[3082] | 1 | module adsorption_mod |
---|
| 2 | |
---|
[2794] | 3 | implicit none |
---|
[3082] | 4 | |
---|
[2888] | 5 | LOGICAL adsorption_pem ! True by default, to compute adsorption/desorption. Read in pem.def |
---|
| 6 | real, save, allocatable :: co2_adsorbded_phys(:,:,:) ! co2 that is in the regolith [kg/m^2] |
---|
| 7 | real, save, allocatable :: h2o_adsorbded_phys(:,:,:) ! h2o that is in the regolith [kg/m^2] |
---|
[3082] | 8 | |
---|
[2794] | 9 | contains |
---|
| 10 | |
---|
[2863] | 11 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 12 | !!! |
---|
| 13 | !!! Purpose: Compute CO2 and H2O adsorption, following the methods from Zent & Quinn 1995, Jackosky et al., 1997 |
---|
| 14 | !!! |
---|
| 15 | !!! Author: LL, 01/2023 |
---|
| 16 | !!! |
---|
| 17 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
[2888] | 18 | subroutine ini_adsorption_h_PEM(ngrid,nslope,nsoilmx_PEM) |
---|
| 19 | |
---|
| 20 | implicit none |
---|
| 21 | integer,intent(in) :: ngrid ! number of atmospheric columns |
---|
| 22 | integer,intent(in) :: nslope ! number of slope within a mesh |
---|
| 23 | integer,intent(in) :: nsoilmx_PEM ! number of soil layer in the PEM |
---|
| 24 | allocate(co2_adsorbded_phys(ngrid,nsoilmx_PEM,nslope)) |
---|
| 25 | allocate(h2o_adsorbded_phys(ngrid,nsoilmx_PEM,nslope)) |
---|
| 26 | end subroutine ini_adsorption_h_PEM |
---|
| 27 | |
---|
[2980] | 28 | !!! ----------------------------------------------- |
---|
| 29 | |
---|
[2888] | 30 | subroutine end_adsorption_h_PEM |
---|
| 31 | |
---|
| 32 | implicit none |
---|
| 33 | if (allocated(co2_adsorbded_phys)) deallocate(co2_adsorbded_phys) |
---|
| 34 | if (allocated(h2o_adsorbded_phys)) deallocate(h2o_adsorbded_phys) |
---|
| 35 | end subroutine end_adsorption_h_PEM |
---|
| 36 | |
---|
[2980] | 37 | !!! ----------------------------------------------- |
---|
[2888] | 38 | |
---|
[2863] | 39 | subroutine regolith_adsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,tsoil_PEM,TI_PEM,ps,q_co2,q_h2o, & |
---|
| 40 | m_h2o_completesoil,delta_mh2oreg, m_co2_completesoil,delta_mco2reg) |
---|
[2985] | 41 | |
---|
[2863] | 42 | ! inputs |
---|
| 43 | INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM,timelen ! size dimension: physics x subslope x soil x timeseries |
---|
| 44 | REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) !tendancies on the glaciers [1] |
---|
| 45 | REAL,INTENT(IN) :: waterice(ngrid,nslope) ! water ice at the surface [kg/m^2] |
---|
| 46 | REAL,INTENT(IN) :: co2ice(ngrid,nslope) ! co2 ice at the surface [kg/m^2] |
---|
| 47 | REAL,INTENT(IN) :: TI_PEM(ngrid,nsoil_PEM,nslope) ! Soil Thermal inertia (J/K/^2/s^1/2) |
---|
| 48 | REAL,INTENT(IN) :: tsoil_PEM(ngrid,nsoil_PEM,nslope) ! Soil temperature (K) |
---|
| 49 | REAL,INTENT(IN) :: ps(ngrid,timelen) ! Average surface pressure [Pa] |
---|
| 50 | REAL,INTENT(IN) :: q_co2(ngrid,timelen) ! Mass mixing ratio of co2 in the first layer (kg/kg) |
---|
| 51 | REAL,INTENT(IN) :: q_h2o(ngrid,timelen) ! Mass mixing ratio of H2o in the first layer (kg/kg) |
