source: trunk/LMDZ.COMMON/libf/evolution/adsorption_mod.F90 @ 3554

Last change on this file since 3554 was 3554, checked in by jbclement, 3 weeks ago

PEM:
Follow-up of previous commit (r3553).
JBC

File size: 19.5 KB
RevLine 
[3456]1MODULE adsorption_mod
[3082]2
[3456]3implicit none
[3082]4
[3456]5logical                                   :: adsorption_pem     ! True by default, to compute adsorption/desorption. Read in pem.def
[3554]6real, save, allocatable, dimension(:,:,:) :: co2_adsorbed_phys ! co2 that is in the regolith [kg/m^2]
7real, save, allocatable, dimension(:,:,:) :: h2o_adsorbed_phys ! h2o that is in the regolith [kg/m^2]
[3082]8
[3456]9!=======================================================================
10contains
11!=======================================================================
[2794]12
[2863]13!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14!!!
15!!! Purpose: Compute CO2 and H2O adsorption, following the methods from Zent & Quinn 1995, Jackosky et al., 1997
16!!!
17!!! Author: LL, 01/2023
18!!!
19!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[3456]20SUBROUTINE ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM)
[2888]21
[3456]22implicit none
[2888]23
[3456]24integer, intent(in) :: ngrid       ! number of atmospheric columns
25integer, intent(in) :: nslope      ! number of slope within a mesh
26integer, intent(in) :: nsoilmx_PEM ! number of soil layer in the PEM
[2980]27
[3554]28allocate(co2_adsorbed_phys(ngrid,nsoilmx_PEM,nslope))
29allocate(h2o_adsorbed_phys(ngrid,nsoilmx_PEM,nslope))
[2888]30
[3456]31END SUBROUTINE ini_adsorption_h_PEM
[2888]32
[3456]33!=======================================================================
34SUBROUTINE end_adsorption_h_PEM
[2888]35
[3554]36if (allocated(co2_adsorbed_phys)) deallocate(co2_adsorbed_phys)
37if (allocated(h2o_adsorbed_phys)) deallocate(h2o_adsorbed_phys)
[2985]38
[3456]39END SUBROUTINE end_adsorption_h_PEM
[2863]40
[3456]41!=======================================================================
[3498]42SUBROUTINE regolith_adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,tsoil_PEM,TI_PEM,ps,q_co2,q_h2o, &
[3456]43                               m_h2o_completesoil,delta_mh2oreg, m_co2_completesoil,delta_mco2reg)
[2863]44
[3456]45implicit none
[2863]46
[3456]47! Inputs
48integer,                                    intent(in) :: ngrid, nslope, nsoil_PEM, timelen  ! size dimension: physics x subslope x soil x timeseries
[3498]49real,    dimension(ngrid,nslope),           intent(in) :: d_h2oglaciers, d_co2glaciers ! tendancies on the glaciers [1]
[3456]50real,    dimension(ngrid,nslope),           intent(in) :: waterice                           ! water ice at the surface [kg/m^2]
51real,    dimension(ngrid,nslope),           intent(in) :: co2ice                             ! co2 ice at the surface [kg/m^2]
52real,    dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM                             ! Soil Thermal inertia (J/K/^2/s^1/2)
53real,    dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM                          ! Soil temperature (K)
54real,    dimension(ngrid,timelen),          intent(in) :: ps                                 ! Average surface pressure [Pa]
55real,    dimension(ngrid,timelen),          intent(in) :: q_co2                              ! Mass mixing ratio of co2 in the first layer (kg/kg)
56real,    dimension(ngrid,timelen),          intent(in) :: q_h2o                              ! Mass mixing ratio of H2o in the first layer (kg/kg)
[2985]57
[3456]58! Outputs
59real, dimension(ngrid), intent(out) :: delta_mh2oreg ! Difference density of h2o adsorbed (kg/m^3)
60real, dimension(ngrid), intent(out) :: delta_mco2reg ! Difference density of co2 adsorbed (kg/m^3)
61real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3)
62real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3)
63
64! Local variables
[3554]65real, dimension(ngrid,nsoil_PEM,nslope) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules
[3456]66! -------------
[2863]67! Compute H2O adsorption, then CO2 adsorption
[3498]68call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, &
[3554]69                            theta_h2o_adsorbed,m_h2o_completesoil,delta_mh2oreg)
[3498]70call regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o, &
[3456]71                            tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mco2reg)
[2863]72
[3456]73END SUBROUTINE
[2863]74
[3456]75!=======================================================================
[3498]76SUBROUTINE regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, &
[3554]77                                  theta_h2o_adsorbed,m_h2o_completesoil,delta_mreg)
[2863]78
79!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
80!!!
