1 | MODULE adsorption_mod |
---|
2 | |
---|
3 | implicit none |
---|
4 | |
---|
5 | logical :: adsorption_pem ! True by default, to compute adsorption/desorption. Read in pem.def |
---|
6 | real, save, allocatable, dimension(:,:,:) :: co2_adsorbded_phys ! co2 that is in the regolith [kg/m^2] |
---|
7 | real, save, allocatable, dimension(:,:,:) :: h2o_adsorbded_phys ! h2o that is in the regolith [kg/m^2] |
---|
8 | |
---|
9 | !======================================================================= |
---|
10 | contains |
---|
11 | !======================================================================= |
---|
12 | |
---|
13 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
14 | !!! |
---|
15 | !!! Purpose: Compute CO2 and H2O adsorption, following the methods from Zent & Quinn 1995, Jackosky et al., 1997 |
---|
16 | !!! |
---|
17 | !!! Author: LL, 01/2023 |
---|
18 | !!! |
---|
19 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
20 | SUBROUTINE ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
---|
21 | |
---|
22 | implicit none |
---|
23 | |
---|
24 | integer, intent(in) :: ngrid ! number of atmospheric columns |
---|
25 | integer, intent(in) :: nslope ! number of slope within a mesh |
---|
26 | integer, intent(in) :: nsoilmx_PEM ! number of soil layer in the PEM |
---|
27 | |
---|
28 | allocate(co2_adsorbded_phys(ngrid,nsoilmx_PEM,nslope)) |
---|
29 | allocate(h2o_adsorbded_phys(ngrid,nsoilmx_PEM,nslope)) |
---|
30 | |
---|
31 | END SUBROUTINE ini_adsorption_h_PEM |
---|
32 | |
---|
33 | !======================================================================= |
---|
34 | SUBROUTINE end_adsorption_h_PEM |
---|
35 | |
---|
36 | if (allocated(co2_adsorbded_phys)) deallocate(co2_adsorbded_phys) |
---|
37 | if (allocated(h2o_adsorbded_phys)) deallocate(h2o_adsorbded_phys) |
---|
38 | |
---|
39 | END SUBROUTINE end_adsorption_h_PEM |
---|
40 | |
---|
41 | !======================================================================= |
---|
42 | SUBROUTINE regolith_adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,tsoil_PEM,TI_PEM,ps,q_co2,q_h2o, & |
---|
43 | m_h2o_completesoil,delta_mh2oreg, m_co2_completesoil,delta_mco2reg) |
---|
44 | |
---|
45 | implicit none |
---|
46 | |
---|
47 | ! Inputs |
---|
48 | integer, intent(in) :: ngrid, nslope, nsoil_PEM, timelen ! size dimension: physics x subslope x soil x timeseries |
---|
49 | real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! tendancies on the glaciers [1] |
---|
50 | real, dimension(ngrid,nslope), intent(in) :: waterice ! water ice at the surface [kg/m^2] |
---|
51 | real, dimension(ngrid,nslope), intent(in) :: co2ice ! co2 ice at the surface [kg/m^2] |
---|
52 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Soil Thermal inertia (J/K/^2/s^1/2) |
---|
53 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Soil temperature (K) |
---|
54 | real, dimension(ngrid,timelen), intent(in) :: ps ! Average surface pressure [Pa] |
---|
55 | real, dimension(ngrid,timelen), intent(in) :: q_co2 ! Mass mixing ratio of co2 in the first layer (kg/kg) |
---|
56 | real, dimension(ngrid,timelen), intent(in) :: q_h2o ! Mass mixing ratio of H2o in the first layer (kg/kg) |
---|
57 | |
---|
58 | ! Outputs |
---|
59 | real, dimension(ngrid), intent(out) :: delta_mh2oreg ! Difference density of h2o adsorbed (kg/m^3) |
---|
60 | real, dimension(ngrid), intent(out) :: delta_mco2reg ! Difference density of co2 adsorbed (kg/m^3) |
---|
61 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3) |
---|
62 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3) |
---|
63 | |
---|
64 | ! Local variables |
---|
65 | real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbded ! Fraction of the pores occupied by H2O molecules |
---|
66 | ! ------------- |
---|
