source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3961

Last change on this file since 3961 was 3961, checked in by jbclement, 8 days ago

PEM:
Clearing all the tags and code related to the Generic PCM.
JBC

File size: 62.1 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2, stopping_crit_h2o
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice, balance_h2oice_reservoirs
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, &
72                                      rho_co2ice, rho_h2oice, ptrarray,                                              &
73                                      stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str
74use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
75use parse_args_mod,             only: parse_args
76use job_timelimit_mod,          only: timelimit, antetime, timewall
77use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
78use surf_temp,                  only: update_tsurf_nearest_baresoil
79use comsoil_h,                  only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
80use surfdat_h,                  only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
81                                      albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
82                                      zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
83                                      watercap, watercaptag, perennial_co2ice, albedo_perennialco2
84use dimradmars_mod,             only: totcloudfrac, albedo
85use dust_param_mod,             only: tauscaling
86use tracer_mod,                 only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
87use mod_phys_lmdz_para,         only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
88use planete_h,                  only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
89use surfini_mod,                only: surfini
90use comcstfi_h,                 only: mugaz
91
92#ifndef CPP_1D
93    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
94    use iniphysiq_mod,            only: iniphysiq
95    use control_mod,              only: iphysiq, day_step, nsplit_phys
96#else
97    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
98    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
99    use regular_lonlat_mod,       only: init_regular_lonlat
100    use physics_distribution_mod, only: init_physics_distribution
101    use mod_grid_phy_lmdz,        only: regular_lonlat
102    use init_testphys1d_mod,      only: init_testphys1d
103    use comvert_mod,              only: ap, bp
104    use writerestart1D_mod,       only: writerestart1D
105#endif
106
107implicit none
108
109include "dimensions.h"
110include "paramet.h"
111include "comgeom.h"
112include "iniprint.h"
113
114! Same variable names as in the PCM
115integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
116integer, parameter :: nlayer = llm ! Number of vertical layer
117integer            :: ngrid        ! Number of physical grid points
118integer            :: nq           ! Number of tracer
119integer            :: day_ini      ! First day of the simulation
120real               :: pday         ! Physical day
121real               :: time_phys    ! Same as in PCM
122real               :: ptimestep    ! Same as in PCM
123real               :: ztime_fin    ! Same as in PCM
124
125! Variables to read "start.nc"
126character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
127
128! Dynamic variables
129real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
130real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
131real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
132real, dimension(:,:,:), allocatable :: q             ! champs advectes
133real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
134real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
135real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
136real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
137real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
138real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
139real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
140real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
141real                                :: time_0
142
143! Variables to read starfi.nc
144character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
145character(2)            :: str2
146integer                 :: ncid, status                           ! Variable for handling opening of files
147integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
148integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
149
150! Variables to read starfi.nc and write restartfi.nc
151real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
152real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
153real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
154real                            :: total_surface ! Total surface of the planet
155
156! Variables for h2o ice evolution
157real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
158real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
159real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
160real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
161logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
162real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
163real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
164real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
165real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
166real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
167real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
168real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
169integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
170real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
171real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
172integer                               :: timelen              ! # time samples
173real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
174real, dimension(:,:),    allocatable  :: d_h2oice_new         ! Adjusted tendencies to keep balance between donor and recipient
175real                                  :: S_atm_2_h2o, S_h2o_2_atm, S_atm_2_h2oice, S_h2oice_2_atm ! Variables to balance H2O
176
177! Variables for co2 ice evolution
178real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
179real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
180real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
181logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
182real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
183real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
184logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
185real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
