source: trunk/LMDZ.COMMON/libf/evolution/pem.F90 @ 3851

Last change on this file since 3851 was 3851, checked in by jbclement, 4 days ago

PEM:

  • Making the computation of CO2 mass balance more robust, especially regarding 'CO2cond_ps'.
  • Small correction about the dust tendency management for the layering algorithm.
  • Small improvement of the visualization in "visu_evol_layering.py".
  • File "log_launchPEM.txt" renamed into "launchPEM.log".

JBC

File size: 68.9 KB
Line 
1!------------------------
2! I   Initialization
3!    I_a Read the "run.def"
4!    I_b Read the "start.nc" and "startfi.nc"
5!    I_c Subslope parametrisation
6!    I_d Read the PCM data and convert them to the physical grid
7!    I_e Initialization of the PEM variable and soil
8!    I_f Compute tendencies
9!    I_g Compute global surface pressure
10!    I_h Read the "startpem.nc"
11!    I_i Compute orbit criterion
12
13! II  Run
14!    II_a Update pressure, ice and tracers
15!    II_b Evolution of ice
16!    II_c Flow of glaciers
17!    II_d Update surface and soil temperatures
18!    II_e Outputs
19!    II_f Update the tendencies
20!    II_g Checking the stopping criterion
21
22! III Output
23!    III_a Update surface values for the PCM start files
24!    III_b Write the "restart.nc" and "restartfi.nc"
25!    III_c Write the "restartpem.nc"
26!------------------------
27
28PROGRAM pem
29
30use phyetat0_mod,               only: phyetat0
31use phyredem,                   only: physdem0, physdem1
32use netcdf,                     only: nf90_open, NF90_NOWRITE, nf90_get_var, nf90_inq_varid, nf90_close
33use turb_mod,                   only: q2, wstar
34use comslope_mod,               only: nslope, def_slope, def_slope_mean, subslope_dist, iflat, ini_comslope_h
35use logic_mod,                  only: iflag_phys
36use mod_const_mpi,              only: COMM_LMDZ
37use infotrac
38use geometry_mod,               only: latitude_deg
39use conf_pem_mod,               only: conf_pem
40use pemredem,                   only: pemdem0, pemdem1
41use glaciers_mod,               only: flow_co2glaciers, flow_h2oglaciers, co2ice_flow, h2oice_flow, inf_h2oice_threshold, &
42                                      metam_h2oice_threshold, metam_co2ice_threshold, metam_h2oice, metam_co2ice, computeTcondCO2
43use stopping_crit_mod,          only: stopping_crit_h2o_ice, stopping_crit_co2
44use constants_marspem_mod,      only: alpha_clap_co2, beta_clap_co2, alpha_clap_h2o, beta_clap_h2o, m_co2, m_noco2
45use evol_ice_mod,               only: evol_co2_ice, evol_h2o_ice
46use comsoil_h_PEM,              only: soil_pem, ini_comsoil_h_PEM, end_comsoil_h_PEM, nsoilmx_PEM, &
47                                      TI_PEM,               & ! Soil thermal inertia
48                                      tsoil_PEM, layer_PEM, & ! Soil temp, number of subsurface layers, soil mid layer depths
49                                      fluxgeo                 ! Geothermal flux for the PEM and PCM
50use adsorption_mod,             only: regolith_adsorption, adsorption_pem,        & ! Bool to check if adsorption, main subroutine
51                                      ini_adsorption_h_PEM, end_adsorption_h_PEM, & ! Allocate arrays
52                                      co2_adsorbed_phys, h2o_adsorbed_phys          ! Mass of co2 and h2O adsorbed
53use time_evol_mod,              only: dt, evol_orbit_pem, Max_iter_pem, convert_years, year_bp_ini
54use orbit_param_criterion_mod,  only: orbit_param_criterion
55use recomp_orb_param_mod,       only: recomp_orb_param
56use ice_table_mod,              only: icetable_depth, icetable_thickness, end_ice_table, ice_porefilling, &
57                                      ini_ice_table, icetable_equilibrium, icetable_dynamic, computeice_table_equilibrium, compute_massh2o_exchange_ssi
58use soil_thermalproperties_mod, only: update_soil_thermalproperties
59use time_phylmdz_mod,           only: daysec, dtphys
60use abort_pem_mod,              only: abort_pem
61use soil_settings_PEM_mod,      only: soil_settings_PEM
62use compute_tend_mod,           only: compute_tend
63use info_PEM_mod,               only: info_PEM
64use get_timelen_PCM_mod,        only: get_timelen_PCM
65use pemetat0_mod,               only: pemetat0
66use read_data_PCM_mod,          only: read_data_PCM
67use recomp_tend_mod,            only: recomp_tend_co2, recomp_tend_h2o
68use compute_soiltemp_mod,       only: compute_tsoil_pem, shift_tsoil2surf
69use writediagpem_mod,           only: writediagpem, writediagsoilpem
70use co2condens_mod,             only: CO2cond_ps
71use layering_mod,               only: layering, del_layering, make_layering, layering_algo, subsurface_ice_layering, &
72                                      ptrarray, stratum, get_nb_str_max, nb_str_max, is_dust_lag, is_co2ice_str, is_h2oice_str
73use dyn_ss_ice_m_mod,           only: dyn_ss_ice_m
74use parse_args_mod,             only: parse_args
75use job_timelimit_mod,          only: timelimit, antetime, timewall
76use paleoclimate_mod,           only: h2o_ice_depth, zdqsdif_ssi_tot
77
78#ifndef CPP_STD
79    use comsoil_h,          only: tsoil, nsoilmx, ini_comsoil_h, inertiedat, mlayer, inertiesoil, flux_geo, nqsoil, qsoil
80    use surfdat_h,          only: tsurf, qsurf, emis, emissiv, emisice, ini_surfdat_h,   &
81                                  albedodat, albedice, albedo_h2o_frost, albedo_h2o_cap, &
82                                  zmea, zstd, zsig, zgam, zthe, frost_albedo_threshold,  &
83                                  watercap, watercaptag, perennial_co2ice, albedo_perennialco2
84    use dimradmars_mod,     only: totcloudfrac, albedo
85    use dust_param_mod,     only: tauscaling
86    use tracer_mod,         only: noms, igcm_h2o_ice, igcm_co2, mmol, igcm_h2o_vap ! Tracer names and molar masses
87    use mod_phys_lmdz_para, only: is_parallel, is_sequential, is_mpi_root, is_omp_root, is_master
88    use planete_h,          only: aphelie, periheli, year_day, peri_day, obliquit, iniorbit
89    use surfini_mod,        only: surfini
90    use comcstfi_h,         only: mugaz
91#else
92    use tracer_h,           only: noms, igcm_h2o_ice, igcm_co2 ! Tracer names
93    use phys_state_var_mod, only: cloudfrac, totcloudfrac, albedo_snow_SPECTV,HICE,RNAT,   &
94                                  PCTSRF_SIC, TSLAB, TSEA_ICE, SEA_ICE, ALBEDO_BAREGROUND, &
95                                  ALBEDO_CO2_ICE_SPECTV, phys_state_var_init
96    use aerosol_mod,        only: iniaerosol
97    use planete_mod,        only: apoastr, periastr, year_day, peri_day, obliquit
98    use comcstfi_mod,       only: pi, rad, g, r, cpp, rcp, mugaz
99#endif
100
101#ifndef CPP_1D
102    use comconst_mod,             only: pi, rad, g, r, cpp, rcp => kappa
103    use iniphysiq_mod,            only: iniphysiq
104    use control_mod,              only: iphysiq, day_step, nsplit_phys
105#else
106    use comcstfi_h,               only: pi, rad, g, r, cpp, rcp
107    use time_phylmdz_mod,         only: iphysiq, steps_per_sol
108    use regular_lonlat_mod,       only: init_regular_lonlat
109    use physics_distribution_mod, only: init_physics_distribution
110    use mod_grid_phy_lmdz,        only: regular_lonlat
111    use init_testphys1d_mod,      only: init_testphys1d
112    use comvert_mod,              only: ap, bp
113    use writerestart1D_mod,       only: writerestart1D
114#endif
115
116implicit none
117
118include "dimensions.h"
119include "paramet.h"
120include "comgeom.h"
121include "iniprint.h"
122
123! Same variable names as in the PCM
124integer, parameter :: ngridmx = 2 + (jjm - 1)*iim - 1/jjm
125integer, parameter :: nlayer = llm ! Number of vertical layer
126integer            :: ngrid        ! Number of physical grid points
127integer            :: nq           ! Number of tracer
128integer            :: day_ini      ! First day of the simulation
129real               :: pday         ! Physical day
130real               :: time_phys    ! Same as in PCM
131real               :: ptimestep    ! Same as in PCM
132real               :: ztime_fin    ! Same as in PCM
133
134! Variables to read "start.nc"
135character(*), parameter :: start_name = "start.nc" ! Name of the file used to initialize the PEM
136
137! Dynamic variables
138real, dimension(ip1jm,llm)          :: vcov          ! vents covariants
139real, dimension(ip1jmp1,llm)        :: ucov          ! vents covariants
140real, dimension(ip1jmp1,llm)        :: teta          ! Potential temperature
141real, dimension(:,:,:), allocatable :: q             ! champs advectes
142real, dimension(:),     allocatable :: pdyn          ! pressure for the dynamic grid
143real, dimension(:),     allocatable :: ps_start      ! surface pressure in the start file
144real, dimension(:),     allocatable :: ps_start0     ! surface pressure in the start file at the beginning
145real, dimension(:),     allocatable :: ps_avg        ! (ngrid) Average surface pressure
146real, dimension(:),     allocatable :: ps_dev        ! (ngrid x timelen) Surface pressure deviation
147real, dimension(:,:),   allocatable :: ps_timeseries ! (ngrid x timelen) Instantaneous surface pressure
148real, dimension(ip1jmp1,llm)        :: masse         ! Air mass
149real, dimension(ip1jmp1)            :: phis          ! geopotentiel au sol
150real                                :: time_0
151
152! Variables to read starfi.nc
153character(*), parameter :: startfi_name = "startfi.nc" ! Name of the file used to initialize the PEM
154character(2)            :: str2
155integer                 :: ncid, status                           ! Variable for handling opening of files
156integer                 :: lonvarid, latvarid, areavarid, sdvarid ! Variable ID for Netcdf files
