source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3910

Last change on this file since 3910 was 3907, checked in by jbclement, 5 months ago

PEM:
Correction for the update of surface temperature when ice is disappearing: now it is really set as the surface temperature of the nearest bare soil point because we check the lon-lat grid and not the reduced grid.
JBC

File size: 66.4 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, &
72                                      ptrarray, stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str
73use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
74use parse_args_mod,             only: parse_args
75use job_timelimit_mod,          only: timelimit, antetime, timewall
76use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
77use surf_temp,                  only: update_tsurf_nearest_baresoil
78
79#ifndef CPP_STD
80    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
81    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
82                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
83                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
84                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
85    use dimradmars_mod,     only: totcloudfrac, albedo
86    use dust_param_mod,     only: tauscaling
87    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
88    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
89    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
90    use surfini_mod,        only: surfini
91    use comcstfi_h,         only: mugaz
92#else
93    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
94    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
95                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
96                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
97    use aerosol_mod,        only: iniaerosol
98    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
99    use comcstfi_mod,       only: pi, rad, g, r, cpp, rcp, mugaz
100#endif
101
102#ifndef CPP_1D
103    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
104    use iniphysiq_mod,            only: iniphysiq
105    use control_mod,              only: iphysiq, day_step, nsplit_phys
106#else
107    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
108    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
109    use regular_lonlat_mod,       only: init_regular_lonlat
110    use physics_distribution_mod, only: init_physics_distribution
111    use mod_grid_phy_lmdz,        only: regular_lonlat
112    use init_testphys1d_mod,      only: init_testphys1d
113    use comvert_mod,              only: ap, bp
114    use writerestart1D_mod,       only: writerestart1D
115#endif
116
117implicit none
118
119include "dimensions.h"
120include "paramet.h"
121include "comgeom.h"
122include "iniprint.h"
123
124! Same variable names as in the PCM
125integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
126integer, parameter :: nlayer = llm ! Number of vertical layer
127integer            :: ngrid        ! Number of physical grid points
128integer            :: nq           ! Number of tracer
129integer            :: day_ini      ! First day of the simulation
130real               :: pday         ! Physical day
131real               :: time_phys    ! Same as in PCM
132real               :: ptimestep    ! Same as in PCM
133real               :: ztime_fin    ! Same as in PCM
134
135! Variables to read "start.nc"
136character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
137
138! Dynamic variables
139real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
140real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
141real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
142real, dimension(:,:,:), allocatable :: q             ! champs advectes
143real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
144real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
145real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
146real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
147real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
148real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
149real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
150real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
151real                                :: time_0
152
153! Variables to read starfi.nc
154character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
155character(2)            :: str2
156integer                 :: ncid, status                           ! Variable for handling opening of files
157integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
158integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
159
160! Variables to read starfi.nc and write restartfi.nc
161real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
162real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
163real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
164real                            :: total_surface ! Total surface of the planet
165
166! Variables for h2o ice evolution
167real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
168real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
169real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
170real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
171logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
172real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
173real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
174real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
175real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
176real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
177real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
178real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
179integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
180real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
181real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
182integer                               :: timelen              ! # time samples
183real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
184
185! Variables for co2 ice evolution
186real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
187real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
188real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
189logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
190real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
191real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
192logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
193real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
194real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
195real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
196real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
197real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
198
199! Variables for the evolution of layered layerings_map
200type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
201type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
202logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
203real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
204
205! Variables for slopes
206integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
207integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
208
209! Variables for surface and soil
210real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
211real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
212real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
213real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
214real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
215real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
216real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
217real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
218real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
219real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
220real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
221real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
222real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
223real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
224real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
225real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
226real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
227logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
228real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
229real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
230real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
231real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
232real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
233real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
234real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
235real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
236
237! Some variables for the PEM run
238real, parameter       :: year_step = 1   ! Timestep for the pem
239real                  :: i_myear_leg     ! Number of iteration
240real                  :: n_myear_leg     ! Maximum number of iterations before stopping
241real                  :: i_myear         ! Global number of Martian years of the chained simulations
242real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
243real                  :: timestep        ! Timestep [s]
244integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
245integer(kind = 8)     :: c1, c2          ! Counts of processor clock
246character(8)          :: date
247character(10)         :: time
248character(5)          :: zone
249integer, dimension(8) :: values
250character(128)        :: dir = ' '
251character(32)         :: logname = ' '
252character(32)         :: hostname = ' '
253
254#ifdef CPP_STD
255    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
256    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
257    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
258    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
259    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
260    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
262    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
263    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
264    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
266    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
267    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
268    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
269    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
270#endif
271
272#ifdef CPP_1D
273    integer            :: nsplit_phys
274    integer, parameter :: jjm_value = jjm - 1
275    integer            :: day_step
276
277    ! Dummy variables to use the subroutine 'init_testphys1d'
278    logical                             :: therestart1D, therestartfi, prescribed_h2ovap
279    integer                             :: ndt, day0
280    real                                :: ptif, pks, day, gru, grv, h2ovap_relax_time
281    real, dimension(:),     allocatable :: zqsat
282    real, dimension(:,:,:), allocatable :: dq, dqdyn
283    real, dimension(nlayer)             :: play, w, q_prescribed_h2o_vap
284    real, dimension(nlayer + 1)         :: plev
285#else
286    integer, parameter                :: jjm_value = jjm
287    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
288    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
289    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
290#endif
291
292! Loop variables
293integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
294real    :: totmass_ini
295logical :: num_str
296
297! CODE
298! Elapsed time with system clock
299call system_clock(count_rate = cr)
300call system_clock(c1)
301
302! Parse command-line options
303call parse_args()
304
305! Header
306write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
307write(*,*) '           +         _______  ________  ____    ____      *           + '
308write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
309write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
310write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
311write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
312write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
313write(*,*) '  .      *          .   *       .   +       *          .        +      .'
314
315! Some user info
316call date_and_time(date,time,zone,values)
317call getcwd(dir)      ! Current directory
318call getlog(logname)  ! User name
319call hostnm(hostname) ! Machine/station name
320write(*,*)
321write(*,*) '********* PEM information *********'
322write(*,*) '+ User     : '//trim(logname)
323write(*,*) '+ Machine  : '//trim(hostname)
324write(*,*) '+ Directory: '//trim(dir)
325write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
326write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
327
328! Parallel variables
329#ifndef CPP_STD
330    is_sequential = .true.
331    is_parallel = .false.
332    is_mpi_root = .true.
333    is_omp_root = .true.
334    is_master = .true.
335#endif
336
337! Some constants
338day_ini = 0
339time_phys = 0.
340ngrid = ngridmx
341A = (1./m_co2 - 1./m_noco2)
342B = 1./m_noco2
343year_day = 669
344daysec = 88775.
345timestep = year_day*daysec*year_step
346
347!----------------------------- INITIALIZATION --------------------------
348!------------------------
349! I   Initialization
350!    I_a Read the "run.def"
351!------------------------
352write(*,*)
353write(*,*) '********* PEM initialization *********'
354write(*,*) '> Reading "run.def" (PEM)'
355#ifndef CPP_1D
356    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
357    call conf_gcm(99,.true.)
358    call infotrac_init
359    nq = nqtot
360    allocate(q(ip1jmp1,llm,nqtot))
361    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
362#else
363    allocate(q(1,llm,nqtot),pdyn(1))
364    allocate(longitude(1),latitude(1),cell_area(1))
365
366    therestart1D = .false. ! Default value
367    inquire(file = 'start1D.txt',exist = therestart1D)
368    if (.not. therestart1D) then
369        write(*,*) 'There is no "start1D.txt" file!'
370        error stop 'Initialization cannot be done for the 1D PEM.'
371    endif
372    therestartfi = .false. ! Default value
373    inquire(file = 'startfi.nc',exist = therestartfi)
374    if (.not. therestartfi) then
375        write(*,*) 'There is no "startfi.nc" file!'
376        error stop 'Initialization cannot be done for the 1D PEM.'
