    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
443                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
444                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
445
446    ! Remove unphysical values of surface tracer
447    where (qsurf < 0.) qsurf = 0.
448
449    call surfini(ngrid,nslope,qsurf)
450#else
451    call phys_state_var_init(nq)
452    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
453    call initracer(ngrid,nq)
454    call iniaerosol()
455    allocate(tsurf_read_generic(ngrid))
456    allocate(qsurf_read_generic(ngrid,nq))
457    allocate(tsoil_read_generic(ngrid,nsoilmx))
458    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
459    allocate(emis_read_generic(ngrid))
460    allocate(albedo_read_generic(ngrid,2))
461    allocate(qsurf(ngrid,nq,1))
462    allocate(tsurf(ngrid,1))
463    allocate(tsoil(ngrid,nsoilmx,1))
464    allocate(emis(ngrid,1))
465    allocate(watercap(ngrid,1))
466    allocate(watercaptag(ngrid))
467    allocate(albedo(ngrid,2,1))
468    allocate(inertiesoil(ngrid,nsoilmx,1))
469    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
470                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
471                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
472                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
473    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
474
475    nslope = 1
476    call ini_comslope_h(ngrid,1)
477
478    qsurf(:,:,1) = qsurf_read_generic
479    tsurf(:,1) = tsurf_read_generic
480    tsoil(:,:,1) = tsoil_read_generic
481    emis(:,1) = emis_read_generic
482    watercap(:,1) = 0.
483    watercaptag(:) = .false.
484    albedo(:,1,1) = albedo_read_generic(:,1)
485    albedo(:,2,1) = albedo_read_generic(:,2)
486    inertiesoil(:,:,1) = inertiedat
487
488    if (nslope == 1) then
489        def_slope(1) = 0
490        def_slope(2) = 0
491        def_slope_mean = 0
492        subslope_dist(:,1) = 1.
493    endif
494
495    ! Remove unphysical values of surface tracer
496    qsurf(:,:,1) = qsurf_read_generic
497    where (qsurf < 0.) qsurf = 0.
498
499    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
500#endif
501
502do nnq = 1,nqtot  ! Why not using ini_tracer?
503    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
504    if (noms(nnq) == "h2o_vap") then
505        igcm_h2o_vap = nnq
506        mmol(igcm_h2o_vap) = 18.
507    endif
508    if (noms(nnq) == "co2") igcm_co2 = nnq
509enddo
510
511!------------------------
512! I   Initialization
513!    I_c Subslope parametrisation
514!------------------------
515! Define some slope statistics
516iflat = 1
517do islope = 2,nslope
518    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
519enddo
520write(*,*) 'Flat slope for islope = ',iflat
521write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
522
523!------------------------
524! I   Initialization
525!    I_d Read the PCM data and convert them to the physical grid
526!------------------------
527! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
528call get_timelen_PCM("data_PCM_Y1.nc",timelen)
529
530allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
531allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
532allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
533allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
534allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
535allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
536
537call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
538                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
539
540! Compute the deviation from the average
541allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
542ps_dev = ps_start0 - ps_avg
543tsurf_dev = tsurf - tsurf_avg
544tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
545
546!------------------------
547! I   Initialization
548!    I_e Initialization of the PEM variables and soil
549!------------------------
550call end_comsoil_h_PEM
551call ini_comsoil_h_PEM(ngrid,nslope)
552call end_adsorption_h_PEM
553call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
554call end_ice_table
555call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
556
557allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
558if (soil_pem) then
559    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
560    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
561    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
562    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
563    do l = nsoilmx + 1,nsoilmx_PEM
564        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
565        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
566        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
567    enddo
568    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
569endif !soil_pem
570deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
571
572!------------------------
573! I   Initialization
574!    I_f Compute tendencies
575!------------------------
576allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
577call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
578call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
579d_co2ice_ini = d_co2ice
580deallocate(min_co2_ice,min_h2o_ice)
581
582!------------------------
583! I   Initialization
584!    I_g Compute global surface pressure
585!------------------------
586total_surface = sum(cell_area)
587ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
588ps_avg_global_new = ps_avg_global_ini
589write(*,*) "Total surface of the planet     =", total_surface
590write(*,*) "Initial global average pressure =", ps_avg_global_ini
591
592!------------------------
593! I   Initialization
594!    I_h Read the "startpem.nc"
595!------------------------
596write(*,*) '> Reading "startpem.nc"'
597allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
598allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
599delta_h2o_icetablesublim = 0.
600call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
601              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
602              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
603deallocate(tsurf_avg_yr1)
604
605! We save the places where h2o ice is sublimating
606! We compute the surface of h2o ice sublimating
607allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
608co2ice_sublim_surf_ini = 0.
