source: trunk/LMDZ.COMMON/libf/evolution/adsorption_mod.F90 @ 3093

Last change on this file since 3093 was 3082, checked in by jbclement, 14 months ago

PEM:

  • Correction of a bug in the initialization of constants. The correct modules are now used: 'comcstfi_h' (and no longer 'comconst_mod'!) in the general case and 'comcstfi_mod' in the case of generic model;
  • Addition of the variable 'ecritpem' in "run_PEM.def" to set the frequency of outputs in the "diagfi.nc". By default, 'ecritpem = 1' which means there is one output at each PEM year.

JBC

File size: 18.3 KB
Line 
1module adsorption_mod
2
3  implicit none
4
5  LOGICAL adsorption_pem ! True by default, to compute adsorption/desorption. Read in  pem.def
6  real, save, allocatable :: co2_adsorbded_phys(:,:,:)  ! co2 that is in the regolith [kg/m^2]
7  real, save, allocatable :: h2o_adsorbded_phys(:,:,:)  ! h2o that is in the regolith [kg/m^2]
8
9  contains
10
11!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12!!!
13!!! Purpose: Compute CO2 and H2O adsorption, following the methods from Zent & Quinn 1995, Jackosky et al., 1997
14!!!
15!!! Author: LL, 01/2023
16!!!
17!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
18  subroutine ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
19
20  implicit none
21  integer,intent(in) :: ngrid ! number of atmospheric columns
22  integer,intent(in) :: nslope ! number of slope within a mesh
23  integer,intent(in) :: nsoilmx_PEM ! number of soil layer in the PEM
24    allocate(co2_adsorbded_phys(ngrid,nsoilmx_PEM,nslope))
25    allocate(h2o_adsorbded_phys(ngrid,nsoilmx_PEM,nslope))
26  end subroutine ini_adsorption_h_PEM
27
28!!! -----------------------------------------------
29
30  subroutine end_adsorption_h_PEM
31
32  implicit none
33    if (allocated(co2_adsorbded_phys)) deallocate(co2_adsorbded_phys)
34    if (allocated(h2o_adsorbded_phys)) deallocate(h2o_adsorbded_phys)
35  end subroutine end_adsorption_h_PEM
36
37!!! -----------------------------------------------
38
39  subroutine regolith_adsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,tsoil_PEM,TI_PEM,ps,q_co2,q_h2o, &
40                                m_h2o_completesoil,delta_mh2oreg, m_co2_completesoil,delta_mco2reg)
41
42! inputs
43 INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM,timelen ! size dimension: physics x subslope x soil x timeseries
44 REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) !tendancies on the glaciers [1]
45 REAL,INTENT(IN) :: waterice(ngrid,nslope)              ! water ice at the surface [kg/m^2]
46 REAL,INTENT(IN) :: co2ice(ngrid,nslope)                ! co2 ice at the surface [kg/m^2]
47 REAL,INTENT(IN) :: TI_PEM(ngrid,nsoil_PEM,nslope)      ! Soil Thermal inertia (J/K/^2/s^1/2)
48 REAL,INTENT(IN) :: tsoil_PEM(ngrid,nsoil_PEM,nslope)   ! Soil temperature (K)
49 REAL,INTENT(IN) :: ps(ngrid,timelen)                   ! Average surface pressure [Pa]
50 REAL,INTENT(IN) :: q_co2(ngrid,timelen)                ! Mass mixing ratio of co2 in the first layer (kg/kg)
51 REAL,INTENT(IN) :: q_h2o(ngrid,timelen)                ! Mass mixing ratio of H2o in the first layer (kg/kg)
52
53! outputs
54 REAL,INTENT(INOUT) :: m_h2o_completesoil(ngrid,nsoil_PEM,nslope) ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope)     
55 REAL,INTENT(OUT) :: delta_mh2oreg(ngrid)                         ! Difference density of h2o adsorbed (kg/m^3)
56
57 REAL,INTENT(INOUT) :: m_co2_completesoil(ngrid,nsoil_PEM,nslope)   ! Density of co2 adsorbed (kg/m^3)
58 REAL,INTENT(OUT) :: delta_mco2reg(ngrid)                            ! Difference density of co2 adsorbed (kg/m^3)
59 
60! local variables
61 REAL :: theta_h2o_adsorbded(ngrid,nsoil_PEM,nslope) ! Fraction of the pores occupied by H2O molecules
62! -------------
63
64
65! Compute H2O adsorption, then CO2 adsorption
66
67  call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, &
68                                   theta_h2o_adsorbded,m_h2o_completesoil,delta_mh2oreg)
69
70
71  call regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o, &
72                                                          tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mco2reg)
73
74   RETURN
75  end subroutine
76
77!------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
78
79  subroutine regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, &
80                                   theta_h2o_adsorbded,m_h2o_completesoil,delta_mreg)
81
82!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
83!!!