377    endif
378
379    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
380    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
381                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
382                         play,plev,latitude,longitude,cell_area,prescribed_h2ovap,h2ovap_relax_time,q_prescribed_h2o_vap)
383    nsplit_phys = 1
384    day_step = steps_per_sol
385#endif
386
387call conf_pem(i_myear,n_myear)
388
389!------------------------
390! I   Initialization
391!    I_b Read of the "start.nc" and "starfi.nc"
392!------------------------
393! I_b.1 Read "start.nc"
394write(*,*) '> Reading "start.nc"'
395allocate(ps_start0(ngrid))
396#ifndef CPP_1D
397    allocate(pdyn(ip1jmp1))
398    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
399
400    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
401
402    call iniconst ! Initialization of dynamical constants (comconst_mod)
403    call inigeom ! Initialization of geometry
404
405    allocate(ap(nlayer + 1))
406    allocate(bp(nlayer + 1))
407    status = nf90_open(start_name,NF90_NOWRITE,ncid)
408    status = nf90_inq_varid(ncid,"ap",apvarid)
409    status = nf90_get_var(ncid,apvarid,ap)
410    status = nf90_inq_varid(ncid,"bp",bpvarid)
411    status = nf90_get_var(ncid,bpvarid,bp)
412    status = nf90_close(ncid)
413
414    ! Initialization of physics constants and variables (comcstfi_h)
415    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
416#else
417    ps_start0(1) = pdyn(1)
418#endif
419deallocate(pdyn)
420
421! In the PCM, these values are given to the physic by the dynamic.
422! Here we simply read them in the "startfi.nc" file
423status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
424status = nf90_inq_varid(ncid,"longitude",lonvarid)
425status = nf90_get_var(ncid,lonvarid,longitude)
426status = nf90_inq_varid(ncid,"latitude",latvarid)
427status = nf90_get_var(ncid,latvarid,latitude)
428status = nf90_inq_varid(ncid,"area",areavarid)
429status = nf90_get_var(ncid,areavarid,cell_area)
430status = nf90_inq_varid(ncid,"soildepth",sdvarid)
431status = nf90_get_var(ncid,sdvarid,mlayer)
432status = nf90_close(ncid)
433
434! I_b.2 Read the "startfi.nc"
435! First we read the initial state (starfi.nc)
436#ifndef CPP_STD
437    write(*,*) '> Reading "startfi.nc"'
438    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
439                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
440                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
441
442    ! Remove unphysical values of surface tracer
443    where (qsurf < 0.) qsurf = 0.
444
445    call surfini(ngrid,nslope,qsurf)
446#else
447    call phys_state_var_init(nq)
448    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
449    call initracer(ngrid,nq)
450    call iniaerosol()
451    allocate(tsurf_read_generic(ngrid))
452    allocate(qsurf_read_generic(ngrid,nq))
453    allocate(tsoil_read_generic(ngrid,nsoilmx))
454    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
455    allocate(emis_read_generic(ngrid))
456    allocate(albedo_read_generic(ngrid,2))
457    allocate(qsurf(ngrid,nq,1))
458    allocate(tsurf(ngrid,1))
459    allocate(tsoil(ngrid,nsoilmx,1))
460    allocate(emis(ngrid,1))
461    allocate(watercap(ngrid,1))
462    allocate(watercaptag(ngrid))
463    allocate(albedo(ngrid,2,1))
464    allocate(inertiesoil(ngrid,nsoilmx,1))
465    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
466                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
467                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
468                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
469    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
470
471    nslope = 1
472    call ini_comslope_h(ngrid,1)
473
474    qsurf(:,:,1) = qsurf_read_generic
475    tsurf(:,1) = tsurf_read_generic
476    tsoil(:,:,1) = tsoil_read_generic
477    emis(:,1) = emis_read_generic
478    watercap(:,1) = 0.
479    watercaptag(:) = .false.
480    albedo(:,1,1) = albedo_read_generic(:,1)
481    albedo(:,2,1) = albedo_read_generic(:,2)
482    inertiesoil(:,:,1) = inertiedat
483
484    if (nslope == 1) then
485        def_slope(1) = 0
486        def_slope(2) = 0
487        def_slope_mean = 0
488        subslope_dist(:,1) = 1.