67 | ! Compute H2O adsorption, then CO2 adsorption |
---|
68 | call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
---|
69 | theta_h2o_adsorbded,m_h2o_completesoil,delta_mh2oreg) |
---|
70 | call regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o, & |
---|
71 | tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mco2reg) |
---|
72 | |
---|
73 | END SUBROUTINE |
---|
74 | |
---|
75 | !======================================================================= |
---|
76 | SUBROUTINE regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
---|
77 | theta_h2o_adsorbded,m_h2o_completesoil,delta_mreg) |
---|
78 | |
---|
79 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
80 | !!! |
---|
81 | !!! Purpose: Compute H2O adsorption, following the methods from Jackosky et al., 1997 |
---|
82 | !!! |
---|
83 | !!! Author: LL, 01/2023 |
---|
84 | !!! |
---|
85 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
86 | |
---|
87 | use comsoil_h_PEM, only: layer_PEM, index_breccia |
---|
88 | use comslope_mod, only: subslope_dist, def_slope_mean |
---|
89 | use vertical_layers_mod, only: ap, bp |
---|
90 | use constants_marspem_mod, only: alpha_clap_h2o, beta_clap_h2o, m_h2o, m_co2,m_noco2, rho_regolith |
---|
91 | |
---|
92 | #ifndef CPP_STD |
---|
93 | use comcstfi_h, only: pi |
---|
94 | #else |
---|
95 | use comcstfi_mod, only: pi |
---|
96 | #endif |
---|
97 | |
---|
98 | implicit none |
---|
99 | |
---|
100 | ! Inputs |
---|
101 | integer, intent(in) :: ngrid, nslope, nsoil_PEM,timelen ! Size dimension |
---|
102 | real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers () |
---|
103 | real, dimension(ngrid,nslope), intent(in) :: waterice ! Water ice at the surface [kg/m^2] |
---|
104 | real, dimension(ngrid,nslope), intent(in) :: co2ice ! CO2 ice at the surface [kg/m^2] |
---|
105 | real, dimension(ngrid,timelen), intent(in) :: ps ! Surface pressure (Pa) |
---|
106 | real, dimension(ngrid,timelen), intent(in) :: q_co2 ! Mass mixing ratio of co2 in the first layer (kg/kg) |
---|
107 | real, dimension(ngrid,timelen), intent(in) :: q_h2o ! Mass mixing ratio of H2o in the first layer (kg/kg) |
---|
108 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Soil Thermal inertia (J/K/^2/s^1/2) |
---|
109 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Soil temperature (K) |
---|
110 | |
---|
111 | ! Outputs |
---|
112 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope) |
---|
113 | real, dimension(ngrid,nsoil_PEM,nslope), intent(out) :: theta_h2o_adsorbded ! Fraction of the pores occupied by H2O molecules |
---|
114 | real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of h2o adsorbed (kg/m^3) |
---|
115 | |
---|
116 | ! Constants |
---|
117 | real :: Ko = 1.57e-8 ! Jackosky et al. 1997 |
---|
118 | real :: e = 2573.9 ! Jackosky et al. 1997 |
---|
119 | real :: mu = 0.48 ! Jackosky et al. 1997 |
---|
120 | real :: m_theta = 2.84e-7 ! Mass of h2o per m^2 absorbed Jackosky et al. 1997 |
---|
121 | ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 |
---|
122 | real :: as = 9.48e4 ! Specific area, Zent |
---|
123 | real :: inertie_thresold = 800. ! TI > 800 means cementation |
---|
124 | |
---|
125 | ! Local variables |
---|
126 | real, dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete ! Difference in the mass per slope and soil layer (kg/m^3) |
---|
127 | real :: K ! Used to compute theta |
---|
128 | integer :: ig, iloop, islope, it ! For loops |
---|
129 | logical, dimension(ngrid,nslope) :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent |
---|
130 | logical, dimension(ngrid,nslope) :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent |
---|
131 | real, dimension(ngrid,nslope) :: deltam_reg_slope ! Difference density of h2o adsorbed per slope (kg/m^3) |
---|