84!!! Purpose: Compute H2O adsorption, following the methods from Jackosky et al., 1997
85!!!
86!!! Author: LL, 01/2023
87!!!
88!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
89
90      use comsoil_h_PEM, only: layer_PEM, mlayer_PEM,index_breccia,index_bedrock
91      use comslope_mod, only : subslope_dist,def_slope_mean
92      use vertical_layers_mod, ONLY: ap,bp
93      use constants_marspem_mod,only: alpha_clap_h2o,beta_clap_h2o, &
94                                      m_h2o,m_co2,m_noco2, &
95                                      rho_regolith
96#ifndef CPP_STD
97    use comcstfi_h,   only: pi
98#else
99    use comcstfi_mod, only: pi
100#endif
101
102 implicit none
103! inputs
104 INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM,timelen ! size dimension
105 REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) !tendancies on the glaciers ()
106 REAL,INTENT(IN) :: waterice(ngrid,nslope)              ! water ice at the surface [kg/m^2]
107 REAL,INTENT(IN) :: co2ice(ngrid,nslope)                ! co2 ice at the surface [kg/m^2]
108 REAL,INTENT(IN) :: ps(ngrid,timelen)                   ! surface pressure (Pa)         
109 REAL,INTENT(IN) :: q_co2(ngrid,timelen)                ! Mass mixing ratio of co2 in the first layer (kg/kg)
110 REAL,INTENT(IN) :: q_h2o(ngrid,timelen)                ! Mass mixing ratio of H2o in the first layer (kg/kg)
111 REAL,INTENT(IN) :: TI_PEM(ngrid,nsoil_PEM,nslope)      ! Soil Thermal inertia (J/K/^2/s^1/2)
112 REAL,INTENT(IN) :: tsoil_PEM(ngrid,nsoil_PEM,nslope)   ! Soil temperature (K)
113
114! outputs
115 REAL,INTENT(INOUT) :: m_h2o_completesoil(ngrid,nsoil_PEM,nslope) ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope)     
116 REAL,INTENT(OUT) :: theta_h2o_adsorbded(ngrid,nsoil_PEM,nslope) ! Fraction of the pores occupied by H2O molecules
117 REAL,INTENT(OUT) :: delta_mreg(ngrid)                         ! Difference density of h2o adsorbed (kg/m^3)
118
119! constants
120 REAL :: Ko =  1.57e-8            ! Jackosky et al. 1997
121 REAL :: e = 2573.9               ! Jackosky et al. 1997
122 REAL :: mu = 0.48                ! Jackosky et al. 1997
123 real :: m_theta = 2.84e-7        ! Mass of h2o per m^2 absorbed Jackosky et al. 1997
124! real :: as = 18.9e3             ! Specific area, Buhler & Piqueux 2021
125 real :: as = 9.48e4              ! Specific area, Zent
126 real :: as_breccia = 1.7e4       ! Specific area of basalt, Zent
127 real ::  inertie_thresold = 800. ! TI > 800 means cementation
128
129 ! local variables
130 REAL :: deltam_reg_complete(ngrid,index_breccia,nslope)         ! Difference in the mass per slope and soil layer (kg/m^3)
131 real :: K                        ! Used to compute theta
132 integer ig,iloop, islope,isoil,it   ! for loops
133 INTEGER :: ispermanent_co2glaciers(ngrid,nslope)        ! Check if the co2 glacier is permanent
134 INTEGER :: ispermanent_h2oglaciers(ngrid,nslope)        ! Check if the h2o glacier is permanent
135 REAL :: deltam_reg_slope(ngrid,nslope)  ! Difference density of h2o adsorbed per slope (kg/m^3)
136 REAL :: dm_h2o_regolith_slope(ngrid,nsoil_PEM,nslope)   ! elementary h2o mass adsorded per mesh per slope
137 real :: A,B                                                   ! Used to compute the mean mass above the surface
138 real :: p_sat                                                 ! saturated vapor pressure of ice
139 real,allocatable :: mass_mean(:,:)                            ! mean mass above the surface
140 real,allocatable :: zplev_mean(:,:)                           ! pressure above the surface
141 real,allocatable :: pvapor(:,:)                               ! partial pressure above the surface
142 real, allocatable :: pvapor_avg(:)                            ! yearly
143
144! 0. Some initializations
145
146
147     allocate(mass_mean(ngrid,timelen))
148     allocate(zplev_mean(ngrid,timelen))
149     allocate(pvapor(ngrid,timelen))
150     allocate(pvapor_avg(ngrid))
151     A =(1/m_co2 - 1/m_noco2)
152     B=1/m_noco2
153     theta_h2o_adsorbded(:,:,:) = 0.