81!!! Purpose: Compute H2O adsorption, following the methods from Jackosky et al., 1997
82!!!
83!!! Author: LL, 01/2023
84!!!
85!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
86
[3206]87use comsoil_h_PEM,         only: layer_PEM, index_breccia
88use comslope_mod,          only: subslope_dist, def_slope_mean
[3456]89use vertical_layers_mod,   only: ap, bp
[3206]90use constants_marspem_mod, only: alpha_clap_h2o, beta_clap_h2o, m_h2o, m_co2,m_noco2, rho_regolith
91
[3082]92#ifndef CPP_STD
93    use comcstfi_h,   only: pi
94#else
95    use comcstfi_mod, only: pi
96#endif
[2863]97
[3456]98implicit none
[2794]99
[3456]100! Inputs
101integer,                                    intent(in) :: ngrid, nslope, nsoil_PEM,timelen   ! Size dimension
[3498]102real,    dimension(ngrid,nslope),           intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers ()
[3456]103real,    dimension(ngrid,nslope),           intent(in) :: waterice                           ! Water ice at the surface [kg/m^2]
104real,    dimension(ngrid,nslope),           intent(in) :: co2ice                             ! CO2 ice at the surface [kg/m^2]
105real,    dimension(ngrid,timelen),          intent(in) :: ps                                 ! Surface pressure (Pa)
106real,    dimension(ngrid,timelen),          intent(in) :: q_co2                              ! Mass mixing ratio of co2 in the first layer (kg/kg)
107real,    dimension(ngrid,timelen),          intent(in) :: q_h2o                              ! Mass mixing ratio of H2o in the first layer (kg/kg)
108real,    dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM                             ! Soil Thermal inertia (J/K/^2/s^1/2)
109real,    dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM                          ! Soil temperature (K)
[2794]110
[3456]111! Outputs
112real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_h2o_completesoil ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope)
[3554]113real, dimension(ngrid,nsoil_PEM,nslope), intent(out) :: theta_h2o_adsorbed ! Fraction of the pores occupied by H2O molecules
[3456]114real, dimension(ngrid),                  intent(out) :: delta_mreg          ! Difference density of h2o adsorbed (kg/m^3)
[2944]115
[3456]116! Constants
117real :: Ko =  1.57e-8            ! Jackosky et al. 1997
118real :: e = 2573.9               ! Jackosky et al. 1997
119real :: mu = 0.48                ! Jackosky et al. 1997
120real :: m_theta = 2.84e-7        ! Mass of h2o per m^2 absorbed Jackosky et al. 1997
121! real :: as = 18.9e3              ! Specific area, Buhler & Piqueux 2021
122real :: as = 9.48e4              ! Specific area, Zent
123real ::  inertie_thresold = 800. ! TI > 800 means cementation
[2794]124
[3456]125! Local variables
126real,    dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete     ! Difference in the mass per slope and soil layer (kg/m^3)
127real                                           :: K                       ! Used to compute theta
128integer                                        :: ig, iloop, islope, it   ! For loops
129logical, dimension(ngrid,nslope)               :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent
130logical, dimension(ngrid,nslope)               :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent
131real,    dimension(ngrid,nslope)               :: deltam_reg_slope        ! Difference density of h2o adsorbed per slope (kg/m^3)
132real,    dimension(ngrid,nsoil_PEM,nslope)     :: dm_h2o_regolith_slope   ! Elementary h2o mass adsorded per mesh per slope
133real                                           :: A, B                    ! Used to compute the mean mass above the surface
134real                                           :: p_sat                   ! Saturated vapor pressure of ice
135real,    dimension(:,:), allocatable           :: mass_mean               ! Mean mass above the surface
136real,    dimension(:,:), allocatable           :: zplev_mean              ! Pressure above the surface
137real,    dimension(:,:), allocatable           :: pvapor                  ! Partial pressure above the surface
138real,    dimension(:)  , allocatable           :: pvapor_avg              ! Yearly averaged
139
[2794]140! 0. Some initializations
[3456]141allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pvapor(ngrid,timelen),pvapor_avg(ngrid))
142A = 1./m_co2 - 1./m_noco2
143B = 1./m_noco2
[3554]144theta_h2o_adsorbed = 0.