132 | real, dimension(ngrid,nsoil_PEM,nslope) :: dm_h2o_regolith_slope ! Elementary h2o mass adsorded per mesh per slope |
---|
133 | real :: A, B ! Used to compute the mean mass above the surface |
---|
134 | real :: p_sat ! Saturated vapor pressure of ice |
---|
135 | real, dimension(:,:), allocatable :: mass_mean ! Mean mass above the surface |
---|
136 | real, dimension(:,:), allocatable :: zplev_mean ! Pressure above the surface |
---|
137 | real, dimension(:,:), allocatable :: pvapor ! Partial pressure above the surface |
---|
138 | real, dimension(:) , allocatable :: pvapor_avg ! Yearly averaged |
---|
139 | |
---|
140 | ! 0. Some initializations |
---|
141 | allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pvapor(ngrid,timelen),pvapor_avg(ngrid)) |
---|
142 | A = 1./m_co2 - 1./m_noco2 |
---|
143 | B = 1./m_noco2 |
---|
144 | theta_h2o_adsorbded = 0. |
---|
145 | dm_h2o_regolith_slope = 0. |
---|
146 | ispermanent_h2oglaciers = .false. |
---|
147 | ispermanent_co2glaciers = .false. |
---|
148 | |
---|
149 | #ifndef CPP_STD |
---|
150 | ! 0.1 Look at perennial ice |
---|
151 | do ig = 1,ngrid |
---|
152 | do islope = 1,nslope |
---|
153 | if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true. |
---|
154 | if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true. |
---|
155 | enddo |
---|
156 | enddo |
---|
157 | |
---|
158 | ! 0.2 Compute the partial pressure of vapor |
---|
159 | ! a. the molecular mass into the column |
---|
160 | do ig = 1,ngrid |
---|
161 | mass_mean(ig,:) = 1/(A*q_co2(ig,:) + B) |
---|
162 | enddo |
---|
163 | |
---|
164 | ! b. pressure level |
---|
165 | do it = 1,timelen |
---|
166 | do ig = 1,ngrid |
---|
167 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
---|
168 | enddo |
---|
169 | enddo |
---|
170 | |
---|
171 | ! c. Vapor pressure |
---|
172 | pvapor = mass_mean/m_h2o*q_h2o*zplev_mean |
---|
173 | pvapor_avg = sum(pvapor,2)/timelen |
---|
174 | #endif |
---|
175 | deallocate(pvapor,zplev_mean,mass_mean) |
---|
176 | |
---|
177 | #ifndef CPP_STD |
---|
178 | ! 1. we compute the mass of H2O adsorded in each layer of the meshes |
---|
179 | do ig = 1,ngrid |
---|
180 | do islope = 1,nslope |
---|
181 | do iloop = 1,index_breccia |
---|
182 | K = Ko*exp(e/tsoil_PEM(ig,iloop,islope)) |
---|
183 | if (TI_PEM(ig,iloop,islope) < inertie_thresold) then |
---|
184 | theta_h2o_adsorbded(ig,iloop,islope) = (K*pvapor_avg(ig)/(1. + K*pvapor_avg(ig)))**mu |
---|
185 | else |
---|
186 | p_sat = exp(beta_clap_h2o/tsoil_PEM(ig,iloop,islope) + alpha_clap_h2o) ! we assume fixed temperature in the ice ... not really good but ... |
---|
187 | theta_h2o_adsorbded(ig,iloop,islope) = (K*p_sat/(1. + K*p_sat))**mu |
---|
188 | endif |
---|
189 | dm_h2o_regolith_slope(ig,iloop,islope) = as*theta_h2o_adsorbded(ig,iloop,islope)*m_theta*rho_regolith |
---|
190 | enddo |
---|
191 | enddo |
---|
192 | enddo |
---|
193 | |
---|
194 | ! 2. Check the exchange between the atmosphere and the regolith |
---|
195 | do ig = 1,ngrid |
---|
196 | delta_mreg(ig) = 0. |
---|
197 | do islope = 1,nslope |
---|
198 | deltam_reg_slope(ig,islope) = 0. |
---|
199 | do iloop = 1,index_breccia |
---|
200 | if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then |
---|
201 | if (iloop == 1) then |
---|
202 | deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop)) |
---|
203 | else |
---|
204 | deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1)) |
---|
205 | endif |
---|
206 | else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! |
---|
207 | deltam_reg_complete(ig,iloop,islope) = 0. |
---|
208 | endif |
---|
209 | deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) |
---|
210 | enddo |
---|
211 | delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
212 | enddo |
---|
213 | enddo |
---|
214 | m_h2o_completesoil = dm_h2o_regolith_slope |