157integer                 :: apvarid, bpvarid                       ! Variable ID for Netcdf files
158
159! Variables to read starfi.nc and write restartfi.nc
160real, dimension(:), allocatable :: longitude     ! Longitude read in startfi_name and written in restartfi
161real, dimension(:), allocatable :: latitude      ! Latitude read in startfi_name and written in restartfi
162real, dimension(:), allocatable :: cell_area     ! Cell_area read in startfi_name and written in restartfi
163real                            :: total_surface ! Total surface of the planet
164
165! Variables for h2o ice evolution
166real, dimension(:,:),    allocatable  :: h2o_ice              ! h2o ice in the PEM
167real, dimension(:,:),    allocatable  :: d_h2oice             ! physical point x slope field: Tendency of evolution of perennial h2o ice
168real, dimension(:,:,:),  allocatable  :: min_h2o_ice          ! Minima of h2o ice at each point for the PCM years [kg/m^2]
169real                                  :: h2oice_ini_surf      ! Initial surface of sublimating h2o ice
170logical, dimension(:,:), allocatable  :: is_h2oice_sublim_ini ! Logical array to know if h2o ice is sublimating
171real                                  :: ps_avg_global_ini    ! constant: Global average pressure at initialization [Pa]
172real                                  :: ps_avg_global_old    ! constant: Global average pressure of previous time step
173real                                  :: ps_avg_global_new    ! constant: Global average pressure of current time step
174real,   dimension(:,:),   allocatable :: zplev_new            ! Grid points x Atmospheric field: mass of the atmospheric layers in the pem at current time step [kg/m^2]
175real,   dimension(:,:),   allocatable :: zplev_start0         ! Grid points x Atmospheric field: mass of the atmospheric layers in the start [kg/m^2]
176real,   dimension(:,:,:), allocatable :: zplev_timeseries_new ! Grid points x Atmospheric x Time: same as zplev_new, but in times series [kg/m ^2]
177real,   dimension(:,:,:), allocatable :: zplev_timeseries_old ! same but with the time series, for previous time step
178integer                               :: stopPEM              ! which criterion is reached? 0 = no stopping; 1 = h2o ice surf; 2 = no h2o ice; 3 = co2 ice surf; 4 = ps; 5 = orb param; 6 = end of simu
179real                                  :: A, B, mmean          ! Molar mass: intermediate A, B for computations of the  mean molar mass of the layer [mol/kg]
180real,   dimension(:,:),   allocatable :: q_h2o_PEM_phys       ! Grid points x Times: h2o mass mixing ratio computed in the PEM, first value comes from PCM [kg/kg]
181integer                               :: timelen              ! # time samples
182real                                  :: extra_mass           ! Intermediate variables Extra mass of a tracer if it is greater than 1
183
184! Variables for co2 ice evolution
185real,    dimension(:,:), allocatable :: co2_ice                ! co2 ice in the PEM
186real,    dimension(:,:), allocatable :: d_co2ice               ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year
187real,    dimension(:,:), allocatable :: d_co2ice_ini           ! physical point x slope field: Tendency of evolution of perennial co2 ice over a year in the PCM
188logical, dimension(:,:), allocatable :: is_co2ice_ini          ! Was there co2 ice initially in the PEM?
189real,  dimension(:,:,:), allocatable :: min_co2_ice            ! Minimum of co2 ice at each point for the first year [kg/m^2]
190real                                 :: co2ice_sublim_surf_ini ! Initial surface of sublimating co2 ice
191logical, dimension(:,:), allocatable :: is_co2ice_sublim_ini   ! Logical array to know if co2 ice is sublimating
192real,    dimension(:,:), allocatable :: vmr_co2_PCM            ! Grid points x Times co2 volume mixing ratio retrieve from the PCM [m^3/m^3]
193real,    dimension(:,:), allocatable :: vmr_co2_PEM_phys       ! Grid points x Times co2 volume mixing ratio used in the PEM
194real,    dimension(:,:), allocatable :: q_co2_PEM_phys         ! Grid points x Times co2 mass mixing ratio in the first layer computed in the PEM, first value comes from PCM [kg/kg]
195real(kind = 16)                      :: totmass_co2ice, totmass_atmco2         ! Current total CO2 masses
196real(kind = 16)                      :: totmass_co2ice_ini, totmass_atmco2_ini ! Initial total CO2 masses
197
198! Variables for the evolution of layered layerings_map
199type(layering), dimension(:,:), allocatable :: layerings_map     ! Layering for each grid point and slope
200type(ptrarray), dimension(:,:), allocatable :: current           ! Current active stratum in the layering
201logical,        dimension(:,:), allocatable :: new_str, new_lag  ! Flags for the layering algorithm
202real,           dimension(:,:), allocatable :: h2o_ice_depth_old ! Old depth of subsurface ice layer
203
204! Variables for slopes
205integer(kind = 1), dimension(:,:), allocatable :: flag_co2flow ! (ngrid,nslope): Flag where there is a CO2 glacier flow
206integer(kind = 1), dimension(:,:), allocatable :: flag_h2oflow ! (ngrid,nslope): Flag where there is a H2O glacier flow
207
208! Variables for surface and soil
209real, dimension(:,:),     allocatable :: tsurf_avg                          ! Grid points x Slope field: Average surface temperature [K]
210real, dimension(:,:),     allocatable :: tsurf_dev                          ! Grid points x Slope field: Surface temperature deviation [K]
211real, dimension(:,:),     allocatable :: tsurf_avg_yr1                      ! Grid points x Slope field: Average surface temperature of first call of the PCM [K]
212real, dimension(:,:,:),   allocatable :: tsoil_avg                          ! Grid points x Soil x Slope field: Average Soil Temperature [K]
213real, dimension(:,:),     allocatable :: tsoil_avg_old                      ! Grid points x Soil field: Average Soil Temperature at the previous time step [K]
214real, dimension(:,:,:),   allocatable :: tsoil_dev                          ! Grid points x Soil x Slope field: Soil temperature deviation [K]
215real, dimension(:,:,:,:), allocatable :: tsoil_timeseries                   ! Grid points x Soil x Slope x Times field: Soil temperature timeseries [K]
216real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries               ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM [K]
217real, dimension(:,:,:,:), allocatable :: tsoil_PEM_timeseries_old           ! Grid points x Soil x Slope x Times field: Soil temperature timeseries for PEM at the previous time step [K]
218real, dimension(:,:,:,:), allocatable :: watersoil_density_timeseries       ! Grid points x Soil x Slope x Times Water soil density timeseries [kg /m^3]
219real, dimension(:,:),     allocatable :: watersurf_density_avg              ! Grid points x Slope: Average water surface density [kg/m^3]
220real, dimension(:,:,:,:), allocatable :: watersoil_density_PEM_timeseries   ! Grid points x Soil x Slope x Times: Water soil density timeseries for PEM [kg/m^3]
221real, dimension(:,:,:),   allocatable :: watersoil_density_PEM_avg          ! Grid points x Soil x Slopes: Average water soil density [kg/m^3]
222real, dimension(:),       allocatable :: delta_co2_adsorbed                 ! Physics: quantity of CO2 that is exchanged because of adsorption / desorption [kg/m^2]
223real, dimension(:),       allocatable :: delta_h2o_adsorbed                 ! Physics: quantity of H2O that is exchanged because of adsorption / desorption [kg/m^2]
224real(kind = 16)                       :: totmass_adsco2, totmass_adsco2_ini ! Total mass of CO2 that is exchanged because of adsorption / desoprtion over the planets [kg]
225real                                  :: totmass_adsh2o                     ! Total mass of H2O that is exchanged because of adsorption / desoprtion over the planets [kg]
226logical, dimension(:,:),  allocatable :: co2ice_disappeared                 ! logical to check if a co2 ice reservoir already disappeared at a previous timestep
227real, dimension(:,:),     allocatable :: icetable_thickness_old             ! ngrid x nslope: Thickness of the ice table at the previous iteration [m]
228real, dimension(:,:,:),   allocatable :: ice_porefilling_old                ! ngrid x nslope: Ice pore filling at the previous iteration [m]
229real, dimension(:),       allocatable :: delta_h2o_icetablesublim           ! ngrid x Total mass of the H2O that has sublimated / condenses from the ice table [kg]
230real, dimension(:),       allocatable :: porefill                           ! Pore filling (output) to compute the dynamic ice table
231real                                  :: ssi_depth                          ! Ice table depth (output) to compute the dynamic ice table
232real, dimension(:,:),     allocatable :: zshift_surf                        ! Elevation shift for the surface [m]
233real, dimension(:,:),     allocatable :: zlag                               ! Newly built lag thickness [m]
234real, dimension(:,:),     allocatable :: icetable_depth_old                 ! Old depth of the ice table
235
236! Some variables for the PEM run
237real, parameter       :: year_step = 1   ! Timestep for the pem
238real                  :: i_myear_leg     ! Number of iteration
239real                  :: n_myear_leg     ! Maximum number of iterations before stopping
240real                  :: i_myear         ! Global number of Martian years of the chained simulations
241real                  :: n_myear         ! Maximum number of Martian years of the chained simulations
242real                  :: timestep        ! Timestep [s]