186real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
187real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
188real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
189real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
190
191! Variables for the evolution of layered layerings_map
192type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
193type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
194logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
195real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
196
197! Variables for slopes
198integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
199integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
200
201! Variables for surface and soil
202real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
203real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
204real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
205real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
206real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
207real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
208real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
209real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
210real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
211real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
212real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
213real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
214real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
215real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
216real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
217real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
218real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
219logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
220real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
221real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
222real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
223real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
224real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
225real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
226real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
227real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
228
229! Some variables for the PEM run
230real, parameter       :: year_step = 1   ! Timestep for the pem
231real                  :: i_myear_leg     ! Number of iteration
232real                  :: n_myear_leg     ! Maximum number of iterations before stopping
233real                  :: i_myear         ! Global number of Martian years of the chained simulations
234real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
235real                  :: timestep        ! Timestep [s]
236integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
237integer(kind = 8)     :: c1, c2          ! Counts of processor clock
238character(8)          :: date
239character(10)         :: time
240character(5)          :: zone
241integer, dimension(8) :: values
242character(128)        :: dir = ' '
243character(32)         :: logname = ' '
244character(32)         :: hostname = ' '
245
246#ifdef CPP_1D
247    integer            :: nsplit_phys
248    integer, parameter :: jjm_value = jjm - 1
249    integer            :: day_step
250
251    ! Dummy variables to use the subroutine 'init_testphys1d'
252    logical                             :: therestart1D, therestartfi, ctrl_h2ovap, ctrl_h2oice
253    integer                             :: ndt, day0
254    real                                :: ptif, pks, day, gru, grv, relaxtime_h2ovap, relaxtime_h2oice
255    real, dimension(:),     allocatable :: zqsat
256    real, dimension(:,:,:), allocatable :: dq, dqdyn
257    real, dimension(nlayer)             :: play, w, qref_h2ovap, qref_h2oice
258    real, dimension(nlayer + 1)         :: plev
259#else
260    integer, parameter                :: jjm_value = jjm
261    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
262    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
263    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
264#endif
265
266! Loop variables
267integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
268real    :: totmass_ini
269logical :: num_str
270
271! CODE
272! Elapsed time with system clock
273call system_clock(count_rate = cr)
274call system_clock(c1)
275
276! Parse command-line options
277call parse_args()
278
279! Header
280write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
281write(*,*) '           +         _______  ________  ____    ____      *           + '
282write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
283write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
284write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
285write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
286write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
287write(*,*) '  .      *          .   *       .   +       *          .        +      .'
288
289! Some user info
290call date_and_time(date,time,zone,values)
291call getcwd(dir)      ! Current directory
292call getlog(logname)  ! User name
293call hostnm(hostname) ! Machine/station name
294write(*,*)
295write(*,*) '********* PEM information *********'
296write(*,*) '+ User     : '//trim(logname)
297write(*,*) '+ Machine  : '//trim(hostname)
298write(*,*) '+ Directory: '//trim(dir)
299write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
300write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
301
302! Parallel variables
303is_sequential = .true.
304is_parallel = .false.
305is_mpi_root = .true.
306is_omp_root = .true.
307is_master = .true.
308
309! Some constants
310day_ini = 0
311time_phys = 0.
312ngrid = ngridmx
313A = (1./m_co2 - 1./m_noco2)
314B = 1./m_noco2
315year_day = 669
316daysec = 88775.
317timestep = year_day*daysec*year_step
318
319!----------------------------- INITIALIZATION --------------------------
320!------------------------
321! I   Initialization
322!    I_a Read the "run.def"
323!------------------------
324write(*,*)
325write(*,*) '********* PEM initialization *********'
326write(*,*) '> Reading "run.def" (PEM)'
327#ifndef CPP_1D
328    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
329    call conf_gcm(99,.true.)
330    call infotrac_init
331    nq = nqtot
332    allocate(q(ip1jmp1,llm,nqtot))
333    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
334#else
335    allocate(q(1,llm,nqtot),pdyn(1))
336    allocate(longitude(1),latitude(1),cell_area(1))
337
338    therestart1D = .false. ! Default value
339    inquire(file = 'start1D.txt',exist = therestart1D)
340    if (.not. therestart1D) then
341        write(*,*) 'There is no "start1D.txt" file!'
342        error stop 'Initialization cannot be done for the 1D PEM.'