489    endif
490
491    ! Remove unphysical values of surface tracer
492    qsurf(:,:,1) = qsurf_read_generic
493    where (qsurf < 0.) qsurf = 0.
494
495    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
496#endif
497
498do nnq = 1,nqtot  ! Why not using ini_tracer?
499    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
500    if (noms(nnq) == "h2o_vap") then
501        igcm_h2o_vap = nnq
502        mmol(igcm_h2o_vap) = 18.
503    endif
504    if (noms(nnq) == "co2") igcm_co2 = nnq
505enddo
506
507!------------------------
508! I   Initialization
509!    I_c Subslope parametrisation
510!------------------------
511! Define some slope statistics
512iflat = 1
513do islope = 2,nslope
514    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
515enddo
516write(*,*) 'Flat slope for islope = ',iflat
517write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
518
519!------------------------
520! I   Initialization
521!    I_d Read the PCM data and convert them to the physical grid
522!------------------------
523! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
524call get_timelen_PCM("data_PCM_Y1.nc",timelen)
525
526allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
527allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
528allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
529allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
530allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
531allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
532
533call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
534                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
535
536! Compute the deviation from the average
537allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
538ps_dev = ps_start0 - ps_avg
539tsurf_dev = tsurf - tsurf_avg
540tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
541
542!------------------------
543! I   Initialization
544!    I_e Initialization of the PEM variables and soil
545!------------------------
546call end_comsoil_h_PEM
547call ini_comsoil_h_PEM(ngrid,nslope)
548call end_adsorption_h_PEM
549call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
550call end_ice_table
551call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
552
553allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
554if (soil_pem) then
555    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
556    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
557    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
558    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
559    do l = nsoilmx + 1,nsoilmx_PEM
560        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
561        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
562        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
563    enddo
564    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
565endif !soil_pem
566deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
567
568!------------------------
569! I   Initialization
570!    I_f Compute tendencies
571!------------------------
572allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
573call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
574call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
575d_co2ice_ini = d_co2ice
576deallocate(min_co2_ice,min_h2o_ice)
577
578!------------------------
579! I   Initialization
580!    I_g Compute global surface pressure
581!------------------------
582total_surface = sum(cell_area)
583ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
584ps_avg_global_new = ps_avg_global_ini
585write(*,*) "Total surface of the planet     =", total_surface
586write(*,*) "Initial global average pressure =", ps_avg_global_ini
587
588!------------------------
589! I   Initialization
590!    I_h Read the "startpem.nc"
591!------------------------
592write(*,*) '> Reading "startpem.nc"'
593allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
594allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
595delta_h2o_icetablesublim = 0.
596call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
597              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
598              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
599deallocate(tsurf_avg_yr1)
600
601! We save the places where h2o ice is sublimating
602! We compute the surface of h2o ice sublimating
603allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
604co2ice_sublim_surf_ini = 0.
605h2oice_ini_surf = 0.
606is_co2ice_sublim_ini = .false.
607is_h2oice_sublim_ini = .false.
608is_co2ice_ini = .false.
609co2ice_disappeared = .false.
610totmass_co2ice_ini = 0.
611totmass_atmco2_ini = 0.
612if (layering_algo) then
613    do ig = 1,ngrid
614        do islope = 1,nslope
615            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
616                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
617            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
618                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
619            else
620                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
621            endif
622        enddo
623    enddo
624    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
625    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
626endif
627do i = 1,ngrid
628    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
629    do islope = 1,nslope
630        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
631        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
632        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
633            is_co2ice_sublim_ini(i,islope) = .true.
634            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
635        endif
636        if (d_h2oice(i,islope) < 0.) then
637            if (h2o_ice(i,islope) > 0.) then
638                is_h2oice_sublim_ini(i,islope) = .true.
639                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
640            else if (h2o_ice_depth(i,islope) > 0.) then
641                is_h2oice_sublim_ini(i,islope) = .true.
642            endif
643        endif
644    enddo
645enddo
646write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
647write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
648
649totmass_adsco2_ini = 0.
650totmass_adsh2o = 0.