243integer(kind = 8)     :: cr              ! Number of clock ticks per second (count rate)
244integer(kind = 8)     :: c1, c2          ! Counts of processor clock
245character(8)          :: date
246character(10)         :: time
247character(5)          :: zone
248integer, dimension(8) :: values
249character(128)        :: dir = ' '
250character(32)         :: logname = ' '
251character(32)         :: hostname = ' '
252
253#ifdef CPP_STD
254    real                                :: frost_albedo_threshold = 0.05 ! Frost albedo threeshold to convert fresh frost to old ice
255    real                                :: albedo_h2o_frost              ! Albedo of h2o frost
256    real, dimension(:),     allocatable :: tsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
257    real, dimension(:,:),   allocatable :: qsurf_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
258    real, dimension(:,:),   allocatable :: tsoil_read_generic            ! Temporary variable to do the subslope transfert dimension when reading form generic
259    real, dimension(:),     allocatable :: emis_read_generic             ! Temporary variable to do the subslope transfert dimension when reading form generic
260    real, dimension(:,:),   allocatable :: albedo_read_generic           ! Temporary variable to do the subslope transfert dimension when reading form generic
261    real, dimension(:,:),   allocatable :: tsurf                         ! Subslope variable, only needed in the GENERIC case
262    real, dimension(:,:,:), allocatable :: qsurf                         ! Subslope variable, only needed in the GENERIC case
263    real, dimension(:,:,:), allocatable :: tsoil                         ! Subslope variable, only needed in the GENERIC case
264    real, dimension(:,:),   allocatable :: emis                          ! Subslope variable, only needed in the GENERIC case
265    real, dimension(:,:),   allocatable :: watercap                      ! Subslope variable, only needed in the GENERIC case =0 no watercap in generic model
266    logical, dimension(:),  allocatable :: watercaptag                   ! Subslope variable, only needed in the GENERIC case =false no watercaptag in generic model
267    real, dimension(:,:,:), allocatable :: albedo                        ! Subslope variable, only needed in the GENERIC case
268    real, dimension(:,:,:), allocatable :: inertiesoil                   ! Subslope variable, only needed in the GENERIC case
269#endif
270
271#ifdef CPP_1D
272    integer            :: nsplit_phys
273    integer, parameter :: jjm_value = jjm - 1
274    integer            :: day_step
275
276    ! Dummy variables to use the subroutine 'init_testphys1d'
277    logical                             :: therestart1D, therestartfi, prescribed_h2ovap
278    integer                             :: ndt, day0
279    real                                :: ptif, pks, day, gru, grv, h2ovap_relax_time
280    real, dimension(:),     allocatable :: zqsat
281    real, dimension(:,:,:), allocatable :: dq, dqdyn
282    real, dimension(nlayer)             :: play, w, q_prescribed_h2o_vap
283    real, dimension(nlayer + 1)         :: plev
284#else
285    integer, parameter                :: jjm_value = jjm
286    real, dimension(:),   allocatable :: ap ! Coefficient ap read in start_name and written in restart
287    real, dimension(:),   allocatable :: bp ! Coefficient bp read in start_name and written in restart
288    real, dimension(:,:), allocatable :: p  ! Grid points x Atmosphere: pressure to recompute and write in restart (ip1jmp1,llmp1)
289#endif
290
291! Loop variables
292integer :: i, l, ig, nnq, t, islope, ig_loop, islope_loop, isoil, icap
293real    :: totmass_ini
294logical :: num_str
295
296! CODE
297! Elapsed time with system clock
298call system_clock(count_rate = cr)
299call system_clock(c1)
300
301! Parse command-line options
302call parse_args()
303
304! Header
305write(*,*) '  *    .          .   +     .    *        .  +      .    .       .      '
306write(*,*) '           +         _______  ________  ____    ____      *           + '
307write(*,*) ' +   .        *     |_   __ \|_   __  ||_   \  /   _|          .       *'
308write(*,*) '          .     .     | |__) | | |_ \_|  |   \/   |  *        *      .  '
309write(*,*) '       .              |  ___/  |  _| _   | |\  /| |      .        .     '
310write(*,*) '.  *          *      _| |_    _| |__/ | _| |_\/_| |_                  * '
311write(*,*) '            +       |_____|  |________||_____||_____|   +     .         '
312write(*,*) '  .      *          .   *       .   +       *          .        +      .'
313
314! Some user info
315call date_and_time(date,time,zone,values)
316call getcwd(dir)      ! Current directory
317call getlog(logname)  ! User name
318call hostnm(hostname) ! Machine/station name
319write(*,*)
320write(*,*) '********* PEM information *********'
321write(*,*) '+ User     : '//trim(logname)
322write(*,*) '+ Machine  : '//trim(hostname)
323write(*,*) '+ Directory: '//trim(dir)
324write(*,'(a,i2,a,i2,a,i4)') ' + Date     : ',values(3),'/',values(2),'/',values(1)
325write(*,'(a,i2,a,i2,a,i2,a)') ' + Time     : ',values(5),':',values(6),':',values(7)
326
327! Parallel variables
328#ifndef CPP_STD
329    is_sequential = .true.
330    is_parallel = .false.
331    is_mpi_root = .true.
332    is_omp_root = .true.
333    is_master = .true.
334#endif
335
336! Some constants
337day_ini = 0
338time_phys = 0.
339ngrid = ngridmx
340A = (1./m_co2 - 1./m_noco2)
341B = 1./m_noco2
342year_day = 669
343daysec = 88775.
344timestep = year_day*daysec*year_step
345
346!----------------------------- INITIALIZATION --------------------------
347!------------------------
348! I   Initialization
349!    I_a Read the "run.def"
350!------------------------
351write(*,*)
352write(*,*) '********* PEM initialization *********'
353write(*,*) '> Reading "run.def" (PEM)'
354#ifndef CPP_1D
355    dtphys = daysec/48. ! Dummy value (overwritten in phyetat0)
356    call conf_gcm(99,.true.)
357    call infotrac_init
358    nq = nqtot
359    allocate(q(ip1jmp1,llm,nqtot))
360    allocate(longitude(ngrid),latitude(ngrid),cell_area(ngrid))
361#else
362    allocate(q(1,llm,nqtot),pdyn(1))
363    allocate(longitude(1),latitude(1),cell_area(1))
364
365    therestart1D = .false. ! Default value
366    inquire(file = 'start1D.txt',exist = therestart1D)
367    if (.not. therestart1D) then
368        write(*,*) 'There is no "start1D.txt" file!'
369        error stop 'Initialization cannot be done for the 1D PEM.'
370    endif
371    therestartfi = .false. ! Default value
372    inquire(file = 'startfi.nc',exist = therestartfi)
373    if (.not. therestartfi) then
374        write(*,*) 'There is no "startfi.nc" file!'
375        error stop 'Initialization cannot be done for the 1D PEM.'
376    endif
377
378    write(*,*) '> Reading "start1D.txt" and "startfi.nc"'
379    call init_testphys1d('start1D.txt','startfi.nc',therestart1D,therestartfi,ngrid,nlayer,610.,nq,q,         &
380                         time_0,pdyn(1),ucov,vcov,teta,ndt,ptif,pks,dtphys,zqsat,dq,dqdyn,day0,day,gru,grv,w, &
381                         play,plev,latitude,longitude,cell_area,prescribed_h2ovap,h2ovap_relax_time,q_prescribed_h2o_vap)
382    nsplit_phys = 1
383    day_step = steps_per_sol
384#endif
385
386call conf_pem(i_myear,n_myear)
387
388!------------------------
389! I   Initialization
390!    I_b Read of the "start.nc" and "starfi.nc"
391!------------------------
392! I_b.1 Read "start.nc"
393write(*,*) '> Reading "start.nc"'
394allocate(ps_start0(ngrid))
395#ifndef CPP_1D
396    allocate(pdyn(ip1jmp1))
397    call dynetat0(start_name,vcov,ucov,teta,q,masse,pdyn,phis,time_0)
398
399    call gr_dyn_fi(1,iip1,jjp1,ngridmx,pdyn,ps_start0)
400
401    call iniconst ! Initialization of dynamical constants (comconst_mod)
402    call inigeom ! Initialization of geometry
403
404    allocate(ap(nlayer + 1))
405    allocate(bp(nlayer + 1))
406    status = nf90_open(start_name,NF90_NOWRITE,ncid)
407    status = nf90_inq_varid(ncid,"ap",apvarid)
408    status = nf90_get_var(ncid,apvarid,ap)
409    status = nf90_inq_varid(ncid,"bp",bpvarid)
410    status = nf90_get_var(ncid,bpvarid,bp)
411    status = nf90_close(ncid)
412
413    ! Initialization of physics constants and variables (comcstfi_h)
414    call iniphysiq(iim,jjm,llm,(jjm - 1)*iim + 2,comm_lmdz,daysec,day_ini,dtphys/nsplit_phys,rlatu,rlatv,rlonu,rlonv,aire,cu,cv,rad,g,r,cpp,iflag_phys)
415#else
416    ps_start0(1) = pdyn(1)
417#endif
418deallocate(pdyn)
419
420! In the PCM, these values are given to the physic by the dynamic.
421! Here we simply read them in the "startfi.nc" file
422status = nf90_open(startfi_name,NF90_NOWRITE,ncid)
423status = nf90_inq_varid(ncid,"longitude",lonvarid)
424status = nf90_get_var(ncid,lonvarid,longitude)
425status = nf90_inq_varid(ncid,"latitude",latvarid)
426status = nf90_get_var(ncid,latvarid,latitude)
427status = nf90_inq_varid(ncid,"area",areavarid)
428status = nf90_get_var(ncid,areavarid,cell_area)
429status = nf90_inq_varid(ncid,"soildepth",sdvarid)
430status = nf90_get_var(ncid,sdvarid,mlayer)
431status = nf90_close(ncid)
432
433! I_b.2 Read the "startfi.nc"
434! First we read the initial state (starfi.nc)
435#ifndef CPP_STD
436    write(*,*) '> Reading "startfi.nc"'
437    call phyetat0(startfi_name,0,0,nsoilmx,ngrid,nlayer,nq,nqsoil,day_ini,time_phys,tsurf, &
438                  tsoil,albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac,wstar,          &
439                  watercap,perennial_co2ice,def_slope,def_slope_mean,subslope_dist)
440
441    ! Remove unphysical values of surface tracer
442    where (qsurf < 0.) qsurf = 0.