343    endif
344    therestartfi = .false. ! Default value
345    inquire(file = 'startfi.nc',exist = therestartfi)
346    if (.not. therestartfi) then
347        write(*,*) 'There is no "startfi.nc" file!'
348        error stop 'Initialization cannot be done for the 1D PEM.'
349    endif
350
351    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
352    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
353                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
354                         play,plev,latitude,longitude,cell_area,                                              &
355                         ctrl_h2ovap,relaxtime_h2ovap,qref_h2ovap,ctrl_h2oice,relaxtime_h2oice,qref_h2oice)
356    nsplit_phys = 1
357    day_step = steps_per_sol
358#endif
359
360call conf_pem(i_myear,n_myear)
361
362!------------------------
363! I   Initialization
364!    I_b Read of the "start.nc" and "starfi.nc"
365!------------------------
366! I_b.1 Read "start.nc"
367write(*,*) '> Reading "start.nc"'
368allocate(ps_start0(ngrid))
369#ifndef CPP_1D
370    allocate(pdyn(ip1jmp1))
371    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
372
373    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
374
375    call iniconst ! Initialization of dynamical constants (comconst_mod)
376    call inigeom ! Initialization of geometry
377
378    allocate(ap(nlayer + 1))
379    allocate(bp(nlayer + 1))
380    status = nf90_open(start_name,NF90_NOWRITE,ncid)
381    status = nf90_inq_varid(ncid,"ap",apvarid)
382    status = nf90_get_var(ncid,apvarid,ap)
383    status = nf90_inq_varid(ncid,"bp",bpvarid)
384    status = nf90_get_var(ncid,bpvarid,bp)
385    status = nf90_close(ncid)
386
387    ! Initialization of physics constants and variables (comcstfi_h)
388    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
389#else
390    ps_start0(1) = pdyn(1)
391#endif
392deallocate(pdyn)
393
394! In the PCM, these values are given to the physic by the dynamic.
395! Here we simply read them in the "startfi.nc" file
396status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
397status = nf90_inq_varid(ncid,"longitude",lonvarid)
398status = nf90_get_var(ncid,lonvarid,longitude)
399status = nf90_inq_varid(ncid,"latitude",latvarid)
400status = nf90_get_var(ncid,latvarid,latitude)
401status = nf90_inq_varid(ncid,"area",areavarid)
402status = nf90_get_var(ncid,areavarid,cell_area)
403status = nf90_inq_varid(ncid,"soildepth",sdvarid)
404status = nf90_get_var(ncid,sdvarid,mlayer)
405status = nf90_close(ncid)
406
407! I_b.2 Read the "startfi.nc"
408! First we read the initial state (starfi.nc)
409write(*,*) '> Reading "startfi.nc"'
410call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
411              tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
412              watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
413
414! Remove unphysical values of surface tracer
415where (qsurf < 0.) qsurf = 0.
416
417call surfini(ngrid,nslope,qsurf)
418
419do nnq = 1,nqtot  ! Why not using ini_tracer?
420    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
421    if (noms(nnq) == "h2o_vap") then
422        igcm_h2o_vap = nnq
423        mmol(igcm_h2o_vap) = 18.