609h2oice_ini_surf = 0.
610is_co2ice_sublim_ini = .false.
611is_h2oice_sublim_ini = .false.
612is_co2ice_ini = .false.
613co2ice_disappeared = .false.
614totmass_co2ice_ini = 0.
615totmass_atmco2_ini = 0.
616if (layering_algo) then
617    do ig = 1,ngrid
618        do islope = 1,nslope
619            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
620                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice*rho_co2ice
621            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
622                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice*rho_h2oice
623            else
624                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
625            endif
626        enddo
627    enddo
628    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
629    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
630endif
631do i = 1,ngrid
632    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
633    do islope = 1,nslope
634        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
635        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
636        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
637            is_co2ice_sublim_ini(i,islope) = .true.
638            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
639        endif
640        if (d_h2oice(i,islope) < 0.) then
641            if (h2o_ice(i,islope) > 0.) then
642                is_h2oice_sublim_ini(i,islope) = .true.
643                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
644            else if (h2o_ice_depth(i,islope) > 0.) then
645                is_h2oice_sublim_ini(i,islope) = .true.
646            endif
647        endif
648    enddo
649enddo
650write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
651write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
652
653totmass_adsco2_ini = 0.
654totmass_adsh2o = 0.
655if (adsorption_pem) then
656    do ig = 1,ngrid
657        do islope = 1,nslope
658            do l = 1,nsoilmx_PEM - 1
659                if (l == 1) then
660                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
661                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
662                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
663                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
664                else
665                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
666                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
667                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
668                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
669                endif
670            enddo
671        enddo
672    enddo
673    totmass_adsco2 = totmass_adsco2_ini
674    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
675    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
676endif ! adsorption
677
678!------------------------
679! I   Initialization
680!    I_i Compute orbit criterion
681!------------------------
682#ifndef CPP_STD
683    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
684#else
685    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
686#endif
687
688n_myear_leg = Max_iter_pem
689if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
690
691!-------------------------- END INITIALIZATION -------------------------
692
693!-------------------------------- RUN ----------------------------------
694!------------------------
695! II  Run
696!    II_a Update pressure, ice and tracers
697!------------------------
698write(*,*)
699write(*,*) '********* PEM cycle *********'
700i_myear_leg = 0
701stopPEM = 0
702if (layering_algo) then
703    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
704    new_str = .true.
705    new_lag = .true.
706    do islope = 1,nslope
707        do ig = 1,ngrid
708            current(ig,islope)%p => layerings_map(ig,islope)%top
709        enddo
710    enddo
711endif
712
713do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
714! II.a.1. Compute updated global pressure
715    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
716    write(*,*) "> Updating the surface pressure"
717    ps_avg_global_old = ps_avg_global_new
718    do i = 1,ngrid
719        do islope = 1,nslope
720            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
721        enddo
722    enddo
723    if (adsorption_pem) then
724        do i = 1,ngrid
725            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
726        enddo
727    endif
728    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
729    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
730    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
731
732! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
733    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
734    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
735    do l = 1,nlayer + 1
736        do ig = 1,ngrid
737            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
738        enddo
739    enddo
740    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
741    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
742    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
743    do l = 1,nlayer + 1
744        do ig = 1,ngrid
745            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
746        enddo
747    enddo
748
749! II.a.3. Tracers timeseries
750    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
751    allocate(vmr_co2_PEM_phys(ngrid,timelen))
752    l = 1
753    do ig = 1,ngrid
754        do t = 1,timelen
755            ! H2O
756            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
757                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
758            if (q_h2o_PEM_phys(ig,t) < 0) then
759                q_h2o_PEM_phys(ig,t) = 1.e-30
760            else if (q_h2o_PEM_phys(ig,t) > 1) then
761                q_h2o_PEM_phys(ig,t) = 1.
762            endif
763            ! CO2
764            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
765                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
766                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
767                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
768                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
769            if (q_co2_PEM_phys(ig,t) < 0) then
770                q_co2_PEM_phys(ig,t) = 1.e-30
771            else if (q_co2_PEM_phys(ig,t) > 1) then
772                q_co2_PEM_phys(ig,t) = 1.