443
444    call surfini(ngrid,nslope,qsurf)
445#else
446    call phys_state_var_init(nq)
447    if (.not. allocated(noms)) allocate(noms(nq)) ! (because noms is an argument of physdem1 whether or not tracer is on)
448    call initracer(ngrid,nq)
449    call iniaerosol()
450    allocate(tsurf_read_generic(ngrid))
451    allocate(qsurf_read_generic(ngrid,nq))
452    allocate(tsoil_read_generic(ngrid,nsoilmx))
453    allocate(qsoil_read_generic(ngrid,nsoilmx,nqsoil,nslope))
454    allocate(emis_read_generic(ngrid))
455    allocate(albedo_read_generic(ngrid,2))
456    allocate(qsurf(ngrid,nq,1))
457    allocate(tsurf(ngrid,1))
458    allocate(tsoil(ngrid,nsoilmx,1))
459    allocate(emis(ngrid,1))
460    allocate(watercap(ngrid,1))
461    allocate(watercaptag(ngrid))
462    allocate(albedo(ngrid,2,1))
463    allocate(inertiesoil(ngrid,nsoilmx,1))
464    call phyetat0(.true.,ngrid,nlayer,startfi_name,0,0,nsoilmx,nq,nqsoil,day_ini,time_phys, &
465                  tsurf_read_generic,tsoil_read_generic,emis_read_generic,q2,               &
466                  qsurf_read_generic,qsoil_read_generic,cloudfrac,totcloudfrac,hice,        &
467                  rnat,pctsrf_sic,tslab,tsea_ice,sea_ice)
468    call surfini(ngrid,nq,qsurf_read_generic,albedo_read_generic,albedo_bareground,albedo_snow_SPECTV,albedo_co2_ice_SPECTV)
469
470    nslope = 1
471    call ini_comslope_h(ngrid,1)
472
473    qsurf(:,:,1) = qsurf_read_generic
474    tsurf(:,1) = tsurf_read_generic
475    tsoil(:,:,1) = tsoil_read_generic
476    emis(:,1) = emis_read_generic
477    watercap(:,1) = 0.
478    watercaptag(:) = .false.
479    albedo(:,1,1) = albedo_read_generic(:,1)
480    albedo(:,2,1) = albedo_read_generic(:,2)
481    inertiesoil(:,:,1) = inertiedat
482
483    if (nslope == 1) then
484        def_slope(1) = 0
485        def_slope(2) = 0
486        def_slope_mean = 0
487        subslope_dist(:,1) = 1.
488    endif
489
490    ! Remove unphysical values of surface tracer
491    qsurf(:,:,1) = qsurf_read_generic
492    where (qsurf < 0.) qsurf = 0.
493
494    deallocate(tsurf_read_generic,qsurf_read_generic,qsoil_read_generic,emis_read_generic)
495#endif
496
497do nnq = 1,nqtot  ! Why not using ini_tracer?
498    if (noms(nnq) == "h2o_ice") igcm_h2o_ice = nnq
499    if (noms(nnq) == "h2o_vap") then
500        igcm_h2o_vap = nnq
501        mmol(igcm_h2o_vap) = 18.
502    endif
503    if (noms(nnq) == "co2") igcm_co2 = nnq
504enddo
505
506!------------------------
507! I   Initialization
508!    I_c Subslope parametrisation
509!------------------------
510! Define some slope statistics
511iflat = 1
512do islope = 2,nslope
513    if (abs(def_slope_mean(islope)) < abs(def_slope_mean(iflat))) iflat = islope
514enddo
515write(*,*) 'Flat slope for islope = ',iflat
516write(*,*) 'Corresponding criterium = ',def_slope_mean(iflat)
517
518!------------------------
519! I   Initialization
520!    I_d Read the PCM data and convert them to the physical grid
521!------------------------
522! First we read the evolution of water and co2 ice (and the mass mixing ratio) over the first year of the PCM run, saving only the minimum value
523call get_timelen_PCM("data_PCM_Y1.nc",timelen)
524
525allocate(vmr_co2_PCM(ngrid,timelen),q_co2_PEM_phys(ngrid,timelen),q_h2o_PEM_phys(ngrid,timelen))
526allocate(ps_timeseries(ngrid,timelen),ps_avg(ngrid))
527allocate(min_co2_ice(ngrid,nslope,2),min_h2o_ice(ngrid,nslope,2))
528allocate(tsurf_avg_yr1(ngrid,nslope),tsurf_avg(ngrid,nslope))
529allocate(tsoil_avg(ngrid,nsoilmx,nslope),tsoil_timeseries(ngrid,nsoilmx,nslope,timelen))
530allocate(watersurf_density_avg(ngrid,nslope),watersoil_density_timeseries(ngrid,nsoilmx,nslope,timelen))
531
532call read_data_PCM("data_PCM_Y1.nc","data_PCM_Y2.nc",timelen,iim,jjm_value,ngrid,nslope,vmr_co2_PCM,ps_timeseries,ps_avg,tsurf_avg_yr1,tsurf_avg, &
533                   tsoil_avg,tsoil_timeseries,min_co2_ice,min_h2o_ice,q_co2_PEM_phys,q_h2o_PEM_phys,watersurf_density_avg,watersoil_density_timeseries)
534
535! Compute the deviation from the average
536allocate(ps_dev(ngrid),tsurf_dev(ngrid,nslope),tsoil_dev(ngrid,nsoilmx,nslope))
537ps_dev = ps_start0 - ps_avg
538tsurf_dev = tsurf - tsurf_avg
539tsoil_dev = tsoil - tsoil_avg(:,1:nsoilmx,:)
540
541!------------------------
542! I   Initialization
543!    I_e Initialization of the PEM variables and soil
544!------------------------
545call end_comsoil_h_PEM
546call ini_comsoil_h_PEM(ngrid,nslope)
547call end_adsorption_h_PEM
548call ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
549call end_ice_table
550call ini_ice_table(ngrid,nslope,nsoilmx_PEM)
551
552allocate(tsoil_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen),watersoil_density_PEM_avg(ngrid,nsoilmx_PEM,nslope),watersoil_density_PEM_timeseries(ngrid,nsoilmx_PEM,nslope,timelen))
553if (soil_pem) then
554    call soil_settings_PEM(ngrid,nslope,nsoilmx_PEM,nsoilmx,inertiesoil,TI_PEM)
555    tsoil_PEM(:,1:nsoilmx,:) = tsoil_avg
556    watersoil_density_PEM_timeseries(:,1:nsoilmx,:,:) = watersoil_density_timeseries
557    tsoil_PEM_timeseries(:,1:nsoilmx,:,:) = tsoil_timeseries
558    do l = nsoilmx + 1,nsoilmx_PEM
559        tsoil_PEM(:,l,:) = tsoil_avg(:,nsoilmx,:)
560        watersoil_density_PEM_timeseries(:,l,:,:) = watersoil_density_timeseries(:,nsoilmx,:,:)
561        tsoil_PEM_timeseries(:,l,:,:) = tsoil_timeseries(:,nsoilmx,:,:)
562    enddo
563    watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
564endif !soil_pem
565deallocate(tsoil_avg,watersoil_density_timeseries,tsoil_timeseries)
566
567!------------------------
568! I   Initialization
569!    I_f Compute tendencies
570!------------------------
571allocate(d_co2ice(ngrid,nslope),d_h2oice(ngrid,nslope),d_co2ice_ini(ngrid,nslope))
572call compute_tend(ngrid,nslope,min_co2_ice,d_co2ice)
573call compute_tend(ngrid,nslope,min_h2o_ice,d_h2oice)
574d_co2ice_ini = d_co2ice
575deallocate(min_co2_ice,min_h2o_ice)
576
577!------------------------
578! I   Initialization
579!    I_g Compute global surface pressure
580!------------------------
581total_surface = sum(cell_area)
582ps_avg_global_ini = sum(cell_area*ps_avg)/total_surface
583ps_avg_global_new = ps_avg_global_ini
584write(*,*) "Total surface of the planet     =", total_surface
585write(*,*) "Initial global average pressure =", ps_avg_global_ini
586
587!------------------------
588! I   Initialization
589!    I_h Read the "startpem.nc"
590!------------------------
591write(*,*) '> Reading "startpem.nc"'
592allocate(co2_ice(ngrid,nslope),h2o_ice(ngrid,nslope),layerings_map(ngrid,nslope))
593allocate(delta_h2o_adsorbed(ngrid),delta_co2_adsorbed(ngrid),delta_h2o_icetablesublim(ngrid))
594delta_h2o_icetablesublim = 0.
595call pemetat0("startpem.nc",ngrid,nsoilmx,nsoilmx_PEM,nslope,timelen,timestep,TI_PEM,tsoil_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
596              tsurf_avg_yr1,tsurf_avg,q_co2_PEM_phys,q_h2o_PEM_phys,ps_timeseries,ps_avg_global_ini,d_h2oice,d_co2ice,co2_ice,h2o_ice,            &
597              watersurf_density_avg,watersoil_density_PEM_avg,co2_adsorbed_phys,delta_co2_adsorbed,h2o_adsorbed_phys,delta_h2o_adsorbed,layerings_map)
598deallocate(tsurf_avg_yr1)
599
600! We save the places where h2o ice is sublimating
601! We compute the surface of h2o ice sublimating
602allocate(is_co2ice_sublim_ini(ngrid,nslope),is_h2oice_sublim_ini(ngrid,nslope),is_co2ice_ini(ngrid,nslope),co2ice_disappeared(ngrid,nslope))
603co2ice_sublim_surf_ini = 0.
604h2oice_ini_surf = 0.
605is_co2ice_sublim_ini = .false.
606is_h2oice_sublim_ini = .false.
607is_co2ice_ini = .false.
608co2ice_disappeared = .false.
609totmass_co2ice_ini = 0.
610totmass_atmco2_ini = 0.