424    endif
425    if (noms(nnq) == "co2") igcm_co2 = nnq
426enddo
427
428!------------------------
429! I   Initialization
430!    I_c Subslope parametrisation
431!------------------------
432! Define some slope statistics
433iflat = 1
434do islope = 2,nslope
435    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
436enddo
437write(*,*) 'Flat slope for islope = ',iflat
438write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
439
440!------------------------
441! I   Initialization
442!    I_d Read the PCM data and convert them to the physical grid
443!------------------------
444! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
445call get_timelen_PCM("data_PCM_Y1.nc",timelen)
446
447allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
448allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
449allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
450allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
451allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
452allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
453
454call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
455                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
456
457! Compute the deviation from the average
458allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
459ps_dev = ps_start0 - ps_avg
460tsurf_dev = tsurf - tsurf_avg
461tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
462
463!------------------------
464! I   Initialization
465!    I_e Initialization of the PEM variables and soil
466!------------------------
467call end_comsoil_h_PEM
468call ini_comsoil_h_PEM(ngrid,nslope)
469call end_adsorption_h_PEM
470call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
471call end_ice_table
472call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
473
474allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
475if (soil_pem) then
476    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
477    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
478    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
479    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
480    do l = nsoilmx + 1,nsoilmx_PEM
481        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
482        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
483        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
484    enddo
485    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
486endif !soil_pem
487deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
488
489!------------------------
490! I   Initialization
491!    I_f Compute tendencies
492!------------------------
493allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
494call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
495call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
496d_co2ice_ini = d_co2ice
497deallocate(min_co2_ice,min_h2o_ice)
498
499!------------------------
500! I   Initialization
501!    I_g Compute global surface pressure
502!------------------------
503total_surface = sum(cell_area)
504ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
505ps_avg_global_new = ps_avg_global_ini
506write(*,*) "Total surface of the planet     =", total_surface
507write(*,*) "Initial global average pressure =", ps_avg_global_ini
508
509!------------------------
510! I   Initialization
511!    I_h Read the "startpem.nc"
512!------------------------
513write(*,*) '> Reading "startpem.nc"'
514allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
515allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
516delta_h2o_icetablesublim = 0.
517call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
518              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
519              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
520deallocate(tsurf_avg_yr1)
521
522! We save the places where h2o ice is sublimating
523! We compute the surface of h2o ice sublimating
524allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
525co2ice_sublim_surf_ini = 0.
526h2oice_ini_surf = 0.
527is_co2ice_sublim_ini = .false.
528is_h2oice_sublim_ini = .false.
529is_co2ice_ini = .false.
530co2ice_disappeared = .false.
531totmass_co2ice_ini = 0.
532totmass_atmco2_ini = 0.
533if (layering_algo) then
534    do ig = 1,ngrid
535        do islope = 1,nslope
536            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
537                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice*rho_co2ice
538            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
539                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice*rho_h2oice
540            else
541                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
542            endif
543        enddo
544    enddo
545    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
546    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
547endif
548do i = 1,ngrid
549    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
550    do islope = 1,nslope
551        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
552        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
553        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
554            is_co2ice_sublim_ini(i,islope) = .true.
555            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
556        endif
557        if (d_h2oice(i,islope) < 0.) then
558            if (h2o_ice(i,islope) > 0.) then
559                is_h2oice_sublim_ini(i,islope) = .true.
560                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
561            else if (h2o_ice_depth(i,islope) > 0.) then
562                is_h2oice_sublim_ini(i,islope) = .true.
563            endif
564        endif
565    enddo
566enddo
567write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
568write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
569
570totmass_adsco2_ini = 0.
571totmass_adsh2o = 0.
572if (adsorption_pem) then
573    do ig = 1,ngrid
574        do islope = 1,nslope
575            do l = 1,nsoilmx_PEM - 1
576                if (l == 1) then
577                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
578                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
579                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
580                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
581                else
582                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
583                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
584                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
585                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
586                endif
587            enddo
588        enddo
589    enddo
590    totmass_adsco2 = totmass_adsco2_ini
591    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
592    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
593endif ! adsorption
594
595!------------------------
596! I   Initialization
597!    I_i Compute orbit criterion
598!------------------------
599call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
600
601n_myear_leg = Max_iter_pem
602if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
603
604!-------------------------- END INITIALIZATION -------------------------
605
606!-------------------------------- RUN ----------------------------------
607!------------------------
608! II  Run
609!    II_a Update pressure, ice and tracers
610!------------------------
611write(*,*)
612write(*,*) '********* PEM cycle *********'
613i_myear_leg = 0
614stopPEM = 0
615if (layering_algo) then
616    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
617    new_str = .true.
618    new_lag = .true.