651if (adsorption_pem) then
652    do ig = 1,ngrid
653        do islope = 1,nslope
654            do l = 1,nsoilmx_PEM - 1
655                if (l == 1) then
656                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
657                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
658                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
659                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
660                else
661                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
662                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
663                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
664                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
665                endif
666            enddo
667        enddo
668    enddo
669    totmass_adsco2 = totmass_adsco2_ini
670    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
671    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
672endif ! adsorption
673
674!------------------------
675! I   Initialization
676!    I_i Compute orbit criterion
677!------------------------
678#ifndef CPP_STD
679    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
680#else
681    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
682#endif
683
684n_myear_leg = Max_iter_pem
685if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
686
687!-------------------------- END INITIALIZATION -------------------------
688
689!-------------------------------- RUN ----------------------------------
690!------------------------
691! II  Run
692!    II_a Update pressure, ice and tracers
693!------------------------
694write(*,*)
695write(*,*) '********* PEM cycle *********'
696i_myear_leg = 0
697stopPEM = 0
698if (layering_algo) then
699    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
700    new_str = .true.
701    new_lag = .true.
702    do islope = 1,nslope
703        do ig = 1,ngrid
704            current(ig,islope)%p => layerings_map(ig,islope)%top
705        enddo
706    enddo
707endif
708
709do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
710! II.a.1. Compute updated global pressure
711    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
712    write(*,*) "> Updating the surface pressure"
713    ps_avg_global_old = ps_avg_global_new
714    do i = 1,ngrid
715        do islope = 1,nslope
716            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
717        enddo
718    enddo
719    if (adsorption_pem) then
720        do i = 1,ngrid
721            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
722        enddo
723    endif
724    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
725    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
726    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
727
728! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
729    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
730    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
731    do l = 1,nlayer + 1
732        do ig = 1,ngrid
733            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
734        enddo
735    enddo
736    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
737    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
738    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
739    do l = 1,nlayer + 1
740        do ig = 1,ngrid
741            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
742        enddo
743    enddo
744
745! II.a.3. Tracers timeseries
746    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
747    allocate(vmr_co2_PEM_phys(ngrid,timelen))
748    l = 1
749    do ig = 1,ngrid
750        do t = 1,timelen
751            ! H2O
752            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
753                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
754            if (q_h2o_PEM_phys(ig,t) < 0) then
755                q_h2o_PEM_phys(ig,t) = 1.e-30
756            else if (q_h2o_PEM_phys(ig,t) > 1) then
757                q_h2o_PEM_phys(ig,t) = 1.
758            endif
759            ! CO2
760            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
761                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
762                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
763                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
764                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
765            if (q_co2_PEM_phys(ig,t) < 0) then
766                q_co2_PEM_phys(ig,t) = 1.e-30
767            else if (q_co2_PEM_phys(ig,t) > 1) then
768                q_co2_PEM_phys(ig,t) = 1.
769            endif
770            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
771            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
772        enddo
773    enddo
774    deallocate(zplev_timeseries_new,zplev_timeseries_old)
775
776!------------------------
777! II  Run
778!    II_b Evolution of ice
779!------------------------
780    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
781    if (layering_algo) then
782        h2o_ice_depth_old = h2o_ice_depth
783        do islope = 1,nslope
784            do ig = 1,ngrid
785                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
786                !call print_layering(layerings_map(ig,islope))
787                co2_ice(ig,islope) = 0.
788                h2o_ice(ig,islope) = 0.
789                h2o_ice_depth(ig,islope) = 0.
790                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
791                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
792                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
793                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
794                else
795                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
796                endif
797            enddo
798        enddo
799    else
800        zlag = 0.