611if (layering_algo) then
612    do ig = 1,ngrid
613        do islope = 1,nslope
614            if (is_co2ice_str(layerings_map(ig,islope)%top)) then
615                co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
616            else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
617                h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
618            else
619                call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
620            endif
621        enddo
622    enddo
623    ! We put the sublimating tendency coming from subsurface ice into the overall tendency
624    where (h2o_ice_depth > 0. .and. zdqsdif_ssi_tot < -1.e-10) d_h2oice = zdqsdif_ssi_tot
625endif
626do i = 1,ngrid
627    totmass_atmco2_ini = totmass_atmco2_ini + cell_area(i)*ps_avg(i)/g
628    do islope = 1,nslope
629        totmass_co2ice_ini = totmass_co2ice_ini + co2_ice(i,islope)*cell_area(i)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)
630        if (co2_ice(i,islope) > 0.) is_co2ice_ini(i,islope) = .true.
631        if (d_co2ice(i,islope) < 0. .and. co2_ice(i,islope) > 0.) then
632            is_co2ice_sublim_ini(i,islope) = .true.
633            co2ice_sublim_surf_ini = co2ice_sublim_surf_ini + cell_area(i)*subslope_dist(i,islope)
634        endif
635        if (d_h2oice(i,islope) < 0.) then
636            if (h2o_ice(i,islope) > 0.) then
637                is_h2oice_sublim_ini(i,islope) = .true.
638                h2oice_ini_surf = h2oice_ini_surf + cell_area(i)*subslope_dist(i,islope)
639            else if (h2o_ice_depth(i,islope) > 0.) then
640                is_h2oice_sublim_ini(i,islope) = .true.
641            endif
642        endif
643    enddo
644enddo
645write(*,*) "Total initial surface of CO2 ice sublimating =", co2ice_sublim_surf_ini
646write(*,*) "Total initial surface of H2O ice sublimating =", h2oice_ini_surf
647
648totmass_adsco2_ini = 0.
649totmass_adsh2o = 0.
650if (adsorption_pem) then
651    do ig = 1,ngrid
652        do islope = 1,nslope
653            do l = 1,nsoilmx_PEM - 1
654                if (l == 1) then
655                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
656                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
657                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
658                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
659                else
660                   totmass_adsco2_ini = totmass_adsco2_ini + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
661                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
662                   totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l-1))* &
663                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
664                endif
665            enddo
666        enddo
667    enddo
668    totmass_adsco2 = totmass_adsco2_ini
669    write(*,*) "Tot mass of CO2 in the regolith =", totmass_adsco2
670    write(*,*) "Tot mass of H2O in the regolith =", totmass_adsh2o
671endif ! adsorption
672
673!------------------------
674! I   Initialization
675!    I_i Compute orbit criterion
676!------------------------
677#ifndef CPP_STD
678    call iniorbit(aphelie,periheli,year_day,peri_day,obliquit)
679#else
680    call iniorbit(apoastr,periastr,year_day,peri_day,obliquit)
681#endif
682
683n_myear_leg = Max_iter_pem
684if (evol_orbit_pem) call orbit_param_criterion(i_myear,n_myear_leg)
685
686!-------------------------- END INITIALIZATION -------------------------
687
688!-------------------------------- RUN ----------------------------------
689!------------------------
690! II  Run
691!    II_a Update pressure, ice and tracers
692!------------------------
693write(*,*)
694write(*,*) '********* PEM cycle *********'
695i_myear_leg = 0
696stopPEM = 0
697if (layering_algo) then
698    allocate(h2o_ice_depth_old(ngrid,nslope),new_str(ngrid,nslope),new_lag(ngrid,nslope),current(ngrid,nslope))
699    new_str = .true.
700    new_lag = .true.
701    do islope = 1,nslope
702        do ig = 1,ngrid
703            current(ig,islope)%p => layerings_map(ig,islope)%top
704        enddo
705    enddo
706endif
707
708do while (i_myear_leg < n_myear_leg .and. i_myear < n_myear)
709! II.a.1. Compute updated global pressure
710    write(*,'(a,f10.2)') ' **** Iteration of the PEM leg (Martian years): ', i_myear_leg + 1
711    write(*,*) "> Updating the surface pressure"
712    ps_avg_global_old = ps_avg_global_new
713    do i = 1,ngrid
714        do islope = 1,nslope
715            ps_avg_global_new = ps_avg_global_new - CO2cond_ps*g*cell_area(i)*d_co2ice(i,islope)*subslope_dist(i,islope)/cos(pi*def_slope_mean(islope)/180.)/total_surface
716        enddo
717    enddo
718    if (adsorption_pem) then
719        do i = 1,ngrid
720            ps_avg_global_new = ps_avg_global_new - g*cell_area(i)*delta_co2_adsorbed(i)/total_surface
721        enddo
722    endif
723    ps_avg = ps_avg*ps_avg_global_new/ps_avg_global_old
724    write(*,*) 'Global average pressure old time step:',ps_avg_global_old
725    write(*,*) 'Global average pressure new time step:',ps_avg_global_new
726
727! II.a.2. Pressure timeseries (the values are deleted when unused because of big memory consumption)
728    write(*,*) "> Updating the surface pressure timeseries for the new pressure"
729    allocate(zplev_timeseries_old(ngrid,nlayer + 1,timelen))
730    do l = 1,nlayer + 1
731        do ig = 1,ngrid
732            zplev_timeseries_old(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
733        enddo
734    enddo
735    ps_timeseries(:,:) = ps_timeseries(:,:)*ps_avg_global_new/ps_avg_global_old
736    write(*,*) "> Updating the pressure levels timeseries for the new pressure"
737    allocate(zplev_timeseries_new(ngrid,nlayer + 1,timelen))
738    do l = 1,nlayer + 1
739        do ig = 1,ngrid
740            zplev_timeseries_new(ig,l,:) = ap(l) + bp(l)*ps_timeseries(ig,:)
741        enddo
742    enddo
743
744! II.a.3. Tracers timeseries
745    write(*,*) "> Updating the tracer VMR timeseries for the new pressure"
746    allocate(vmr_co2_PEM_phys(ngrid,timelen))
747    l = 1
748    do ig = 1,ngrid
749        do t = 1,timelen
750            ! H2O
751            q_h2o_PEM_phys(ig,t) = q_h2o_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
752                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
753            if (q_h2o_PEM_phys(ig,t) < 0) then
754                q_h2o_PEM_phys(ig,t) = 1.e-30
755            else if (q_h2o_PEM_phys(ig,t) > 1) then
756                q_h2o_PEM_phys(ig,t) = 1.
757            endif
758            ! CO2
759            q_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*(zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t))/ &
760                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
761                                + ((zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))                       &
762                                -  (zplev_timeseries_old(ig,l,t) - zplev_timeseries_old(ig,l + 1,t)))/                     &
763                                   (zplev_timeseries_new(ig,l,t) - zplev_timeseries_new(ig,l + 1,t))
764            if (q_co2_PEM_phys(ig,t) < 0) then
765                q_co2_PEM_phys(ig,t) = 1.e-30
766            else if (q_co2_PEM_phys(ig,t) > 1) then
767                q_co2_PEM_phys(ig,t) = 1.
768            endif
769            mmean = 1./(A*q_co2_PEM_phys(ig,t) + B)
770            vmr_co2_PEM_phys(ig,t) = q_co2_PEM_phys(ig,t)*mmean/m_co2
771        enddo
772    enddo
773    deallocate(zplev_timeseries_new,zplev_timeseries_old)
774
775!------------------------
776! II  Run
777!    II_b Evolution of ice
778!------------------------
779    allocate(zshift_surf(ngrid,nslope),zlag(ngrid,nslope))
780    if (layering_algo) then
781        h2o_ice_depth_old = h2o_ice_depth
782        do islope = 1,nslope
783            do ig = 1,ngrid
784                call make_layering(layerings_map(ig,islope),d_co2ice(ig,islope),d_h2oice(ig,islope),new_str(ig,islope),zshift_surf(ig,islope),new_lag(ig,islope),zlag(ig,islope),current(ig,islope)%p)
785                !call print_layering(layerings_map(ig,islope))
786                co2_ice(ig,islope) = 0.
787                h2o_ice(ig,islope) = 0.
788                h2o_ice_depth(ig,islope) = 0.
789                if (is_co2ice_str(layerings_map(ig,islope)%top)) then
790                    co2_ice(ig,islope) = layerings_map(ig,islope)%top%h_co2ice
791                else if (is_h2oice_str(layerings_map(ig,islope)%top)) then
792                    h2o_ice(ig,islope) = layerings_map(ig,islope)%top%h_h2oice
793                else
794                    call subsurface_ice_layering(layerings_map(ig,islope),h2o_ice_depth(ig,islope),h2o_ice(ig,islope),co2_ice(ig,islope))
795                endif
796            enddo
797        enddo
798    else
799        zlag = 0.
800        call evol_h2o_ice(ngrid,nslope,cell_area,delta_h2o_adsorbed,delta_h2o_icetablesublim,h2o_ice,d_h2oice,zshift_surf,stopPEM)
801        call evol_co2_ice(ngrid,nslope,co2_ice,d_co2ice,zshift_surf)
802    endif
803
804!------------------------
805! II  Run
806!    II_c Flow of glaciers
807!------------------------
808    allocate(flag_co2flow(ngrid,nslope),flag_h2oflow(ngrid,nslope))
809    if (co2ice_flow .and. nslope > 1) then
810        call flow_co2glaciers(timelen,ngrid,nslope,iflat,subslope_dist,def_slope_mean,vmr_co2_PEM_phys, &
811                              ps_timeseries,ps_avg_global_old,ps_avg_global_new,co2_ice,flag_co2flow)
812        if (layering_algo) then
813            do islope = 1,nslope
814                do ig = 1,ngrid
815                    layerings_map(ig,islope)%top%h_co2ice = co2_ice(ig,islope)
816                enddo
817            enddo
818        endif
819    endif
820    if (h2oice_flow .and. nslope > 1) then
821        call flow_h2oglaciers(ngrid,nslope,iflat,subslope_dist,def_slope_mean,tsurf_avg,h2o_ice,flag_h2oflow)
822        if (layering_algo) then
823            do islope = 1,nslope
824                do ig = 1,ngrid
825!~                     layerings_map(ig,islope)%top%h_h2oice = h2o_ice(ig,islope)
826                enddo
827            enddo
828        endif
829    endif
830
831!------------------------
832! II  Run
833!    II_d Update surface and soil temperatures
834!------------------------
835! II_d.1 Update Tsurf
836    write(*,*) "> Updating surface temperature"
837    do ig = 1,ngrid
838        do islope = 1,nslope
839            ! CO2 ice disappeared so we look for the closest point without CO2 ice
840            if (is_co2ice_ini(ig,islope) .and. co2_ice(ig,islope) < 1.e-10 .and. .not. co2ice_disappeared(ig,islope)) then
841                co2ice_disappeared(ig,islope) = .true.