154     dm_h2o_regolith_slope(:,:,:) = 0.
155
156#ifndef CPP_STD
157
158!0.1 Look at perenial ice
159  do ig = 1,ngrid
160    do islope = 1,nslope
161     if((abs(tend_h2oglaciers(ig,islope)).gt.1e-5).and.(abs(waterice(ig,islope)).gt.0)) then
162        ispermanent_h2oglaciers(ig,islope) = 1
163     else
164        ispermanent_h2oglaciers(ig,islope) = 0
165     endif
166
167     if((abs(tend_co2glaciers(ig,islope)).gt.1e-5).and.(abs(co2ice(ig,islope)).gt.0)) then
168        ispermanent_co2glaciers(ig,islope) = 1
169     else
170        ispermanent_co2glaciers(ig,islope) = 0
171     endif
172    enddo
173   enddo
174
175!   0.2 Compute the partial pressure of vapor
176!a. the molecular mass into the column
177     do ig = 1,ngrid
178       mass_mean(ig,:) = 1/(A*q_co2(ig,:) +B)
179     enddo
180
181
182! b. pressure level
183     do it = 1,timelen
184       do ig = 1,ngrid
185         zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it)
186       enddo
187     enddo
188! c. Vapor pressure
189     pvapor(:,:) = mass_mean(:,:)/m_h2o*q_h2o(:,:)*zplev_mean(:,:)
190     pvapor_avg(:) = sum(pvapor(:,:),2)/timelen
191#endif
192     deallocate(pvapor)
193     deallocate(zplev_mean)
194     deallocate(mass_mean)
195#ifndef CPP_STD
196
197! 1. we compute the mass of H2O adsorded in each layer of the meshes 
198
199 do ig = 1,ngrid
200  do islope = 1,nslope
201    do iloop = 1,index_breccia
202      K = Ko*exp(e/tsoil_PEM(ig,iloop,islope))
203      if(TI_PEM(ig,iloop,islope).lt.inertie_thresold)  then
204        theta_h2o_adsorbded(ig,iloop,islope) = (K*pvapor_avg(ig)/(1+K*pvapor_avg(ig)))**mu
205      else
206        p_sat =exp(beta_clap_h2o/tsoil_PEM(ig,iloop,islope) +alpha_clap_h2o) ! we assume fixed temperature in the ice ... not really good but ...
207        theta_h2o_adsorbded(ig,iloop,islope) = (K*p_sat/(1+K*p_sat))**mu
208      endif
209        dm_h2o_regolith_slope(ig,iloop,islope) = as*theta_h2o_adsorbded(ig,iloop,islope)*m_theta*rho_regolith
210   enddo
211  enddo
212 enddo
213
214! 2. Check the exchange between the atmosphere and the regolith
215
216  do ig = 1,ngrid
217   delta_mreg(ig) = 0.
218   do islope = 1,nslope
219    deltam_reg_slope(ig,islope) = 0.
220    do iloop = 1,index_breccia
221       if((TI_PEM(ig,iloop,islope).lt.inertie_thresold).and.(ispermanent_h2oglaciers(ig,islope).eq.0).and.(ispermanent_co2glaciers(ig,islope).eq.0)) then
222             deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope)) &
223                                                   *(layer_PEM(iloop+1) - layer_PEM(iloop))
224       else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC!
225             deltam_reg_complete(ig,iloop,islope) = 0.