801        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
802        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
803    endif
804
805!------------------------
806! II  Run
807!    II_c Flow of glaciers
808!------------------------
809    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
810    if (co2ice_flow .and. nslope > 1) then
811        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
812                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
813        if (layering_algo) then
814            do islope = 1,nslope
815                do ig = 1,ngrid
816                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)
817                enddo
818            enddo
819        endif
820    endif
821    if (h2oice_flow .and. nslope > 1) then
822        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
823        if (layering_algo) then
824            do islope = 1,nslope
825                do ig = 1,ngrid
826!~                     layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)
827                enddo
828            enddo
829        endif
830    endif
831
832!------------------------
833! II  Run
834!    II_d Update surface and soil temperatures
835!------------------------
836! II_d.1 Update Tsurf
837    call update_tsurf_nearest_baresoil(ngrid,nslope,iim,jjm,tsurf_avg,co2_ice,is_co2ice_ini,co2ice_disappeared)
838
839    if (soil_pem) then
840! II_d.2 Shifting soil temperature to surface
841        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
842
843! II_d.3 Update soil temperature
844        write(*,*)"> Updating soil temperature profile"
845        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
846        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
847        do islope = 1,nslope
848            tsoil_avg_old = tsoil_PEM(:,:,islope)
849            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
850            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
851
852            do t = 1,timelen
853                do ig = 1,ngrid
854                    do isoil = 1,nsoilmx_PEM
855                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
856                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
857                        ! Update of watersoil density
858                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
859                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
860                    enddo
861                enddo
862            enddo
863        enddo
864        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
865        deallocate(tsoil_avg_old)
866
867! II_d.4 Update the ice table
868        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
869        if (icetable_equilibrium) then
870            write(*,*) "> Updating ice table (equilibrium method)"
871            icetable_thickness_old = icetable_thickness
872            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
873            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
874        else if (icetable_dynamic) then
875            write(*,*) "> Updating ice table (dynamic method)"
876            ice_porefilling_old = ice_porefilling
877            icetable_depth_old = icetable_depth
878            allocate(porefill(nsoilmx_PEM))
879            do ig = 1,ngrid
880                do islope = 1,nslope
881                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
882                    icetable_depth(ig,islope) = ssi_depth
883                    ice_porefilling(ig,:,islope) = porefill
884                enddo
885            enddo
886            deallocate(porefill)
887            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
888        endif
889        deallocate(icetable_thickness_old,ice_porefilling_old)
890
891! II_d.5 Update the soil thermal properties
892        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
893
894! II_d.6 Update the mass of the regolith adsorbed
895        totmass_adsco2 = 0.
896        totmass_adsh2o = 0.
897        if (adsorption_pem) then
898            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
899                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
900                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
901            do ig = 1,ngrid
902                do islope = 1,nslope
903                    do l = 1,nsoilmx_PEM
904                        if (l == 1) then
905                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
906                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
907                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
908                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
909                        else
910                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
911                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
912                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
913                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
914                        endif
915                    enddo
916                enddo
917            enddo
918            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
919            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
920        endif
921    endif !soil_pem
922    deallocate(zshift_surf,zlag)
923
924!------------------------
925! II  Run
926!    II_e Outputs
927!------------------------
928    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
929    do islope = 1,nslope
930        write(str2(1:2),'(i2.2)') islope
931        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
932        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
933        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
934        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
935        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
936        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
937        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
938        if (icetable_equilibrium) then
939            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
940            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
941        else if (icetable_dynamic) then
942            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
943        endif
944
945        if (soil_pem) then
946            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
947            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
948            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
949            if (adsorption_pem) then
950                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
951                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
952            endif
953        endif
954    enddo
955    deallocate(flag_co2flow,flag_h2oflow)
956
957    ! Checking mass balance for CO2
958    if (abs(CO2cond_ps - 1.) < 1.e-10) then
959        totmass_co2ice = 0.
960        totmass_atmco2 = 0.
961        do ig = 1,ngrid
962            totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
963            do islope = 1,nslope
964                totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
965            enddo
966        enddo
967        totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10)
968        write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %'
969        if ((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini > 0.01) then
970            write(*,*) '  /!\ Warning: mass balance is not conseved!'