842                if (latitude_deg(ig) > 0.) then ! North hemisphere
843                    outer1: do ig_loop = ig,ngrid ! Go towards equator
844                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be equator-ward)
845                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
846                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
847                                exit outer1
848                            endif
849                        enddo
850                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be pole-ward)
851                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
852                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
853                                exit outer1
854                            endif
855                        enddo
856                    enddo outer1
857                else ! South hemisphere
858                    outer2: do ig_loop = ig,1,-1 ! Go towards equator
859                        do islope_loop = islope + 1,nslope ! Go over the slopes (forward numbering - should be equator-ward)
860                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
861                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
862                                exit outer2
863                            endif
864                        enddo
865                        do islope_loop = islope - 1,1,-1 ! Go over the slopes (backward numbering - should be pole-ward)
866                            if (.not. is_co2ice_ini(ig_loop,islope_loop) .and. co2_ice(ig_loop,islope_loop) < 1.e-10) then
867                                tsurf_avg(ig,islope) = tsurf_avg(ig_loop,islope_loop)
868                                exit outer2
869                            endif
870                        enddo
871                    enddo outer2
872                endif
873            else if (co2_ice(ig,islope) > 1.e-10 .and. d_co2ice(ig,islope) > 1.e-10) then ! Put tsurf as Tcond CO2
874                call computeTcondCO2(timelen,ngrid,nslope,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_ini,ps_avg_global_new,tsurf_avg)
875            endif
876        enddo
877    enddo
878
879    if (soil_pem) then
880! II_d.2 Shifting soil temperature to surface
881        call shift_tsoil2surf(ngrid,nsoilmx_PEM,nslope,zshift_surf,zlag,tsurf_avg,tsoil_PEM)
882
883! II_d.3 Update soil temperature
884        write(*,*)"> Updating soil temperature profile"
885        allocate(tsoil_avg_old(ngrid,nsoilmx_PEM),tsoil_PEM_timeseries_old(ngrid,nsoilmx_PEM,nslope,timelen))
886        tsoil_PEM_timeseries_old = tsoil_PEM_timeseries
887        do islope = 1,nslope
888            tsoil_avg_old = tsoil_PEM(:,:,islope)
889            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.true.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
890            call compute_tsoil_pem(ngrid,nsoilmx_PEM,.false.,TI_PEM(:,:,islope),timestep,tsurf_avg(:,islope),tsoil_PEM(:,:,islope))
891
892            do t = 1,timelen
893                do ig = 1,ngrid
894                    do isoil = 1,nsoilmx_PEM
895                        ! Update of soil temperature timeseries which is needed to compute the water soil density timeseries
896                        tsoil_PEM_timeseries(ig,isoil,islope,t) = tsoil_PEM_timeseries(ig,isoil,islope,t)*tsoil_PEM(ig,isoil,islope)/tsoil_avg_old(ig,isoil)
897                        ! Update of watersoil density
898                        watersoil_density_PEM_timeseries(ig,isoil,islope,t) = exp(beta_clap_h2o/tsoil_PEM_timeseries(ig,isoil,islope,t) + alpha_clap_h2o)/tsoil_PEM_timeseries(ig,isoil,islope,t)*mmol(igcm_h2o_vap)/(mugaz*r)
899                        if (isnan(tsoil_PEM(ig,isoil,islope))) call abort_pem("PEM - Update Tsoil","NaN detected in tsoil_PEM",1)
900                    enddo
901                enddo
902            enddo
903        enddo
904        watersoil_density_PEM_avg = sum(watersoil_density_PEM_timeseries,4)/timelen
905        deallocate(tsoil_avg_old)
906
907! II_d.4 Update the ice table
908        allocate(icetable_thickness_old(ngrid,nslope),ice_porefilling_old(ngrid,nsoilmx_PEM,nslope),icetable_depth_old(ngrid,nslope))
909        if (icetable_equilibrium) then
910            write(*,*) "> Updating ice table (equilibrium method)"
911            icetable_thickness_old = icetable_thickness
912            call computeice_table_equilibrium(ngrid,nslope,nsoilmx_PEM,watercaptag,watersurf_density_avg,watersoil_density_PEM_avg,TI_PEM(:,1,:),icetable_depth,icetable_thickness)
913            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
914        else if (icetable_dynamic) then
915            write(*,*) "> Updating ice table (dynamic method)"
916            ice_porefilling_old = ice_porefilling
917            icetable_depth_old = icetable_depth
918            allocate(porefill(nsoilmx_PEM))
919            do ig = 1,ngrid
920                do islope = 1,nslope
921                    call dyn_ss_ice_m(icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM(ig,:,islope),nsoilmx_PEM,TI_PEM(ig,1,nslope),ps_avg(ig),(/sum(q_h2o_PEM_phys(ig,:))/size(q_h2o_PEM_phys,2)/),ice_porefilling(ig,:,islope),porefill,ssi_depth)
922                    icetable_depth(ig,islope) = ssi_depth
923                    ice_porefilling(ig,:,islope) = porefill
924                enddo
925            enddo
926            deallocate(porefill)
927            call compute_massh2o_exchange_ssi(ngrid,nslope,nsoilmx_PEM,icetable_thickness_old,ice_porefilling_old,tsurf_avg,tsoil_PEM,delta_h2o_icetablesublim) ! Mass of H2O exchange between the ssi and the atmosphere
928        endif
929        deallocate(icetable_thickness_old,ice_porefilling_old)
930
931! II_d.5 Update the soil thermal properties
932        call update_soil_thermalproperties(ngrid,nslope,nsoilmx_PEM,d_h2oice,h2o_ice,ps_avg_global_new,icetable_depth,icetable_thickness,ice_porefilling,icetable_equilibrium,icetable_dynamic,TI_PEM)
933
934! II_d.6 Update the mass of the regolith adsorbed
935        totmass_adsco2 = 0.
936        totmass_adsh2o = 0.
937        if (adsorption_pem) then
938            call regolith_adsorption(ngrid,nslope,nsoilmx_PEM,timelen,d_h2oice,d_co2ice,h2o_ice,co2_ice, &
939                                     tsoil_PEM,TI_PEM,ps_timeseries,q_co2_PEM_phys,q_h2o_PEM_phys,       &
940                                     h2o_adsorbed_phys,delta_h2o_adsorbed,co2_adsorbed_phys,delta_co2_adsorbed)
941            do ig = 1,ngrid
942                do islope = 1,nslope
943                    do l = 1,nsoilmx_PEM
944                        if (l == 1) then
945                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
946                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
947                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l))* &
948                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
949                        else
950                            totmass_adsco2 = totmass_adsco2 + co2_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
951                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
952                            totmass_adsh2o = totmass_adsh2o + h2o_adsorbed_phys(ig,l,islope)*(layer_PEM(l) - layer_PEM(l - 1))* &
953                                       subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)*cell_area(ig)
954                        endif
955                    enddo
956                enddo
957            enddo
958            write(*,*) "Total mass of CO2 in the regolith =", totmass_adsco2
959            write(*,*) "Total mass of H2O in the regolith =", totmass_adsh2o
960        endif
961    endif !soil_pem
962    deallocate(zshift_surf,zlag)
963
964!------------------------
965! II  Run
966!    II_e Outputs
967!------------------------
968    call writediagpem(ngrid,'ps_avg','Global average pressure','Pa',0,(/ps_avg_global_new/))
969    do islope = 1,nslope
970        write(str2(1:2),'(i2.2)') islope
971        call writediagpem(ngrid,'h2o_ice_slope'//str2,'H2O ice','kg.m-2',2,h2o_ice(:,islope))
972        call writediagpem(ngrid,'co2_ice_slope'//str2,'CO2 ice','kg.m-2',2,co2_ice(:,islope))
973        call writediagpem(ngrid,'d_h2oice_slope'//str2,'H2O ice tend','kg.m-2.year-1',2,d_h2oice(:,islope))
974        call writediagpem(ngrid,'d_co2ice_slope'//str2,'CO2 ice tend','kg.m-2.year-1',2,d_co2ice(:,islope))
975        call writediagpem(ngrid,'Flow_co2ice_slope'//str2,'CO2 ice flow','Boolean',2,real(flag_co2flow(:,islope)))
976        call writediagpem(ngrid,'Flow_h2oice_slope'//str2,'H2O ice flow','Boolean',2,real(flag_h2oflow(:,islope)))
977        call writediagpem(ngrid,'tsurf_slope'//str2,'tsurf','K',2,tsurf_avg(:,islope))
978        if (icetable_equilibrium) then
979            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
980            call writediagpem(ngrid,'ssi_thick_slope'//str2,'ice table thickness','m',2,icetable_thickness(:,islope))
981        else if (icetable_dynamic) then
982            call writediagpem(ngrid,'ssi_depth_slope'//str2,'ice table depth','m',2,icetable_depth(:,islope))
983        endif
984
985        if (soil_pem) then
986            call writediagsoilpem(ngrid,'tsoil_PEM_slope'//str2,'tsoil','K',3,tsoil_PEM(:,:,islope))
987            call writediagsoilpem(ngrid,'inertiesoil_PEM_slope'//str2,'TI','K',3,TI_PEM(:,:,islope))
988            if (icetable_dynamic) call writediagsoilpem(ngrid,'ice_porefilling'//str2,'ice pore filling','-',3,ice_porefilling(:,:,islope))
989            if (adsorption_pem) then
990                call writediagsoilpem(ngrid,'co2_ads_slope'//str2,'co2_ads','K',3,co2_adsorbed_phys(:,:,islope))
991                call writediagsoilpem(ngrid,'h2o_ads_slope'//str2,'h2o_ads','K',3,h2o_adsorbed_phys(:,:,islope))
992            endif
993        endif
994    enddo
995    deallocate(flag_co2flow,flag_h2oflow)
996
997    ! Checking mass balance for CO2
998    if (abs(CO2cond_ps - 1.) < 1.e-10) then
999        totmass_co2ice = 0.