---|
| 52 | |
---|
| 53 | ! outputs |
---|
| 54 | REAL,INTENT(INOUT) :: m_h2o_completesoil(ngrid,nsoil_PEM,nslope) ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope) |
---|
| 55 | REAL,INTENT(OUT) :: delta_mh2oreg(ngrid) ! Difference density of h2o adsorbed (kg/m^3) |
---|
| 56 | |
---|
| 57 | REAL,INTENT(INOUT) :: m_co2_completesoil(ngrid,nsoil_PEM,nslope) ! Density of co2 adsorbed (kg/m^3) |
---|
| 58 | REAL,INTENT(OUT) :: delta_mco2reg(ngrid) ! Difference density of co2 adsorbed (kg/m^3) |
---|
| 59 | |
---|
| 60 | ! local variables |
---|
| 61 | REAL :: theta_h2o_adsorbded(ngrid,nsoil_PEM,nslope) ! Fraction of the pores occupied by H2O molecules |
---|
| 62 | ! ------------- |
---|
| 63 | |
---|
[2985] | 64 | |
---|
[2863] | 65 | ! Compute H2O adsorption, then CO2 adsorption |
---|
| 66 | |
---|
| 67 | call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
---|
| 68 | theta_h2o_adsorbded,m_h2o_completesoil,delta_mh2oreg) |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | call regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o, & |
---|
| 72 | tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mco2reg) |
---|
| 73 | |
---|
| 74 | RETURN |
---|
| 75 | end subroutine |
---|
[2794] | 76 | |
---|
[2863] | 77 | !------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
---|
| 78 | |
---|
| 79 | subroutine regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
---|
| 80 | theta_h2o_adsorbded,m_h2o_completesoil,delta_mreg) |
---|
| 81 | |
---|
| 82 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 83 | !!! |
---|
| 84 | !!! Purpose: Compute H2O adsorption, following the methods from Jackosky et al., 1997 |
---|
| 85 | !!! |
---|
| 86 | !!! Author: LL, 01/2023 |
---|
| 87 | !!! |
---|
| 88 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 89 | |
---|
[2895] | 90 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM,index_breccia,index_bedrock |
---|
[2863] | 91 | use comslope_mod, only : subslope_dist,def_slope_mean |
---|
| 92 | use vertical_layers_mod, ONLY: ap,bp |
---|
[2944] | 93 | use constants_marspem_mod,only: alpha_clap_h2o,beta_clap_h2o, & |
---|
| 94 | m_h2o,m_co2,m_noco2, & |
---|
| 95 | rho_regolith |
---|
[3082] | 96 | #ifndef CPP_STD |
---|
| 97 | use comcstfi_h, only: pi |
---|
| 98 | #else |
---|
| 99 | use comcstfi_mod, only: pi |
---|
| 100 | #endif |
---|
[2863] | 101 | |
---|
[2794] | 102 | implicit none |
---|
[2863] | 103 | ! inputs |
---|
[2794] | 104 | INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM,timelen ! size dimension |
---|
[2863] | 105 | REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) !tendancies on the glaciers () |
---|
| 106 | REAL,INTENT(IN) :: waterice(ngrid,nslope) ! water ice at the surface [kg/m^2] |
---|
| 107 | REAL,INTENT(IN) :: co2ice(ngrid,nslope) ! co2 ice at the surface [kg/m^2] |
---|
[2794] | 108 | REAL,INTENT(IN) :: ps(ngrid,timelen) ! surface pressure (Pa) |
---|
| 109 | REAL,INTENT(IN) :: q_co2(ngrid,timelen) ! Mass mixing ratio of co2 in the first layer (kg/kg) |
---|