[3456]145dm_h2o_regolith_slope = 0.
146ispermanent_h2oglaciers = .false.
147ispermanent_co2glaciers = .false.
[2794]148
[2985]149#ifndef CPP_STD
[3456]150    ! 0.1 Look at perennial ice
151    do ig = 1,ngrid
152        do islope = 1,nslope
[3498]153            if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true.
154            if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true.
[3456]155        enddo
156    enddo
[2985]157
[3456]158    ! 0.2 Compute the partial pressure of vapor
159    ! a. the molecular mass into the column
160    do ig = 1,ngrid
161        mass_mean(ig,:) = 1/(A*q_co2(ig,:) + B)
162    enddo
[2842]163
[3456]164    ! b. pressure level
165    do it = 1,timelen
166        do ig = 1,ngrid
167            zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it)
168        enddo
[2863]169    enddo
[2842]170
[3456]171    ! c. Vapor pressure
172    pvapor = mass_mean/m_h2o*q_h2o*zplev_mean
173    pvapor_avg = sum(pvapor,2)/timelen
174#endif
175deallocate(pvapor,zplev_mean,mass_mean)
[2794]176
[2985]177#ifndef CPP_STD
[3456]178    ! 1. we compute the mass of H2O adsorded in each layer of the meshes
179    do ig = 1,ngrid
180        do islope = 1,nslope
181            do iloop = 1,index_breccia
182                K = Ko*exp(e/tsoil_PEM(ig,iloop,islope))
183                if (TI_PEM(ig,iloop,islope) < inertie_thresold) then
[3554]184                    theta_h2o_adsorbed(ig,iloop,islope) = (K*pvapor_avg(ig)/(1. + K*pvapor_avg(ig)))**mu
[3456]185                else
186                    p_sat = exp(beta_clap_h2o/tsoil_PEM(ig,iloop,islope) + alpha_clap_h2o) ! we assume fixed temperature in the ice ... not really good but ...
[3554]187                    theta_h2o_adsorbed(ig,iloop,islope) = (K*p_sat/(1. + K*p_sat))**mu
[3456]188                endif
[3554]189                dm_h2o_regolith_slope(ig,iloop,islope) = as*theta_h2o_adsorbed(ig,iloop,islope)*m_theta*rho_regolith
[3456]190            enddo
191        enddo
192    enddo
[2794]193
[3456]194    ! 2. Check the exchange between the atmosphere and the regolith
195    do ig = 1,ngrid
196        delta_mreg(ig) = 0.
197        do islope = 1,nslope
198            deltam_reg_slope(ig,islope) = 0.
199            do iloop = 1,index_breccia
200                if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then
201                    if (iloop == 1) then
202                        deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop))
203                    else
204                        deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1))
205                    endif
206                else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC!
207                    deltam_reg_complete(ig,iloop,islope) = 0.
208                endif
209                deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope)
210            enddo
211            delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
212        enddo
[2863]213    enddo
[3456]214    m_h2o_completesoil = dm_h2o_regolith_slope
[2842]215#endif
[3456]216END SUBROUTINE
[2794]217
[3456]218!=======================================================================
[2863]219!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
220!!!
221!!! Purpose: Compute CO2  following the methods from Zent & Quinn 1995
222!!!
223!!! Author: LL, 01/2023
224!!!