619    do islope = 1,nslope
620        do ig = 1,ngrid
621            current(ig,islope)%p => layerings_map(ig,islope)%top
622        enddo
623    enddo
624endif
625
626do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
627! II.a.1. Compute updated global pressure
628    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
629    write(*,*) "> Updating the surface pressure"
630    ps_avg_global_old = ps_avg_global_new
631    do i = 1,ngrid
632        do islope = 1,nslope
633            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
634        enddo
635    enddo
636    if (adsorption_pem) then
637        do i = 1,ngrid
638            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
639        enddo
640    endif
641    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
642    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
643    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
644
645! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
646    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
647    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
648    do l = 1,nlayer + 1
649        do ig = 1,ngrid
650            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
651        enddo
652    enddo
653    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
654    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
655    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
656    do l = 1,nlayer + 1
657        do ig = 1,ngrid
658            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
659        enddo
660    enddo
661
662! II.a.3. Tracers timeseries
663    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
664    allocate(vmr_co2_PEM_phys(ngrid,timelen))
665    l = 1
666    do ig = 1,ngrid
667        do t = 1,timelen
668            ! H2O
669            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
670                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
671            if (q_h2o_PEM_phys(ig,t) < 0) then
672                q_h2o_PEM_phys(ig,t) = 1.e-30
673            else if (q_h2o_PEM_phys(ig,t) > 1) then
674                q_h2o_PEM_phys(ig,t) = 1.
675            endif
676            ! CO2
677            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
678                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
679                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
680                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
681                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
682            if (q_co2_PEM_phys(ig,t) < 0) then
683                q_co2_PEM_phys(ig,t) = 1.e-30
684            else if (q_co2_PEM_phys(ig,t) > 1) then
685                q_co2_PEM_phys(ig,t) = 1.
686            endif
687            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
688            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
689        enddo
690    enddo
691    deallocate(zplev_timeseries_new,zplev_timeseries_old)
692
693!------------------------
694! II  Run
695!    II_b Evolution of ice
696!------------------------
697    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
698    if (layering_algo) then
699        h2o_ice_depth_old = h2o_ice_depth
700
701        allocate(d_h2oice_new(ngrid,nslope))
702        call stopping_crit_h2o(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,S_atm_2_h2o,S_h2o_2_atm,S_atm_2_h2oice,S_h2oice_2_atm,stopPEM)
703        call balance_h2oice_reservoirs(ngrid,nslope,S_atm_2_h2o,S_h2o_2_atm,S_atm_2_h2oice,S_h2oice_2_atm,h2o_ice,d_h2oice,d_h2oice_new)
704   
705        do islope = 1,nslope
706            do ig = 1,ngrid
707                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice_new(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
708                !call print_layering(layerings_map(ig,islope))
709                co2_ice(ig,islope) = 0.
710                h2o_ice(ig,islope) = 0.
711                h2o_ice_depth(ig,islope) = 0.
712                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
713                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice*rho_co2ice
714                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
715                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice*rho_h2oice
716                else
717                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
718                endif
719            enddo
720        enddo
721        deallocate(d_h2oice_new)
722    else
723        zlag = 0.