773            endif
774            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
775            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
776        enddo
777    enddo
778    deallocate(zplev_timeseries_new,zplev_timeseries_old)
779
780!------------------------
781! II  Run
782!    II_b Evolution of ice
783!------------------------
784    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
785    if (layering_algo) then
786        h2o_ice_depth_old = h2o_ice_depth
787
788        allocate(d_h2oice_new(ngrid,nslope))
789        call stopping_crit_h2o(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,S_atm_2_h2o,S_h2o_2_atm,S_atm_2_h2oice,S_h2oice_2_atm,stopPEM)
790        call balance_h2oice_reservoirs(ngrid,nslope,S_atm_2_h2o,S_h2o_2_atm,S_atm_2_h2oice,S_h2oice_2_atm,h2o_ice,d_h2oice,d_h2oice_new)
791   
792        do islope = 1,nslope
793            do ig = 1,ngrid
794                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice_new(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
795                !call print_layering(layerings_map(ig,islope))
796                co2_ice(ig,islope) = 0.
797                h2o_ice(ig,islope) = 0.
798                h2o_ice_depth(ig,islope) = 0.
799                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
800                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice*rho_co2ice
801                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
802                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice*rho_h2oice
803                else
804                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
805                endif
806            enddo
807        enddo
808        deallocate(d_h2oice_new)
809    else
810        zlag = 0.
811        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
812        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
813    endif
814
815!------------------------
816! II  Run
817!    II_c Flow of glaciers
818!------------------------
819    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
820    if (co2ice_flow .and. nslope > 1) then
821        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
822                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
823        if (layering_algo) then
824            do islope = 1,nslope
825                do ig = 1,ngrid
826                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)/rho_co2ice
827                enddo
828            enddo
829        endif
830    endif
831    if (h2oice_flow .and. nslope > 1) then
832        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
833        if (layering_algo) then
834            do islope = 1,nslope
835                do ig = 1,ngrid
836                    layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)/rho_h2oice
837                enddo
838            enddo
839        endif
840    endif
841
842!------------------------
843! II  Run
844!    II_d Update surface and soil temperatures
845!------------------------
846! II_d.1 Update Tsurf
847    call update_tsurf_nearest_baresoil(ngrid,nslope,iim,jjm_value,tsurf_avg,co2_ice,is_co2ice_ini,co2ice_disappeared)
848
849    if (soil_pem) then
850! II_d.2 Shifting soil temperature to surface
851        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
852
853! II_d.3 Update soil temperature
854        write(*,*)"> Updating soil temperature profile"
855        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
856        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
857        do islope = 1,nslope
858            tsoil_avg_old = tsoil_PEM(:,:,islope)
859            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
860            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
861
862            do t = 1,timelen
863                do ig = 1,ngrid
864                    do isoil = 1,nsoilmx_PEM
865                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
866                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
867                        ! Update of watersoil density
868                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
869                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
870                    enddo
871                enddo
872            enddo
873        enddo
874        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
875        deallocate(tsoil_avg_old)
876
877! II_d.4 Update the ice table
878        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
879        if (icetable_equilibrium) then
880            write(*,*) "> Updating ice table (equilibrium method)"
881            icetable_thickness_old = icetable_thickness
882            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
883            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
884        else if (icetable_dynamic) then
885            write(*,*) "> Updating ice table (dynamic method)"
886            ice_porefilling_old = ice_porefilling
887            icetable_depth_old = icetable_depth
888            allocate(porefill(nsoilmx_PEM))
889            do ig = 1,ngrid
890                do islope = 1,nslope
891                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
892                    icetable_depth(ig,islope) = ssi_depth
893                    ice_porefilling(ig,:,islope) = porefill
894                enddo
895            enddo
896            deallocate(porefill)
897            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
898        endif
899        deallocate(icetable_thickness_old,ice_porefilling_old)
900
901! II_d.5 Update the soil thermal properties
902        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
903
904! II_d.6 Update the mass of the regolith adsorbed
905        totmass_adsco2 = 0.
906        totmass_adsh2o = 0.
907        if (adsorption_pem) then
908            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
909                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
910                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
911            do ig = 1,ngrid
912                do islope = 1,nslope
913                    do l = 1,nsoilmx_PEM
914                        if (l == 1) then
915                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
916                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
917                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
918                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
919                        else
920                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
921                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
922                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
923                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
924                        endif
925                    enddo
926                enddo
927            enddo
928            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
929            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
930        endif
931    endif !soil_pem
932    deallocate(zshift_surf,zlag)
933
934!------------------------
935! II  Run
936!    II_e Outputs
937!------------------------
938    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
939    do islope = 1,nslope
940        write(str2(1:2),'(i2.2)') islope
941        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
942        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
943        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
944        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
945        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
946        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
947        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
948        if (icetable_equilibrium) then
949            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
950            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
951        else if (icetable_dynamic) then
952            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
953        endif
954
955        if (soil_pem) then
956            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
957            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
958            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
959            if (adsorption_pem) then
960                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
961                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
962            endif
963        endif
964    enddo
965    deallocate(flag_co2flow,flag_h2oflow)
966
967    ! Checking mass balance for CO2
968    if (abs(CO2cond_ps - 1.) < 1.e-10) then
969        totmass_co2ice = 0.