225!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[3498]226SUBROUTINE regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mreg)
[2863]227
[3206]228use comsoil_h_PEM,         only: layer_PEM, index_breccia, index_breccia
229use comslope_mod,          only: subslope_dist, def_slope_mean
230use vertical_layers_mod,   only: ap, bp
231use constants_marspem_mod, only: m_co2, m_noco2, rho_regolith
232
[3082]233#ifndef CPP_STD
234    use comcstfi_h,   only: pi
235#else
236    use comcstfi_mod, only: pi
237#endif
[2794]238
[3456]239implicit none
[2794]240
[3456]241! Inputs:
242integer,                                    intent(in) :: ngrid, nslope, nsoil_PEM,timelen   ! Size dimension
243real,    dimension(ngrid,timelen),          intent(in) :: ps                                 ! Average surface pressure [Pa]
244real,    dimension(ngrid,nsoil_PEM,nslope), intent(in) :: tsoil_PEM                          ! Mean Soil Temperature [K]
245real,    dimension(ngrid,nsoil_PEM,nslope), intent(in) :: TI_PEM                             ! Mean Thermal Inertia [USI]
[3498]246real,    dimension(ngrid,nslope),           intent(in) :: d_h2oglaciers, d_co2glaciers ! Tendencies on the glaciers ()
[3456]247real,    dimension(ngrid,timelen),          intent(in) :: q_co2, q_h2o                       ! Mass mixing ratio of co2 and h2o in the first layer (kg/kg)
248real,    dimension(ngrid,nslope),           intent(in) :: waterice                           ! Water ice at the surface [kg/m^2]
249real,    dimension(ngrid,nslope),           intent(in) :: co2ice                             ! CO2 ice at the surface [kg/m^2]
250
[2794]251! Outputs:
[3456]252real, dimension(ngrid,nsoil_PEM,nslope), intent(inout) :: m_co2_completesoil ! Density of co2 adsorbed (kg/m^3)
253real, dimension(ngrid), intent(out) :: delta_mreg ! Difference density of co2 adsorbed (kg/m^3)
254
[2794]255! Constants:
[3456]256real :: alpha = 7.512e-6        ! Zent & Quinn 1995
257real :: beta = -1541.5          ! Zent & Quinn 1995
258real :: inertie_thresold = 800. ! TI > 800 means cementation
259real :: m_theta = 4.27e-7       ! Mass of co2 per m^2 absorbed
[3206]260! real :: as = 18.9e3             ! Specific area, Buhler & Piqueux 2021
[3456]261real :: as = 9.48e4             ! Same as previous but from zent
[2794]262
[3456]263! Local
264real                                           :: A, B                    ! Used to compute the mean mass above the surface
265integer                                        :: ig, islope, iloop, it   ! For loops
266real,    dimension(ngrid,nsoil_PEM,nslope)     :: dm_co2_regolith_slope   ! Elementary mass adsorded per mesh per slope
267logical, dimension(ngrid,nslope)               :: ispermanent_co2glaciers ! Check if the co2 glacier is permanent
268logical, dimension(ngrid,nslope)               :: ispermanent_h2oglaciers ! Check if the h2o glacier is permanent
269real,    dimension(ngrid,index_breccia,nslope) :: deltam_reg_complete     ! Difference in the mass per slope and soil layer (kg/m^3)
270real,    dimension(ngrid,nslope)               :: deltam_reg_slope        ! Difference in the mass per slope  (kg/m^3)
271real,    dimension(ngrid,nsoil_PEM,nslope)     :: m_h2o_adsorbed          ! Density of CO2 adsorbed (kg/m^3)
272real,    dimension(ngrid,nsoil_PEM,nslope)     :: theta_h2o_adsorbed      ! Fraction of the pores occupied by H2O molecules
273real,    dimension(ngrid)                      :: delta_mh2o              ! Difference density of h2o adsorbed (kg/m^3)
274! timelen array are allocated because heavy...
275real,    dimension(:,:), allocatable           :: mass_mean               ! Mean mass above the surface
276real,    dimension(:,:), allocatable           :: zplev_mean              ! Pressure above the surface
277real,    dimension(:,:), allocatable           :: pco2                    ! Partial pressure above the surface
278real,    dimension(:),   allocatable           :: pco2_avg                ! Yearly averaged
279
[2794]280! 0. Some initializations
[3456]281allocate(mass_mean(ngrid,timelen),zplev_mean(ngrid,timelen),pco2(ngrid,timelen),pco2_avg(ngrid))
282m_h2o_adsorbed = 0.