724        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
725        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
726    endif
727
728!------------------------
729! II  Run
730!    II_c Flow of glaciers
731!------------------------
732    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
733    if (co2ice_flow .and. nslope > 1) then
734        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
735                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
736        if (layering_algo) then
737            do islope = 1,nslope
738                do ig = 1,ngrid
739                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)/rho_co2ice
740                enddo
741            enddo
742        endif
743    endif
744    if (h2oice_flow .and. nslope > 1) then
745        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
746        if (layering_algo) then
747            do islope = 1,nslope
748                do ig = 1,ngrid
749                    layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)/rho_h2oice
750                enddo
751            enddo
752        endif
753    endif
754
755!------------------------
756! II  Run
757!    II_d Update surface and soil temperatures
758!------------------------
759! II_d.1 Update Tsurf
760    call update_tsurf_nearest_baresoil(ngrid,nslope,iim,jjm_value,tsurf_avg,co2_ice,is_co2ice_ini,co2ice_disappeared)
761
762    if (soil_pem) then
763! II_d.2 Shifting soil temperature to surface
764        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
765
766! II_d.3 Update soil temperature
767        write(*,*)"> Updating soil temperature profile"
768        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
769        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
770        do islope = 1,nslope
771            tsoil_avg_old = tsoil_PEM(:,:,islope)
772            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
773            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
774
775            do t = 1,timelen
776                do ig = 1,ngrid
777                    do isoil = 1,nsoilmx_PEM
778                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
779                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
780                        ! Update of watersoil density
781                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
782                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
783                    enddo
784                enddo
785            enddo
786        enddo
787        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
788        deallocate(tsoil_avg_old)
789
790! II_d.4 Update the ice table
791        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
792        if (icetable_equilibrium) then
793            write(*,*) "> Updating ice table (equilibrium method)"
794            icetable_thickness_old = icetable_thickness
795            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
796            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
797        else if (icetable_dynamic) then
798            write(*,*) "> Updating ice table (dynamic method)"
799            ice_porefilling_old = ice_porefilling
800            icetable_depth_old = icetable_depth
801            allocate(porefill(nsoilmx_PEM))
802            do ig = 1,ngrid
803                do islope = 1,nslope
804                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
805                    icetable_depth(ig,islope) = ssi_depth
806                    ice_porefilling(ig,:,islope) = porefill
807                enddo
808            enddo
809            deallocate(porefill)
810            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
811        endif
812        deallocate(icetable_thickness_old,ice_porefilling_old)
813
814! II_d.5 Update the soil thermal properties
815        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
816
817! II_d.6 Update the mass of the regolith adsorbed
818        totmass_adsco2 = 0.
819        totmass_adsh2o = 0.
820        if (adsorption_pem) then
821            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
822                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
823                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
824            do ig = 1,ngrid
825                do islope = 1,nslope
826                    do l = 1,nsoilmx_PEM
827                        if (l == 1) then
828                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
829                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
830                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
831                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
832                        else
833                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
834                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
835                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
836                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
837                        endif
838                    enddo
839                enddo
840            enddo
841            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
842            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
843        endif
844    endif !soil_pem
845    deallocate(zshift_surf,zlag)
846
847!------------------------
848! II  Run
849!    II_e Outputs
850!------------------------
851    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
852    do islope = 1,nslope
853        write(str2(1:2),'(i2.2)') islope
854        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
855        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
856        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
857        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
858        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
859        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
860        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
861        if (icetable_equilibrium) then
862            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
863            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
864        else if (icetable_dynamic) then
865            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
866        endif
867
868        if (soil_pem) then
869            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
870            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
871            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
872            if (adsorption_pem) then
873                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
874                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
875            endif
876        endif
877    enddo
878    deallocate(flag_co2flow,flag_h2oflow)
879
880    ! Checking mass balance for CO2
881    if (abs(CO2cond_ps - 1.) < 1.e-10) then
882        totmass_co2ice = 0.
883        totmass_atmco2 = 0.
884        do ig = 1,ngrid
885            totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
886            do islope = 1,nslope
887                totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
888            enddo
889        enddo
890        totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10)
891        write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %'
892        if (abs((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini) > 0.01) then
893            write(*,*) '  /!\ Warning: mass balance is not conserved!'