226       endif
227       deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope)
228    enddo
229   delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
230   enddo
231  enddo
232   m_h2o_completesoil(:,:,:) = dm_h2o_regolith_slope(:,:,:)
233
234 RETURN
235#endif
236  end subroutine
237
238!------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
239!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
240!!!
241!!! Purpose: Compute CO2  following the methods from Zent & Quinn 1995
242!!!
243!!! Author: LL, 01/2023
244!!!
245!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
246
247  SUBROUTINE regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,&
248                                   tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mreg)
249
250      use comsoil_h_PEM, only: layer_PEM, mlayer_PEM,index_breccia,index_bedrock,index_breccia
251      use comslope_mod, only : subslope_dist,def_slope_mean
252      use vertical_layers_mod, ONLY: ap,bp
253      use constants_marspem_mod, only: m_co2, m_noco2,rho_regolith
254#ifndef CPP_STD
255    use comcstfi_h,   only: pi
256#else
257    use comcstfi_mod, only: pi
258#endif
259
260      IMPLICIT NONE
261! Inputs: 
262 INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM,timelen             ! size dimension
263 REAL,INTENT(IN) :: ps(ngrid,timelen)                               ! Average surface pressure [Pa]
264 REAL,INTENT(IN) :: tsoil_PEM(ngrid,nsoil_PEM,nslope)               ! Mean Soil Temperature [K]
265 REAL,INTENT(IN) :: TI_PEM(ngrid,nsoil_PEM,nslope)                  ! Mean Thermal Inertia [USI]
266 REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) !tendancies on the glaciers ()
267 REAL,INTENT(IN) :: q_co2(ngrid,timelen),q_h2o(ngrid,timelen)       ! Mass mixing ratio of co2 and h2o in the first layer (kg/kg)
268 REAL,INTENT(IN) :: waterice(ngrid,nslope)                          ! water ice at the surface [kg/m^2]
269 REAL,INTENT(IN) :: co2ice(ngrid,nslope)                            ! co2 ice at the surface [kg/m^2]
270
271! Outputs:
272 REAL,INTENT(INOUT) :: m_co2_completesoil(ngrid,nsoil_PEM,nslope)   ! Density of co2 adsorbed (kg/m^3)
273 REAL,INTENT(OUT) :: delta_mreg(ngrid)                              ! Difference density of co2 adsorbed (kg/m^3)
274 
275! Constants:
276
277 REAL :: alpha = 7.512e-6 ! Zent & Quinn 1995
278 REAL :: beta =  -1541.5  ! Zent & Quinn 1995
279 REAL ::  inertie_thresold = 800. ! TI > 800 means cementation
280 real :: m_theta = 4.27e-7     ! Mass of co2 per m^2 absorbed
281! real :: as = 18.9e3              ! Specific area, Buhler & Piqueux 2021
282 real :: as = 9.48e4           ! same as previous but from zent
283 real :: as_breccia = 1.7e4       ! Specific area of basalt, Zent 1997
284! Local         
285 real :: A,B                                             ! Used to compute the mean mass above the surface
286 INTEGER :: ig,islope,iloop,it                           ! for loops
287 REAL :: dm_co2_regolith_slope(ngrid,nsoil_PEM,nslope)   ! elementary mass adsorded per mesh per slope
288 INTEGER :: ispermanent_co2glaciers(ngrid,nslope)        ! Check if the co2 glacier is permanent
289 INTEGER :: ispermanent_h2oglaciers(ngrid,nslope)        ! Check if the h2o glacier is permanent
290 REAL :: deltam_reg_complete(ngrid,index_breccia,nslope)         ! Difference in the mass per slope and soil layer (kg/m^3)
291 REAL :: deltam_reg_slope(ngrid,nslope)                  ! Difference in the mass per slope  (kg/m^3)
292 REAL :: m_h2o_adsorbed(ngrid,nsoil_PEM,nslope)          ! Density of CO2 adsorbed (kg/m^3)
293 REAL :: theta_h2o_adsorbed(ngrid,nsoil_PEM,nslope)     ! Fraction of the pores occupied by H2O molecules
294 REAL :: delta_mh2o(ngrid)                              ! Difference density of h2o adsorbed (kg/m^3)
295!timelen array are allocated because heavy ...