1000        totmass_atmco2 = 0.
1001        do ig = 1,ngrid
1002            totmass_atmco2 = totmass_atmco2 + cell_area(ig)*ps_avg(ig)/g
1003            do islope = 1,nslope
1004                totmass_co2ice = totmass_co2ice + co2_ice(ig,islope)*cell_area(ig)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
1005            enddo
1006        enddo
1007        totmass_ini = max(totmass_atmco2_ini + totmass_co2ice_ini + totmass_adsco2_ini,1.e-10)
1008        write(*,'(a,f8.3,a)') " > Relative total CO2 mass balance = ", 100.*(totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini, ' %'
1009        if ((totmass_atmco2 + totmass_co2ice + totmass_adsco2 - totmass_atmco2_ini - totmass_co2ice_ini - totmass_adsco2_ini)/totmass_ini > 0.01) then
1010            write(*,*) '  /!\ Warning: mass balance is not conseved!'
1011            totmass_ini = max(totmass_atmco2_ini,1.e-10)
1012            write(*,'(a,f8.3,a)') '       Atmospheric CO2 mass balance = ', 100.*(totmass_atmco2 - totmass_atmco2_ini)/totmass_ini, ' %'
1013            totmass_ini = max(totmass_co2ice_ini,1.e-10)
1014            write(*,'(a,f8.3,a)') '       CO2 ice mass balance         = ', 100.*(totmass_co2ice - totmass_co2ice_ini)/totmass_ini, ' %'
1015            totmass_ini = max(totmass_adsco2_ini,1.e-10)
1016            write(*,'(a,f8.3,a)') '       Adsorbed CO2 mass balance    = ', 100.*(totmass_adsco2 - totmass_adsco2_ini)/totmass_ini, ' %'
1017        endif
1018    endif
1019
1020!------------------------
1021! II  Run
1022!    II_f Update the tendencies
1023!------------------------
1024    call recomp_tend_co2(ngrid,nslope,timelen,d_co2ice,d_co2ice_ini,co2_ice,emis,vmr_co2_PCM,vmr_co2_PEM_phys,ps_timeseries,ps_avg_global_old,ps_avg_global_new)
1025    write(*,*) "> Updating the H2O sub-surface ice tendency due to lag layer"
1026    if (layering_algo) then
1027        do ig = 1,ngrid
1028            do islope = 1,nslope
1029                if (is_h2oice_sublim_ini(ig,islope) .and. h2o_ice_depth(ig,islope) > 0.) call recomp_tend_h2o(h2o_ice_depth_old(ig,islope),h2o_ice_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1030            enddo
1031        enddo
1032!~     else
1033!~         do ig = 1,ngrid
1034!~             do islope = 1,nslope
1035!~                 call recomp_tend_h2o(icetable_depth_old(ig,islope),icetable_depth(ig,islope),tsurf_avg(ig,islope),tsoil_PEM_timeseries_old(ig,:,islope,:),tsoil_PEM_timeseries(ig,:,islope,:),d_h2oice(ig,islope))
1036!~             enddo
1037!~         enddo
1038    endif
1039    if (soil_pem) deallocate(icetable_depth_old,tsoil_PEM_timeseries_old)
1040    deallocate(vmr_co2_PEM_phys)
1041
1042!------------------------
1043! II  Run
1044!    II_g Checking the stopping criterion
1045!------------------------
1046    write(*,*) "> Checking the stopping criteria"
1047    call stopping_crit_h2o_ice(cell_area,h2oice_ini_surf,is_h2oice_sublim_ini,h2o_ice,stopPEM,ngrid)
1048    call stopping_crit_co2(cell_area,co2ice_sublim_surf_ini,is_co2ice_sublim_ini,co2_ice,stopPEM,ngrid,ps_avg_global_ini,ps_avg_global_new,nslope)
1049    i_myear_leg = i_myear_leg + dt
1050    i_myear = i_myear + dt
1051    if (stopPEM <= 0 .and. i_myear_leg >= n_myear_leg) stopPEM = 5
1052    if (stopPEM <= 0 .and. i_myear >= n_myear) stopPEM = 6
1053    call system_clock(c2)
1054    if (stopPEM <= 0 .and. timewall .and. real((c2 - c1)/cr) >= timelimit - antetime) stopPEM = 7
1055    if (stopPEM > 0) then
1056        select case (stopPEM)
1057            case(1)
1058                write(*,'(a,i0,a)') " **** STOPPING because surface of h2o ice sublimating is too low: ", stopPEM, ". See message above."
1059            case(2)
1060                write(*,'(a,i0,a)') " **** STOPPING because tendencies on h2o ice = 0: ", stopPEM, ". See message above."
1061            case(3)
1062                write(*,'(a,i0,a)') " **** STOPPING because surface of co2 ice sublimating is too low: ", stopPEM, ". See message above."
1063            case(4)
1064                write(*,'(a,i0,a)') " **** STOPPING because surface global pressure changed too much: ", stopPEM, ". See message above."
1065            case(5)
1066                write(*,'(a,i0)') " **** STOPPING because maximum number of iterations is reached (possibly due to orbital parameters): ", stopPEM
1067            case(6)
1068                write(*,'(a,i0)') " **** STOPPING because maximum number of Martian years to be simulated is reached: ", stopPEM
1069            case(7)
1070                write(*,'(a,i0)') " **** STOPPING because the time limit for the PEM job will be reached soon: ", stopPEM
1071            case default
1072                write(*,'(a,i0)') " **** STOPPING with unknown stopping criterion code: ", stopPEM
1073        end select
1074        exit
1075    else
1076        write(*,'(a,f10.2,a)') ' **** The chained simulation has run for ',i_myear,' Martian years.'
1077        write(*,*) '**** The PEM can continue!'
1078        write(*,*) '****'
1079    endif
1080enddo ! big time iteration loop of the pem
1081deallocate(vmr_co2_PCM,q_co2_PEM_phys,q_h2o_PEM_phys,delta_co2_adsorbed)
1082deallocate(watersoil_density_PEM_avg,watersurf_density_avg)
1083deallocate(ps_timeseries,tsoil_PEM_timeseries,watersoil_density_PEM_timeseries)
1084deallocate(co2ice_disappeared,delta_h2o_adsorbed,delta_h2o_icetablesublim)
1085deallocate(d_co2ice,d_co2ice_ini,d_h2oice)
1086deallocate(is_co2ice_ini,is_co2ice_sublim_ini,is_h2oice_sublim_ini)
1087if (layering_algo) deallocate(h2o_ice_depth_old,new_str,new_lag,current)
1088!------------------------------ END RUN --------------------------------
1089
1090!------------------------------- OUTPUT --------------------------------
1091!------------------------
1092! III Output
1093!    III_a Update surface values for the PCM start files
1094!------------------------
1095write(*,*)
1096write(*,*) '********* PEM finalization *********'
1097! III_a.1 Ice update for start file
1098write(*,*) '> Reconstructing perennial ice and frost for the PCM'
1099watercap = 0.
1100perennial_co2ice = co2_ice
1101do ig = 1,ngrid
1102    ! H2O ice metamorphism
1103    !if (metam_h2oice .and. sum(qsurf(ig,igcm_h2o_ice,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_h2oice_threshold) then
1104    !    h2o_ice(ig,:) = h2o_ice(ig,:) + qsurf(ig,igcm_h2o_ice,:) - metam_h2oice_threshold
1105    !    qsurf(ig,igcm_h2o_ice,:) = metam_h2oice_threshold
1106    !endif
1107
1108    ! Is H2O ice still considered as an infinite reservoir for the PCM?
1109    if (sum(h2o_ice(ig,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > inf_h2oice_threshold) then
1110        ! There is enough ice to be considered as an infinite reservoir
1111        watercaptag(ig) = .true.
1112    else
1113        ! Too little ice to be considered as an infinite reservoir so ice is transferred to the frost
1114        watercaptag(ig) = .false.
1115        qsurf(ig,igcm_h2o_ice,:) = qsurf(ig,igcm_h2o_ice,:) + h2o_ice(ig,:)
1116        h2o_ice(ig,:) = 0.