---|
215 | #endif |
---|
216 | END SUBROUTINE |
---|
217 | |
---|
218 | !======================================================================= |
---|
219 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
220 | !!! |
---|
221 | !!! Purpose: Compute CO2 following the methods from Zent & Quinn 1995 |
---|
222 | !!! |
---|
223 | !!! Author: LL, 01/2023 |
---|
224 | !!! |
---|
225 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
226 | SUBROUTINE regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mreg) |
---|
227 | |
---|
228 | use comsoil_h_PEM, only: layer_PEM, index_breccia, index_breccia |
---|
229 | use comslope_mod, only: subslope_dist, def_slope_mean |
---|
230 | use vertical_layers_mod, only: ap, bp |
---|
231 | use constants_marspem_mod, only: m_co2, m_noco2, rho_regolith |
---|
232 | |
---|
233 | #ifndef CPP_STD |
---|
234 | use comcstfi_h, only: pi |
---|
235 | #else |
---|
236 | use comcstfi_mod, only: pi |
---|
237 | #endif |
---|
238 | |
---|
239 | implicit none |
---|
240 | |
---|
241 | ! Inputs: |
---|
242 | integer, intent(in) :: ngrid, nslope, nsoil_PEM,timelen ! Size dimension |
---|
243 | real, dimension(ngrid,timelen), intent(in) :: ps ! Average surface pressure [Pa] |
---|
244 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM ! Mean Soil Temperature [K] |
---|
245 | real, dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM ! Mean Thermal Inertia [USI] |
---|
246 | real, dimension(ngrid,nslope), intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers () |
---|
247 | real, dimension(ngrid,timelen), intent(in) :: q_co2, q_h2o ! Mass mixing ratio of co2 and h2o in the first layer (kg/kg) |
---|
248 | real, dimension(ngrid,nslope), intent(in) :: waterice ! Water ice at the surface [kg/m^2] |
---|
249 | real, dimension(ngrid,nslope), intent(in) :: co2ice ! CO2 ice at the surface [kg/m^2] |
---|
250 | |
---|
251 | ! Outputs: |
---|
252 | real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3) |
---|
253 | real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of co2 adsorbed (kg/m^3) |
---|
254 | |
---|
255 | ! Constants: |
---|
256 | real :: alpha = 7.512e-6 ! Zent & Quinn 1995 |
---|
257 | real :: beta = -1541.5 ! Zent & Quinn 1995 |
---|
258 | real :: inertie_thresold = 800. ! TI > 800 means cementation |
---|
259 | real :: m_theta = 4.27e-7 ! Mass of co2 per m^2 absorbed |
---|
260 | ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 |
---|
261 | real :: as = 9.48e4 ! Same as previous but from zent |
---|
262 | |
---|
263 | ! Local |
---|
264 | real :: A, B ! Used to compute the mean mass above the surface |
---|
265 | integer :: ig, islope, iloop, it ! For loops |
---|
266 | real, dimension(ngrid,nsoil_PEM,nslope) :: dm_co2_regolith_slope ! Elementary mass adsorded per mesh per slope |
---|
267 | logical, dimension(ngrid,nslope) :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent |
---|
268 | logical, dimension(ngrid,nslope) :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent |
---|
269 | real, dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete ! Difference in the mass per slope and soil layer (kg/m^3) |
---|
270 | real, dimension(ngrid,nslope) :: deltam_reg_slope ! Difference in the mass per slope (kg/m^3) |
---|
271 | real, dimension(ngrid,nsoil_PEM,nslope) :: m_h2o_adsorbed ! Density of CO2 adsorbed (kg/m^3) |
---|
272 | real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules |
---|
273 | real, dimension(ngrid) :: delta_mh2o ! Difference density of h2o adsorbed (kg/m^3) |
---|
274 | ! timelen array are allocated because heavy... |
---|
275 | real, dimension(:,:), allocatable :: mass_mean ! Mean mass above the surface |
---|
276 | real, dimension(:,:), allocatable :: zplev_mean ! Pressure above the surface |
---|