894            totmass_ini = max(totmass_atmco2_ini,1.e-10)
895            write(*,*) '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %'
896            totmass_ini = max(totmass_co2ice_ini,1.e-10)
897            write(*,*) '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %'
898            totmass_ini = max(totmass_adsco2_ini,1.e-10)
899            write(*,*) '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %'
900        endif
901    endif
902
903!------------------------
904! II  Run
905!    II_f Update the tendencies
906!------------------------
907    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
908    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
909    if (layering_algo) then
910        do ig = 1,ngrid
911            do islope = 1,nslope
912                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
913            enddo
914        enddo
915!~     else
916!~         do ig = 1,ngrid
917!~             do islope = 1,nslope
918!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
919!~             enddo
920!~         enddo
921    endif
922    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
923    deallocate(vmr_co2_PEM_phys)
924
925!------------------------
926! II  Run
927!    II_g Checking the stopping criterion
928!------------------------
929    write(*,*) "> Checking the stopping criteria"
930    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
931    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
932    i_myear_leg = i_myear_leg + dt
933    i_myear = i_myear + dt
934    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
935    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
936    call system_clock(c2)
937    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
938    if (stopPEM > 0) then
939        select case (stopPEM)
940            case(1)
941                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
942            case(2)
943                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
944            case(3)
945                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
946            case(4)
947                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
948            case(5)
949                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
950            case(6)
951                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
952            case(7)
953                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
954            case default
955                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
956        end select
957        exit
958    else
959        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
960        write(*,*) '**** The PEM can continue!'
961        write(*,*) '****'
962    endif
963enddo ! big time iteration loop of the pem
964deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
965deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
966deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
967deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
968deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
969deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
970if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
971!------------------------------ END RUN --------------------------------
972
973!------------------------------- OUTPUT --------------------------------
974!------------------------
975! III Output
976!    III_a Update surface values for the PCM start files
977!------------------------
978write(*,*)
979write(*,*) '********* PEM finalization *********'
980! III_a.1 Ice update for start file
981write(*,*) '> Reconstructing perennial ice and frost for the PCM'
982watercap = 0.
983perennial_co2ice = co2_ice
984do ig = 1,ngrid
985    ! H2O ice metamorphism
986    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
987    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
988    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
989    !endif
990
991    ! Is H2O ice still considered as an infinite reservoir for the PCM?
992    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
993        ! There is enough ice to be considered as an infinite reservoir
994        watercaptag(ig) = .true.
995    else
996        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
997        watercaptag(ig) = .false.
998        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
999        h2o_ice(ig,:) = 0.
1000    endif
1001
1002    ! CO2 ice metamorphism
1003    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1004    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1005    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1006    !endif
1007enddo
1008
1009! III.a.3. Tsurf update for start file
1010write(*,*) '> Reconstructing the surface temperature for the PCM'
1011tsurf = tsurf_avg + tsurf_dev
1012deallocate(tsurf_dev)
1013
1014! III_a.4 Tsoil update for start file
1015if (soil_pem) then
1016    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1017    inertiesoil = TI_PEM(:,:nsoilmx,:)
1018    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1019    do isoil = 1,nsoilmx
1020        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1021    enddo
1022    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1023    flux_geo = fluxgeo
1024endif
1025deallocate(tsurf_avg,tsoil_dev)
1026
1027! III_a.5 Pressure update for start file
1028write(*,*) '> Reconstructing the pressure for the PCM'
1029allocate(ps_start(ngrid))
1030! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1031ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1032deallocate(ps_avg,ps_dev)
1033
1034! III_a.6 Tracers update for start file
1035write(*,*) '> Reconstructing the tracer VMR for the PCM'
1036allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1037do l = 1,nlayer + 1
1038    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1039    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1040enddo
1041
1042do nnq = 1,nqtot
1043    if (noms(nnq) /= "co2") then
1044        do l = 1,llm - 1
1045            do ig = 1,ngrid
1046                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1047            enddo
1048            q(:,llm,nnq) = q(:,llm - 1,nnq)
1049        enddo
1050    else
1051        do l = 1,llm - 1
1052            do ig = 1,ngrid
1053                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1054                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1055            enddo
1056            q(:,llm,nnq) = q(:,llm - 1,nnq)
1057        enddo
1058    endif
1059enddo
1060deallocate(zplev_start0)
1061
1062! Conserving the tracers mass for start file
1063do nnq = 1,nqtot
1064    do ig = 1,ngrid
1065        do l = 1,llm - 1
1066            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1067                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1068                q(ig,l,nnq) = 1.