| 110 | REAL,INTENT(IN) :: q_h2o(ngrid,timelen) ! Mass mixing ratio of H2o in the first layer (kg/kg) |
---|
| 111 | REAL,INTENT(IN) :: TI_PEM(ngrid,nsoil_PEM,nslope) ! Soil Thermal inertia (J/K/^2/s^1/2) |
---|
| 112 | REAL,INTENT(IN) :: tsoil_PEM(ngrid,nsoil_PEM,nslope) ! Soil temperature (K) |
---|
| 113 | |
---|
[2863] | 114 | ! outputs |
---|
| 115 | REAL,INTENT(INOUT) :: m_h2o_completesoil(ngrid,nsoil_PEM,nslope) ! Density of h2o adsorbed (kg/m^3)(ngrid,nsoil_PEM,nslope) |
---|
[2794] | 116 | REAL,INTENT(OUT) :: theta_h2o_adsorbded(ngrid,nsoil_PEM,nslope) ! Fraction of the pores occupied by H2O molecules |
---|
[2863] | 117 | REAL,INTENT(OUT) :: delta_mreg(ngrid) ! Difference density of h2o adsorbed (kg/m^3) |
---|
[2794] | 118 | |
---|
[2863] | 119 | ! constants |
---|
[2794] | 120 | REAL :: Ko = 1.57e-8 ! Jackosky et al. 1997 |
---|
| 121 | REAL :: e = 2573.9 ! Jackosky et al. 1997 |
---|
| 122 | REAL :: mu = 0.48 ! Jackosky et al. 1997 |
---|
[2863] | 123 | real :: m_theta = 2.84e-7 ! Mass of h2o per m^2 absorbed Jackosky et al. 1997 |
---|
[2895] | 124 | ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 |
---|
| 125 | real :: as = 9.48e4 ! Specific area, Zent |
---|
| 126 | real :: as_breccia = 1.7e4 ! Specific area of basalt, Zent |
---|
[2863] | 127 | real :: inertie_thresold = 800. ! TI > 800 means cementation |
---|
[2944] | 128 | |
---|
| 129 | ! local variables |
---|
[2895] | 130 | REAL :: deltam_reg_complete(ngrid,index_breccia,nslope) ! Difference in the mass per slope and soil layer (kg/m^3) |
---|
[2863] | 131 | real :: K ! Used to compute theta |
---|
| 132 | integer ig,iloop, islope,isoil,it ! for loops |
---|
| 133 | INTEGER :: ispermanent_co2glaciers(ngrid,nslope) ! Check if the co2 glacier is permanent |
---|
| 134 | INTEGER :: ispermanent_h2oglaciers(ngrid,nslope) ! Check if the h2o glacier is permanent |
---|
| 135 | REAL :: deltam_reg_slope(ngrid,nslope) ! Difference density of h2o adsorbed per slope (kg/m^3) |
---|
| 136 | REAL :: dm_h2o_regolith_slope(ngrid,nsoil_PEM,nslope) ! elementary h2o mass adsorded per mesh per slope |
---|
[2794] | 137 | real :: A,B ! Used to compute the mean mass above the surface |
---|
| 138 | real :: p_sat ! saturated vapor pressure of ice |
---|
| 139 | real,allocatable :: mass_mean(:,:) ! mean mass above the surface |
---|
| 140 | real,allocatable :: zplev_mean(:,:) ! pressure above the surface |
---|
| 141 | real,allocatable :: pvapor(:,:) ! partial pressure above the surface |
---|
[2863] | 142 | real, allocatable :: pvapor_avg(:) ! yearly |
---|
[2794] | 143 | |
---|
| 144 | ! 0. Some initializations |
---|
| 145 | |
---|
[2985] | 146 | |
---|
[2794] | 147 | allocate(mass_mean(ngrid,timelen)) |
---|
| 148 | allocate(zplev_mean(ngrid,timelen)) |
---|
| 149 | allocate(pvapor(ngrid,timelen)) |
---|
| 150 | allocate(pvapor_avg(ngrid)) |
---|
[2863] | 151 | A =(1/m_co2 - 1/m_noco2) |
---|
| 152 | B=1/m_noco2 |
---|
| 153 | theta_h2o_adsorbded(:,:,:) = 0. |
---|
| 154 | dm_h2o_regolith_slope(:,:,:) = 0. |
---|
[2794] | 155 | |
---|