277 | real, dimension(:,:), allocatable :: pco2 ! Partial pressure above the surface |
---|
278 | real, dimension(:), allocatable :: pco2_avg ! Yearly averaged |
---|
279 | |
---|
280 | ! 0. Some initializations |
---|
281 | allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pco2(ngrid,timelen),pco2_avg(ngrid)) |
---|
282 | m_h2o_adsorbed = 0. |
---|
283 | A = 1./m_co2 - 1./m_noco2 |
---|
284 | B = 1./m_noco2 |
---|
285 | dm_co2_regolith_slope = 0. |
---|
286 | delta_mreg = 0. |
---|
287 | ispermanent_h2oglaciers = .false. |
---|
288 | ispermanent_co2glaciers = .false. |
---|
289 | |
---|
290 | #ifndef CPP_STD |
---|
291 | ! 0.1 Look at perennial ice |
---|
292 | do ig = 1,ngrid |
---|
293 | do islope = 1,nslope |
---|
294 | if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true. |
---|
295 | if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true. |
---|
296 | enddo |
---|
297 | enddo |
---|
298 | |
---|
299 | ! 0.2 Compute the partial pressure of CO2 |
---|
300 | ! a. the molecular mass into the column |
---|
301 | do ig = 1,ngrid |
---|
302 | mass_mean(ig,:) = 1./(A*q_co2(ig,:) + B) |
---|
303 | enddo |
---|
304 | |
---|
305 | ! b. pressure level |
---|
306 | do it = 1,timelen |
---|
307 | do ig = 1,ngrid |
---|
308 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
---|
309 | enddo |
---|
310 | enddo |
---|
311 | |
---|
312 | ! c. Vapor pressure |
---|
313 | pco2 = mass_mean/m_co2*q_co2*zplev_mean |
---|
314 | pco2_avg(:) = sum(pco2(:,:),2)/timelen |
---|
315 | |
---|
316 | deallocate(zplev_mean,mass_mean,pco2) |
---|
317 | |
---|
318 | ! 1. Compute the fraction of the pores occupied by H2O |
---|
319 | call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
---|
320 | theta_h2o_adsorbed, m_h2o_adsorbed,delta_mh2o) |
---|
321 | |
---|
322 | ! 2. we compute the mass of co2 adsorded in each layer of the meshes |
---|
323 | do ig = 1,ngrid |
---|
324 | do islope = 1,nslope |
---|
325 | do iloop = 1,index_breccia |
---|
326 | if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then |
---|
327 | dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig)/ & |
---|
328 | (alpha*pco2_avg(ig) + sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) |
---|
329 | else |
---|
330 | if (abs(m_co2_completesoil(ig,iloop,islope)) < 1.e-10) then !!! we are at first call |
---|
331 | dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig) & |
---|
332 | /(alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) |
---|
333 | else ! no change: permanent ice stick the atoms of CO2 |
---|
334 | dm_co2_regolith_slope(ig,iloop,islope) = m_co2_completesoil(ig,iloop,islope) |
---|
335 | endif |
---|
336 | endif |
---|
337 | enddo |
---|
338 | enddo |
---|
339 | enddo |
---|
340 | |
---|
341 | ! 3. Check the exchange between the atmosphere and the regolith |
---|
342 | do ig = 1,ngrid |
---|
343 | delta_mreg(ig) = 0. |
---|
344 | do islope = 1,nslope |
---|
345 | deltam_reg_slope(ig,islope) = 0. |
---|
346 | do iloop = 1,index_breccia |
---|
347 | if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then |
---|
348 | if (iloop == 1) then |
---|
349 | deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop)) |
---|
350 | else |
---|
351 | deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1)) |
---|
352 | endif |
---|
353 | else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! |
---|
354 | deltam_reg_complete(ig,iloop,islope) = 0. |
---|
355 | endif |
---|
356 | deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) |
---|
357 | enddo |
---|
358 | delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
359 | enddo |
---|
360 | enddo |
---|
361 | m_co2_completesoil = dm_co2_regolith_slope |
---|
362 | #endif |
---|
363 | |
---|
364 | END SUBROUTINE regolith_co2adsorption |
---|
365 | |
---|
366 | END MODULE adsorption_mod |
---|
367 | |
---|