970        totmass_atmco2 = 0.
971        do ig = 1,ngrid
972            totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
973            do islope = 1,nslope
974                totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
975            enddo
976        enddo
977        totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10)
978        write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %'
979        if (abs((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini) > 0.01) then
980            write(*,*) '  /!\ Warning: mass balance is not conserved!'
981            totmass_ini = max(totmass_atmco2_ini,1.e-10)
982            write(*,*) '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %'
983            totmass_ini = max(totmass_co2ice_ini,1.e-10)
984            write(*,*) '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %'
985            totmass_ini = max(totmass_adsco2_ini,1.e-10)
986            write(*,*) '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %'
987        endif
988    endif
989
990!------------------------
991! II  Run
992!    II_f Update the tendencies
993!------------------------
994    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
995    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
996    if (layering_algo) then
997        do ig = 1,ngrid
998            do islope = 1,nslope
999                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1000            enddo
1001        enddo
1002!~     else
1003!~         do ig = 1,ngrid
1004!~             do islope = 1,nslope
1005!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1006!~             enddo
1007!~         enddo
1008    endif
1009    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1010    deallocate(vmr_co2_PEM_phys)
1011
1012!------------------------
1013! II  Run
1014!    II_g Checking the stopping criterion
1015!------------------------
1016    write(*,*) "> Checking the stopping criteria"
1017    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1018    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1019    i_myear_leg = i_myear_leg + dt
1020    i_myear = i_myear + dt
1021    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1022    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1023    call system_clock(c2)
1024    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1025    if (stopPEM > 0) then
1026        select case (stopPEM)
1027            case(1)
1028                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1029            case(2)
1030                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1031            case(3)
1032                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1033            case(4)
1034                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1035            case(5)
1036                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1037            case(6)
1038                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1039            case(7)
1040                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1041            case default
1042                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1043        end select
1044        exit
1045    else
1046        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1047        write(*,*) '**** The PEM can continue!'
1048        write(*,*) '****'
1049    endif
1050enddo ! big time iteration loop of the pem
1051deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1052deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1053deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1054deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1055deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1056deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1057if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
1058!------------------------------ END RUN --------------------------------
1059
1060!------------------------------- OUTPUT --------------------------------
1061!------------------------
1062! III Output
1063!    III_a Update surface values for the PCM start files
1064!------------------------
1065write(*,*)
1066write(*,*) '********* PEM finalization *********'
1067! III_a.1 Ice update for start file
1068write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1069watercap = 0.
1070perennial_co2ice = co2_ice
1071do ig = 1,ngrid
1072    ! H2O ice metamorphism
1073    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1074    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1075    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1076    !endif
1077
1078    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1079    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1080        ! There is enough ice to be considered as an infinite reservoir
1081        watercaptag(ig) = .true.
1082    else
1083        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1084        watercaptag(ig) = .false.
1085        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1086        h2o_ice(ig,:) = 0.
1087    endif
1088
1089    ! CO2 ice metamorphism
1090    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1091    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1092    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1093    !endif
1094enddo
1095
1096! III.a.3. Tsurf update for start file
1097write(*,*) '> Reconstructing the surface temperature for the PCM'
1098tsurf = tsurf_avg + tsurf_dev
1099deallocate(tsurf_dev)
1100
1101! III_a.4 Tsoil update for start file
1102if (soil_pem) then
1103    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1104    inertiesoil = TI_PEM(:,:nsoilmx,:)
1105    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1106    do isoil = 1,nsoilmx
1107        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1108    enddo
1109    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1110#ifndef CPP_STD
1111    flux_geo = fluxgeo
1112#endif
1113endif
1114deallocate(tsurf_avg,tsoil_dev)
1115
1116! III_a.5 Pressure update for start file
1117write(*,*) '> Reconstructing the pressure for the PCM'
1118allocate(ps_start(ngrid))
1119! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1120ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1121deallocate(ps_avg,ps_dev)
1122
1123! III_a.6 Tracers update for start file
1124write(*,*) '> Reconstructing the tracer VMR for the PCM'
1125allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1126do l = 1,nlayer + 1
1127    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1128    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1129enddo
1130
1131do nnq = 1,nqtot
1132    if (noms(nnq) /= "co2") then
1133        do l = 1,llm - 1
1134            do ig = 1,ngrid
1135                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1136            enddo
1137            q(:,llm,nnq) = q(:,llm - 1,nnq)
1138        enddo
1139    else
1140        do l = 1,llm - 1
1141            do ig = 1,ngrid
1142                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1143                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1144            enddo
1145            q(:,llm,nnq) = q(:,llm - 1,nnq)
1146        enddo
1147    endif
1148enddo
1149deallocate(zplev_start0)
1150
1151! Conserving the tracers mass for start file
1152do nnq = 1,nqtot
1153    do ig = 1,ngrid
1154        do l = 1,llm - 1
1155            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1156                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1157                q(ig,l,nnq) = 1.