283A = 1./m_co2 - 1./m_noco2
284B = 1./m_noco2
285dm_co2_regolith_slope = 0.
286delta_mreg = 0.
287ispermanent_h2oglaciers = .false.
288ispermanent_co2glaciers = .false.
[2794]289
[2985]290#ifndef CPP_STD
[3456]291    ! 0.1 Look at perennial ice
292    do ig = 1,ngrid
293        do islope = 1,nslope
[3498]294            if (abs(d_h2oglaciers(ig,islope)) > 1.e-5 .and. abs(waterice(ig,islope)) > 0.) ispermanent_h2oglaciers(ig,islope) = .true.
295            if (abs(d_co2glaciers(ig,islope)) > 1.e-5 .and. abs(co2ice(ig,islope)) > 0.) ispermanent_co2glaciers(ig,islope) = .true.
[3456]296        enddo
297    enddo
[2985]298
[3456]299    ! 0.2  Compute the partial pressure of CO2
300    ! a. the molecular mass into the column
301    do ig = 1,ngrid
302        mass_mean(ig,:) = 1./(A*q_co2(ig,:) + B)
303    enddo
[2794]304
[3456]305    ! b. pressure level
306    do it = 1,timelen
307        do ig = 1,ngrid
308            zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it)
309        enddo
[2794]310    enddo
311
[3456]312    ! c. Vapor pressure
313    pco2 = mass_mean/m_co2*q_co2*zplev_mean
314    pco2_avg(:) = sum(pco2(:,:),2)/timelen
[2794]315
[3456]316    deallocate(zplev_mean,mass_mean,pco2)
[2794]317
[3456]318    ! 1. Compute the fraction of the pores occupied by H2O
[3498]319    call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,d_h2oglaciers,d_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, &
[3456]320                                theta_h2o_adsorbed, m_h2o_adsorbed,delta_mh2o)
[2794]321
[3456]322    ! 2. we compute the mass of co2 adsorded in each layer of the meshes
323    do ig = 1,ngrid
324        do islope = 1,nslope
325            do iloop = 1,index_breccia
326                if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then
327                    dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig)/ &
328                                                             (alpha*pco2_avg(ig) + sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope)))
329                else
330                    if (abs(m_co2_completesoil(ig,iloop,islope)) < 1.e-10) then !!! we are at first call
331                        dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1. - theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig) &
332                                                                 /(alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope)))
333                    else ! no change: permanent ice stick the atoms of CO2
334                        dm_co2_regolith_slope(ig,iloop,islope) = m_co2_completesoil(ig,iloop,islope)
335                    endif
336                endif
337            enddo
338        enddo
[2895]339    enddo
[2794]340
[3456]341    ! 3. Check the exchange between the atmosphere and the regolith
342    do ig = 1,ngrid
343        delta_mreg(ig) = 0.
344        do islope = 1,nslope
345            deltam_reg_slope(ig,islope) = 0.
346            do iloop = 1,index_breccia
347                if (TI_PEM(ig,iloop,islope) < inertie_thresold .and. .not. ispermanent_h2oglaciers(ig,islope) .and. .not. ispermanent_co2glaciers(ig,islope)) then
348                    if (iloop == 1) then
349                        deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop))
350                    else
351                        deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope))*(layer_PEM(iloop) - layer_PEM(iloop - 1))
352                    endif
353                else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC!
354                    deltam_reg_complete(ig,iloop,islope) = 0.
355                endif
356                deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope)
357            enddo
358            delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.)
359        enddo
[2794]360    enddo
[3456]361    m_co2_completesoil = dm_co2_regolith_slope
[2842]362#endif
[2794]363
[3456]364END SUBROUTINE regolith_co2adsorption
[2794]365
[3456]366END MODULE adsorption_mod
367
Note: See TracBrowser for help on using the repository browser.