296 real,allocatable :: mass_mean(:,:)                            ! mean mass above the surface
297 real,allocatable :: zplev_mean(:,:)                           ! pressure above the surface
298 real,allocatable :: pco2(:,:)                                  ! partial pressure above the surface
299 real, allocatable :: pco2_avg(:)                              ! yearly averaged
300
301! 0. Some initializations
302
303     allocate(mass_mean(ngrid,timelen))
304     allocate(zplev_mean(ngrid,timelen))
305     allocate(pco2(ngrid,timelen))
306     allocate(pco2_avg(ngrid))
307
308
309 
310      m_h2o_adsorbed(:,:,:) = 0.
311      A =(1/m_co2 - 1/m_noco2)
312      B=1/m_noco2
313
314     dm_co2_regolith_slope(:,:,:) = 0
315     delta_mreg(:) = 0.
316
317#ifndef CPP_STD
318
319!0.1 Look at perenial ice
320  do ig = 1,ngrid
321    do islope = 1,nslope
322     if((abs(tend_h2oglaciers(ig,islope)).gt.1e-5).and.(abs(waterice(ig,islope)).gt.0)) then
323        ispermanent_h2oglaciers(ig,islope) = 1
324     else
325        ispermanent_h2oglaciers(ig,islope) = 0
326     endif
327
328     if((abs(tend_co2glaciers(ig,islope)).gt.1e-5).and.(abs(co2ice(ig,islope)).gt.0)) then
329        ispermanent_co2glaciers(ig,islope) = 1
330     else
331        ispermanent_co2glaciers(ig,islope) = 0
332     endif
333    enddo
334   enddo
335
336!   0.2  Compute the partial pressure of CO2
337!a. the molecular mass into the column
338     do ig = 1,ngrid
339       mass_mean(ig,:) = 1./(A*q_co2(ig,:) +B)
340     enddo
341
342! b. pressure level
343     do it = 1,timelen
344       do ig = 1,ngrid
345         zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it)
346       enddo
347     enddo
348
349! c. Vapor pressure
350     pco2(:,:) = mass_mean(:,:)/m_co2*q_co2(:,:)*zplev_mean(:,:)
351     pco2_avg(:) = sum(pco2(:,:),2)/timelen
352
353     deallocate(zplev_mean)
354     deallocate(mass_mean)
355     deallocate(pco2)
356
357
358! 1. Compute the fraction of the pores occupied by H2O
359
360 call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, &
361                                   theta_h2o_adsorbed, m_h2o_adsorbed,delta_mh2o)
362
363! 2.  we compute the mass of co2 adsorded in each layer of the meshes 
364
365 do ig = 1,ngrid
366  do islope = 1,nslope
367    do iloop = 1,index_breccia
368     if((TI_PEM(ig,iloop,islope).lt.inertie_thresold).and.(ispermanent_h2oglaciers(ig,islope).eq.0).and.(ispermanent_co2glaciers(ig,islope).eq.0)) then
369     dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1-theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig)/ &
370                                             (alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope)))
371     else
372        if(abs(m_co2_completesoil(ig,iloop,islope)).lt.(1e-10)) then !!! we are at first call
373          dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1-theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig) &
374                                                 /(alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope)))
375        else ! no change: permanent ice stick the atoms of CO2
376          dm_co2_regolith_slope(ig,iloop,islope) = m_co2_completesoil(ig,iloop,islope)
377        endif
378     endif
379    enddo
380 enddo
381enddo
382
383! 3. Check the exchange between the atmosphere and the regolith
384
385  do ig = 1,ngrid
386   delta_mreg(ig) = 0.
387   do islope = 1,nslope
388    deltam_reg_slope(ig,islope) = 0.
389    do iloop = 1,index_breccia
390       if((TI_PEM(ig,iloop,islope).lt.inertie_thresold).and.(ispermanent_h2oglaciers(ig,islope).eq.0).and.(ispermanent_co2glaciers(ig,islope).eq.0)) then
391             deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope)) &
392                                                   *(layer_PEM(iloop+1) - layer_PEM(iloop))
393       else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC!
394             deltam_reg_complete(ig,iloop,islope) = 0.
395       endif
396       deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope)
397    enddo
398   delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
399   enddo
400  enddo
401  m_co2_completesoil(:,:,:) = dm_co2_regolith_slope(:,:,:)
402
403!=======================================================================
404      RETURN
405#endif
406      END
407
408
409   end module
Note: See TracBrowser for help on using the repository browser.