971            totmass_ini = max(totmass_atmco2_ini,1.e-10)
972            write(*,'(a,f8.3,a)') '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %'
973            totmass_ini = max(totmass_co2ice_ini,1.e-10)
974            write(*,'(a,f8.3,a)') '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %'
975            totmass_ini = max(totmass_adsco2_ini,1.e-10)
976            write(*,'(a,f8.3,a)') '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %'
977        endif
978    endif
979
980!------------------------
981! II  Run
982!    II_f Update the tendencies
983!------------------------
984    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
985    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
986    if (layering_algo) then
987        do ig = 1,ngrid
988            do islope = 1,nslope
989                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
990            enddo
991        enddo
992!~     else
993!~         do ig = 1,ngrid
994!~             do islope = 1,nslope
995!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
996!~             enddo
997!~         enddo
998    endif
999    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1000    deallocate(vmr_co2_PEM_phys)
1001
1002!------------------------
1003! II  Run
1004!    II_g Checking the stopping criterion
1005!------------------------
1006    write(*,*) "> Checking the stopping criteria"
1007    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1008    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1009    i_myear_leg = i_myear_leg + dt
1010    i_myear = i_myear + dt
1011    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1012    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1013    call system_clock(c2)
1014    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1015    if (stopPEM > 0) then
1016        select case (stopPEM)
1017            case(1)
1018                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1019            case(2)
1020                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1021            case(3)
1022                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1023            case(4)
1024                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1025            case(5)
1026                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1027            case(6)
1028                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1029            case(7)
1030                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1031            case default
1032                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1033        end select
1034        exit
1035    else
1036        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1037        write(*,*) '**** The PEM can continue!'
1038        write(*,*) '****'
1039    endif
1040enddo ! big time iteration loop of the pem
1041deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1042deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1043deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1044deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1045deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1046deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1047if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
1048!------------------------------ END RUN --------------------------------
1049
1050!------------------------------- OUTPUT --------------------------------
1051!------------------------
1052! III Output
1053!    III_a Update surface values for the PCM start files
1054!------------------------
1055write(*,*)
1056write(*,*) '********* PEM finalization *********'
1057! III_a.1 Ice update for start file
1058write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1059watercap = 0.
1060perennial_co2ice = co2_ice
1061do ig = 1,ngrid
1062    ! H2O ice metamorphism
1063    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1064    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1065    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1066    !endif
1067
1068    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1069    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1070        ! There is enough ice to be considered as an infinite reservoir
1071        watercaptag(ig) = .true.
1072    else
1073        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1074        watercaptag(ig) = .false.
1075        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1076        h2o_ice(ig,:) = 0.
1077    endif
1078
1079    ! CO2 ice metamorphism
1080    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1081    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1082    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1083    !endif
1084enddo
1085
1086! III.a.3. Tsurf update for start file
1087write(*,*) '> Reconstructing the surface temperature for the PCM'
1088tsurf = tsurf_avg + tsurf_dev
1089deallocate(tsurf_dev)
1090
1091! III_a.4 Tsoil update for start file
1092if (soil_pem) then
1093    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1094    inertiesoil = TI_PEM(:,:nsoilmx,:)
1095    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1096    do isoil = 1,nsoilmx
1097        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1098    enddo
1099    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1100#ifndef CPP_STD
1101    flux_geo = fluxgeo
1102#endif
1103endif
1104deallocate(tsurf_avg,tsoil_dev)
1105
1106! III_a.5 Pressure update for start file
1107write(*,*) '> Reconstructing the pressure for the PCM'
1108allocate(ps_start(ngrid))
1109! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1110ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1111deallocate(ps_avg,ps_dev)
1112
1113! III_a.6 Tracers update for start file
1114write(*,*) '> Reconstructing the tracer VMR for the PCM'
1115allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1116do l = 1,nlayer + 1
1117    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1118    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1119enddo
1120
1121do nnq = 1,nqtot
1122    if (noms(nnq) /= "co2") then
1123        do l = 1,llm - 1
1124            do ig = 1,ngrid
1125                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1126            enddo
1127            q(:,llm,nnq) = q(:,llm - 1,nnq)
1128        enddo
1129    else
1130        do l = 1,llm - 1
1131            do ig = 1,ngrid
1132                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1133                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1134            enddo
1135            q(:,llm,nnq) = q(:,llm - 1,nnq)
1136        enddo
1137    endif
1138enddo
1139deallocate(zplev_start0)
1140
1141! Conserving the tracers mass for start file
1142do nnq = 1,nqtot
1143    do ig = 1,ngrid
1144        do l = 1,llm - 1
1145            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1146                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1147                q(ig,l,nnq) = 1.