1158                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1159                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1160            endif
1161            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1162        enddo
1163    enddo
1164enddo
1165deallocate(zplev_new)
1166
1167! III_a.7 Albedo update for start file
1168write(*,*) '> Reconstructing the albedo for the PCM'
1169do ig = 1,ngrid
1170    if (latitude(ig) < 0.) then
1171        icap = 2 ! Southern hemisphere
1172    else
1173        icap = 1 ! Northern hemisphere
1174    endif
1175    do islope = 1,nslope
1176        ! Bare ground
1177        albedo(ig,:,islope) = albedodat(ig)
1178        emis(ig,islope) = emissiv
1179
1180        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1181        ! H2O ice
1182        if (h2o_ice(ig,islope) > 0.) then
1183            albedo(ig,:,islope) = albedo_h2o_cap
1184            emis(ig,islope) = 1.
1185        endif
1186        ! CO2 ice
1187        if (co2_ice(ig,islope) > 0.) then
1188            albedo(ig,:,islope) = albedo_perennialco2(icap)
1189            emis(ig,islope) = emisice(icap)
1190        endif
1191        ! H2O frost
1192        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1193            albedo(ig,:,islope) = albedo_h2o_frost
1194            emis(ig,islope) = 1.
1195        endif
1196        ! CO2 frost
1197        if (qsurf(ig,igcm_co2,islope) > 0.) then
1198            albedo(ig,:,islope) = albedice(icap)
1199            emis(ig,islope) = emisice(icap)
1200        endif
1201    enddo
1202enddo
1203
1204! III_a.8 Orbital parameters update for start file
1205write(*,*) '> Setting the new orbital parameters'
1206if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1207
1208!------------------------
1209! III Output
1210!    III_b Write "restart.nc" and "restartfi.nc"
1211!------------------------
1212! III_b.1 Write "restart.nc"
1213ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1214pday = day_ini
1215ztime_fin = time_phys
1216#ifndef CPP_1D
1217    write(*,*) '> Writing "restart.nc"'
1218    ! Correction on teta due to surface pressure changes
1219    allocate(pdyn(ip1jmp1))
1220    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1221    do i = 1,ip1jmp1
1222        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1223    enddo
1224    ! Correction on atmospheric pressure
1225    allocate(p(ip1jmp1,nlayer + 1))
1226    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1227    call pression(ip1jmp1,ap,bp,pdyn,p)
1228    ! Correction on the mass of atmosphere
1229    call massdair(p,masse)
1230    call dynredem0("restart.nc",day_ini,phis)
1231    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1232    deallocate(ap,bp,p,pdyn)
1233#else
1234    write(*,*) '> Writing "restart1D.txt"'
1235    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1236#endif
1237deallocate(ps_start0,ps_start)
1238
1239! III_b.2 Write the "restartfi.nc"
1240write(*,*) '> Writing "restartfi.nc"'
1241#ifndef CPP_STD
1242    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1243                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1244                  inertiedat,def_slope,subslope_dist)
1245    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1246                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1247                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1248                  wstar,watercap,perennial_co2ice)
1249#else
1250    if (allocated(noms)) deallocate(noms)
1251    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1252    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1253                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1254                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1255    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1256                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1257                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1258                  tsea_ice,sea_ice)
1259#endif
1260
1261!------------------------
1262! III Output
1263!    III_c Write the "restartpem.nc"
1264!------------------------
1265write(*,*) '> Writing "restartpem.nc"'
1266if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1267call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1268call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1269             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1270
1271call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1272
1273write(*,*)
1274write(*,*) '****** PEM final information *******'
1275write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1276write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1277write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1278write(*,*) "+ PEM: so far, so good!"
1279write(*,*) '************************************'
1280
1281if (layering_algo) then
1282    do islope = 1,nslope
1283        do i = 1,ngrid
1284            call del_layering(layerings_map(i,islope))
1285        enddo
1286    enddo
1287endif
1288deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1289deallocate(co2_ice,h2o_ice,layerings_map)
1290!----------------------------- END OUTPUT ------------------------------
1291
1292END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.