1117    endif
1118
1119    ! CO2 ice metamorphism
1120    !if (metam_co2ice .and. sum(qsurf(ig,igcm_co2,:)*subslope_dist(ig,:)/cos(pi*def_slope_mean(:)/180.)) > metam_co2ice_threshold) then
1121    !    perennial_co2ice(ig,:) = perennial_co2ice(ig,:) + qsurf(ig,igcm_co2,:) - metam_co2ice_threshold
1122    !    qsurf(ig,igcm_co2,:) = metam_co2ice_threshold
1123    !endif
1124enddo
1125
1126! III.a.3. Tsurf update for start file
1127write(*,*) '> Reconstructing the surface temperature for the PCM'
1128tsurf = tsurf_avg + tsurf_dev
1129deallocate(tsurf_dev)
1130
1131! III_a.4 Tsoil update for start file
1132if (soil_pem) then
1133    write(*,*) '> Reconstructing the soil temperature profile for the PCM'
1134    inertiesoil = TI_PEM(:,:nsoilmx,:)
1135    ! Tsurf has evolved and so the soil temperature profile needs to be adapted to match this new value
1136    do isoil = 1,nsoilmx
1137        tsoil_dev(:,isoil,:) = tsoil_dev(:,isoil,:)*(tsurf_avg(:,:) - tsoil_PEM(:,1,:))/tsoil_dev(:,1,:)
1138    enddo
1139    tsoil = tsoil_PEM(:,1:nsoilmx,:) + tsoil_dev
1140#ifndef CPP_STD
1141    flux_geo = fluxgeo
1142#endif
1143endif
1144deallocate(tsurf_avg,tsoil_dev)
1145
1146! III_a.5 Pressure update for start file
1147write(*,*) '> Reconstructing the pressure for the PCM'
1148allocate(ps_start(ngrid))
1149! The pressure deviation is rescaled as well to avoid disproportionate oscillations in case of huge average pressure drop
1150ps_start = ps_avg + ps_dev*ps_avg_global_new/ps_avg_global_ini
1151deallocate(ps_avg,ps_dev)
1152
1153! III_a.6 Tracers update for start file
1154write(*,*) '> Reconstructing the tracer VMR for the PCM'
1155allocate(zplev_start0(ngrid,nlayer + 1),zplev_new(ngrid,nlayer + 1))
1156do l = 1,nlayer + 1
1157    zplev_start0(:,l) = ap(l) + bp(l)*ps_start0
1158    zplev_new(:,l) = ap(l) + bp(l)*ps_start
1159enddo
1160
1161do nnq = 1,nqtot
1162    if (noms(nnq) /= "co2") then
1163        do l = 1,llm - 1
1164            do ig = 1,ngrid
1165                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1166            enddo
1167            q(:,llm,nnq) = q(:,llm - 1,nnq)
1168        enddo
1169    else
1170        do l = 1,llm - 1
1171            do ig = 1,ngrid
1172                q(ig,l,nnq) = q(ig,l,nnq)*(zplev_start0(ig,l) - zplev_start0(ig,l + 1))/(zplev_new(ig,l) - zplev_new(ig,l + 1)) &
1173                              + ((zplev_new(ig,l) - zplev_new(ig,l + 1)) - (zplev_start0(ig,l) - zplev_start0(ig,l + 1)))/(zplev_new(ig,l) - zplev_new(ig,l + 1))
1174            enddo
1175            q(:,llm,nnq) = q(:,llm - 1,nnq)
1176        enddo
1177    endif
1178enddo
1179deallocate(zplev_start0)
1180
1181! Conserving the tracers mass for start file
1182do nnq = 1,nqtot
1183    do ig = 1,ngrid
1184        do l = 1,llm - 1
1185            if (q(ig,l,nnq) > 1 .and. (noms(nnq) /= "dust_number") .and. (noms(nnq) /= "ccn_number") .and. (noms(nnq) /= "stormdust_number") .and. (noms(nnq) /= "topdust_number")) then
1186                extra_mass = (q(ig,l,nnq) - 1)*(zplev_new(ig,l) - zplev_new(ig,l + 1))
1187                q(ig,l,nnq) = 1.
1188                q(ig,l + 1,nnq) = q(ig,l + 1,nnq) + extra_mass*(zplev_new(ig,l + 1) - zplev_new(ig,l + 2))
1189                write(*,*) 'extra ',noms(nnq),extra_mass, noms(nnq) /= "dust_number",noms(nnq) /= "ccn_number"
1190            endif
1191            if (q(ig,l,nnq) < 0) q(ig,l,nnq) = 1.e-30
1192        enddo
1193    enddo
1194enddo
1195deallocate(zplev_new)
1196
1197! III_a.7 Albedo update for start file
1198write(*,*) '> Reconstructing the albedo for the PCM'
1199do ig = 1,ngrid
1200    if (latitude(ig) < 0.) then
1201        icap = 2 ! Southern hemisphere
1202    else
1203        icap = 1 ! Northern hemisphere
1204    endif
1205    do islope = 1,nslope
1206        ! Bare ground
1207        albedo(ig,:,islope) = albedodat(ig)
1208        emis(ig,islope) = emissiv
1209
1210        ! CO2 ice/frost is treated after H20 ice/frost because it is considered dominant
1211        ! H2O ice
1212        if (h2o_ice(ig,islope) > 0.) then
1213            albedo(ig,:,islope) = albedo_h2o_cap
1214            emis(ig,islope) = 1.
1215        endif
1216        ! CO2 ice
1217        if (co2_ice(ig,islope) > 0.) then
1218            albedo(ig,:,islope) = albedo_perennialco2(icap)
1219            emis(ig,islope) = emisice(icap)
1220        endif
1221        ! H2O frost
1222        if (qsurf(ig,igcm_h2o_ice,islope) > 0.) then
1223            albedo(ig,:,islope) = albedo_h2o_frost
1224            emis(ig,islope) = 1.
1225        endif
1226        ! CO2 frost
1227        if (qsurf(ig,igcm_co2,islope) > 0.) then
1228            albedo(ig,:,islope) = albedice(icap)
1229            emis(ig,islope) = emisice(icap)
1230        endif
1231    enddo
1232enddo
1233
1234! III_a.8 Orbital parameters update for start file
1235write(*,*) '> Setting the new orbital parameters'
1236if (evol_orbit_pem) call recomp_orb_param(i_myear,i_myear_leg)
1237
1238!------------------------
1239! III Output
1240!    III_b Write "restart.nc" and "restartfi.nc"
1241!------------------------
1242! III_b.1 Write "restart.nc"
1243ptimestep = iphysiq*daysec/real(day_step)/nsplit_phys ! dtphys/nsplit_phys
1244pday = day_ini
1245ztime_fin = time_phys
1246#ifndef CPP_1D
1247    write(*,*) '> Writing "restart.nc"'
1248    ! Correction on teta due to surface pressure changes
1249    allocate(pdyn(ip1jmp1))
1250    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start0/ps_start,pdyn)
1251    do i = 1,ip1jmp1
1252        teta(i,:) = teta(i,:)*pdyn(i)**rcp
1253    enddo
1254    ! Correction on atmospheric pressure
1255    allocate(p(ip1jmp1,nlayer + 1))
1256    call gr_fi_dyn(1,ngrid,iip1,jjp1,ps_start,pdyn)
1257    call pression(ip1jmp1,ap,bp,pdyn,p)
1258    ! Correction on the mass of atmosphere
1259    call massdair(p,masse)
1260    call dynredem0("restart.nc",day_ini,phis)
1261    call dynredem1("restart.nc",time_0,vcov,ucov,teta,q,masse,pdyn)
1262    deallocate(ap,bp,p,pdyn)
1263#else
1264    write(*,*) '> Writing "restart1D.txt"'
1265    call writerestart1D('restart1D.txt',ps_start(1),tsurf(1,:),nlayer,size(tsurf,2),teta,ucov,vcov,nq,noms,qsurf(1,:,:),q)
1266#endif
1267deallocate(ps_start0,ps_start)
1268
1269! III_b.2 Write the "restartfi.nc"
1270write(*,*) '> Writing "restartfi.nc"'
1271#ifndef CPP_STD
1272    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1273                  nlayer,nq,ptimestep,pday,0.,cell_area,albedodat, &
1274                  inertiedat,def_slope,subslope_dist)
1275    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,      &
1276                  ptimestep,ztime_fin,tsurf,tsoil,inertiesoil,        &
1277                  albedo,emis,q2,qsurf,qsoil,tauscaling,totcloudfrac, &
1278                  wstar,watercap,perennial_co2ice)
1279#else
1280    if (allocated(noms)) deallocate(noms)
1281    deallocate(qsurf,tsurf,tsoil,emis,watercap,watercaptag,albedo,inertiesoil)
1282    call physdem0("restartfi.nc",longitude,latitude,nsoilmx,ngrid, &
1283                  nlayer,nq,ptimestep,pday,time_phys,cell_area,    &
1284                  albedo_bareground,inertiedat,zmea,zstd,zsig,zgam,zthe)
1285    call physdem1("restartfi.nc",nsoilmx,ngrid,nlayer,nq,nqsoil,       &
1286                  ptimestep,ztime_fin,tsurf,tsoil,emis,q2,qsurf,qsoil, &
1287                  cloudfrac,totcloudfrac,hice,rnat,pctsrf_sic,tslab,   &
1288                  tsea_ice,sea_ice)
1289#endif
1290
1291!------------------------
1292! III Output
1293!    III_c Write the "restartpem.nc"
1294!------------------------
1295write(*,*) '> Writing "restartpem.nc"'
1296if (layering_algo) nb_str_max = get_nb_str_max(layerings_map,ngrid,nslope) ! Get the maximum number of "stratum" in the layerings_mapication (layerings)
1297call pemdem0("restartpem.nc",longitude,latitude,cell_area,ngrid,nslope,def_slope,subslope_dist)
1298call pemdem1("restartpem.nc",i_myear,nsoilmx_PEM,ngrid,nslope,tsoil_PEM,TI_PEM,icetable_depth,icetable_thickness,ice_porefilling, &
1299             co2_adsorbed_phys,h2o_adsorbed_phys,h2o_ice,layerings_map)
1300
1301call info_PEM(i_myear_leg,stopPEM,i_myear,n_myear)
1302
1303write(*,*)
1304write(*,*) '****** PEM final information *******'
1305write(*,'(a,f16.4,a)') " + The PEM leg has run for ", i_myear_leg, " Martian years."
1306write(*,'(a,f16.4,a,f16.4,a)') " + The chained simulation has run for ", i_myear, " Martian years =", i_myear*convert_years, " Earth years."
1307write(*,'(a,f16.4,a)') " + The reached date is now ", (year_bp_ini + i_myear)*convert_years, " Earth years."
1308write(*,*) "+ PEM: so far, so good!"
1309write(*,*) '************************************'
1310
1311if (layering_algo) then
1312    do islope = 1,nslope
1313        do i = 1,ngrid
1314            call del_layering(layerings_map(i,islope))
1315        enddo
1316    enddo
1317endif
1318deallocate(q,longitude,latitude,cell_area,tsoil_PEM)
1319deallocate(co2_ice,h2o_ice,layerings_map)
1320!----------------------------- END OUTPUT ------------------------------
1321
1322END PROGRAM pem
Note: See TracBrowser for help on using the repository browser.