1069                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1070                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1071            endif
1072            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1073        enddo
1074    enddo
1075enddo
1076deallocate(zplev_new)
1077
1078! III_a.7 Albedo update for start file
1079write(*,*) '> Reconstructing the albedo for the PCM'
1080do ig = 1,ngrid
1081    if (latitude(ig) < 0.) then
1082        icap = 2 ! Southern hemisphere
1083    else
1084        icap = 1 ! Northern hemisphere
1085    endif
1086    do islope = 1,nslope
1087        ! Bare ground
1088        albedo(ig,:,islope) = albedodat(ig)
1089        emis(ig,islope) = emissiv
1090
1091        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1092        ! H2O ice
1093        if (h2o_ice(ig,islope) > 0.) then
1094            albedo(ig,:,islope) = albedo_h2o_cap
1095            emis(ig,islope) = 1.
1096        endif
1097        ! CO2 ice
1098        if (co2_ice(ig,islope) > 0.) then
1099            albedo(ig,:,islope) = albedo_perennialco2(icap)
1100            emis(ig,islope) = emisice(icap)
1101        endif
1102        ! H2O frost
1103        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1104            albedo(ig,:,islope) = albedo_h2o_frost
1105            emis(ig,islope) = 1.
1106        endif
1107        ! CO2 frost
1108        if (qsurf(ig,igcm_co2,islope) > 0.) then
1109            albedo(ig,:,islope) = albedice(icap)
1110            emis(ig,islope) = emisice(icap)
1111        endif
1112    enddo
1113enddo
1114
1115! III_a.8 Orbital parameters update for start file
1116write(*,*) '> Setting the new orbital parameters'
1117if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1118
1119!------------------------
1120! III Output
1121!    III_b Write "restart.nc" and "restartfi.nc"
1122!------------------------
1123! III_b.1 Write "restart.nc"
1124ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1125pday = day_ini
1126ztime_fin = time_phys
1127#ifndef CPP_1D
1128    write(*,*) '> Writing "restart.nc"'
1129    ! Correction on teta due to surface pressure changes
1130    allocate(pdyn(ip1jmp1))
1131    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1132    do i = 1,ip1jmp1
1133        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1134    enddo
1135    ! Correction on atmospheric pressure
1136    allocate(p(ip1jmp1,nlayer + 1))
1137    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1138    call pression(ip1jmp1,ap,bp,pdyn,p)
1139    ! Correction on the mass of atmosphere
1140    call massdair(p,masse)
1141    call dynredem0("restart.nc",day_ini,phis)
1142    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1143    deallocate(ap,bp,p,pdyn)
1144#else
1145    write(*,*) '> Writing "restart1D.txt"'
1146    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1147#endif
1148deallocate(ps_start0,ps_start)
1149
1150! III_b.2 Write the "restartfi.nc"
1151write(*,*) '> Writing "restartfi.nc"'
1152call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1153              nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1154              inertiedat,def_slope,subslope_dist)
1155call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1156              ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1157              albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1158              wstar,watercap,perennial_co2ice)
1159
1160!------------------------
1161! III Output
1162!    III_c Write the "restartpem.nc"
1163!------------------------
1164write(*,*) '> Writing "restartpem.nc"'
1165if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1166call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1167call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1168             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1169
1170call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1171
1172write(*,*)
1173write(*,*) '****** PEM final information *******'
1174write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1175write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1176write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1177write(*,*) "+ PEM: so far, so good!"
1178write(*,*) '************************************'
1179
1180if (layering_algo) then
1181    do islope = 1,nslope
1182        do i = 1,ngrid
1183            call del_layering(layerings_map(i,islope))
1184        enddo
1185    enddo
1186endif
1187deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1188deallocate(co2_ice,h2o_ice,layerings_map)
1189!----------------------------- END OUTPUT ------------------------------
1190
1191END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.