1148                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1149                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1150            endif
1151            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1152        enddo
1153    enddo
1154enddo
1155deallocate(zplev_new)
1156
1157! III_a.7 Albedo update for start file
1158write(*,*) '> Reconstructing the albedo for the PCM'
1159do ig = 1,ngrid
1160    if (latitude(ig) < 0.) then
1161        icap = 2 ! Southern hemisphere
1162    else
1163        icap = 1 ! Northern hemisphere
1164    endif
1165    do islope = 1,nslope
1166        ! Bare ground
1167        albedo(ig,:,islope) = albedodat(ig)
1168        emis(ig,islope) = emissiv
1169
1170        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1171        ! H2O ice
1172        if (h2o_ice(ig,islope) > 0.) then
1173            albedo(ig,:,islope) = albedo_h2o_cap
1174            emis(ig,islope) = 1.
1175        endif
1176        ! CO2 ice
1177        if (co2_ice(ig,islope) > 0.) then
1178            albedo(ig,:,islope) = albedo_perennialco2(icap)
1179            emis(ig,islope) = emisice(icap)
1180        endif
1181        ! H2O frost
1182        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1183            albedo(ig,:,islope) = albedo_h2o_frost
1184            emis(ig,islope) = 1.
1185        endif
1186        ! CO2 frost
1187        if (qsurf(ig,igcm_co2,islope) > 0.) then
1188            albedo(ig,:,islope) = albedice(icap)
1189            emis(ig,islope) = emisice(icap)
1190        endif
1191    enddo
1192enddo
1193
1194! III_a.8 Orbital parameters update for start file
1195write(*,*) '> Setting the new orbital parameters'
1196if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1197
1198!------------------------
1199! III Output
1200!    III_b Write "restart.nc" and "restartfi.nc"
1201!------------------------
1202! III_b.1 Write "restart.nc"
1203ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1204pday = day_ini
1205ztime_fin = time_phys
1206#ifndef CPP_1D
1207    write(*,*) '> Writing "restart.nc"'
1208    ! Correction on teta due to surface pressure changes
1209    allocate(pdyn(ip1jmp1))
1210    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1211    do i = 1,ip1jmp1
1212        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1213    enddo
1214    ! Correction on atmospheric pressure
1215    allocate(p(ip1jmp1,nlayer + 1))
1216    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1217    call pression(ip1jmp1,ap,bp,pdyn,p)
1218    ! Correction on the mass of atmosphere
1219    call massdair(p,masse)
1220    call dynredem0("restart.nc",day_ini,phis)
1221    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1222    deallocate(ap,bp,p,pdyn)
1223#else
1224    write(*,*) '> Writing "restart1D.txt"'
1225    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1226#endif
1227deallocate(ps_start0,ps_start)
1228
1229! III_b.2 Write the "restartfi.nc"
1230write(*,*) '> Writing "restartfi.nc"'
1231#ifndef CPP_STD
1232    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1233                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1234                  inertiedat,def_slope,subslope_dist)
1235    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1236                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1237                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1238                  wstar,watercap,perennial_co2ice)
1239#else
1240    if (allocated(noms)) deallocate(noms)
1241    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1242    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1243                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1244                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1245    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1246                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1247                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1248                  tsea_ice,sea_ice)
1249#endif
1250
1251!------------------------
1252! III Output
1253!    III_c Write the "restartpem.nc"
1254!------------------------
1255write(*,*) '> Writing "restartpem.nc"'
1256if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1257call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1258call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1259             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1260
1261call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1262
1263write(*,*)
1264write(*,*) '****** PEM final information *******'
1265write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1266write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1267write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1268write(*,*) "+ PEM: so far, so good!"
1269write(*,*) '************************************'
1270
1271if (layering_algo) then
1272    do islope = 1,nslope
1273        do i = 1,ngrid
1274            call del_layering(layerings_map(i,islope))
1275        enddo
1276    enddo
1277endif
1278deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1279deallocate(co2_ice,h2o_ice,layerings_map)
1280!----------------------------- END OUTPUT ------------------------------
1281
1282END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.