[2985] | 156 | #ifndef CPP_STD |
---|
| 157 | |
---|
[3130] | 158 | !0.1 Look at perennial ice |
---|
[2863] | 159 | do ig = 1,ngrid |
---|
| 160 | do islope = 1,nslope |
---|
| 161 | if((abs(tend_h2oglaciers(ig,islope)).gt.1e-5).and.(abs(waterice(ig,islope)).gt.0)) then |
---|
| 162 | ispermanent_h2oglaciers(ig,islope) = 1 |
---|
| 163 | else |
---|
| 164 | ispermanent_h2oglaciers(ig,islope) = 0 |
---|
| 165 | endif |
---|
[2842] | 166 | |
---|
[2863] | 167 | if((abs(tend_co2glaciers(ig,islope)).gt.1e-5).and.(abs(co2ice(ig,islope)).gt.0)) then |
---|
| 168 | ispermanent_co2glaciers(ig,islope) = 1 |
---|
| 169 | else |
---|
| 170 | ispermanent_co2glaciers(ig,islope) = 0 |
---|
| 171 | endif |
---|
| 172 | enddo |
---|
| 173 | enddo |
---|
[2842] | 174 | |
---|
[2863] | 175 | ! 0.2 Compute the partial pressure of vapor |
---|
[2794] | 176 | !a. the molecular mass into the column |
---|
| 177 | do ig = 1,ngrid |
---|
| 178 | mass_mean(ig,:) = 1/(A*q_co2(ig,:) +B) |
---|
| 179 | enddo |
---|
| 180 | |
---|
[2863] | 181 | |
---|
[2794] | 182 | ! b. pressure level |
---|
| 183 | do it = 1,timelen |
---|
| 184 | do ig = 1,ngrid |
---|
| 185 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
---|
| 186 | enddo |
---|
| 187 | enddo |
---|
| 188 | ! c. Vapor pressure |
---|
| 189 | pvapor(:,:) = mass_mean(:,:)/m_h2o*q_h2o(:,:)*zplev_mean(:,:) |
---|
| 190 | pvapor_avg(:) = sum(pvapor(:,:),2)/timelen |
---|
[2985] | 191 | #endif |
---|
[2794] | 192 | deallocate(pvapor) |
---|
| 193 | deallocate(zplev_mean) |
---|
| 194 | deallocate(mass_mean) |
---|
[2985] | 195 | #ifndef CPP_STD |
---|
[2794] | 196 | |
---|
[2863] | 197 | ! 1. we compute the mass of H2O adsorded in each layer of the meshes |
---|
[2794] | 198 | |
---|
| 199 | do ig = 1,ngrid |
---|
| 200 | do islope = 1,nslope |
---|
[2895] | 201 | do iloop = 1,index_breccia |
---|
[2863] | 202 | K = Ko*exp(e/tsoil_PEM(ig,iloop,islope)) |
---|
| 203 | if(TI_PEM(ig,iloop,islope).lt.inertie_thresold) then |
---|
| 204 | theta_h2o_adsorbded(ig,iloop,islope) = (K*pvapor_avg(ig)/(1+K*pvapor_avg(ig)))**mu |
---|
| 205 | else |
---|
[2944] | 206 | p_sat =exp(beta_clap_h2o/tsoil_PEM(ig,iloop,islope) +alpha_clap_h2o) ! we assume fixed temperature in the ice ... not really good but ... |
---|
[2794] | 207 | theta_h2o_adsorbded(ig,iloop,islope) = (K*p_sat/(1+K*p_sat))**mu |
---|
[2863] | 208 | endif |
---|
[2895] | 209 | dm_h2o_regolith_slope(ig,iloop,islope) = as*theta_h2o_adsorbded(ig,iloop,islope)*m_theta*rho_regolith |
---|
[2794] | 210 | enddo |
---|
| 211 | enddo |
---|
| 212 | enddo |
---|
| 213 | |
---|
[2863] | 214 | ! 2. Check the exchange between the atmosphere and the regolith |
---|
| 215 | |
---|
| 216 | do ig = 1,ngrid |
---|
| 217 | delta_mreg(ig) = 0. |
---|
| 218 | do islope = 1,nslope |
---|
| 219 | deltam_reg_slope(ig,islope) = 0. |
---|
[2895] | 220 | do iloop = 1,index_breccia |
---|
[2863] | 221 | if((TI_PEM(ig,iloop,islope).lt.inertie_thresold).and.(ispermanent_h2oglaciers(ig,islope).eq.0).and.(ispermanent_co2glaciers(ig,islope).eq.0)) then |
---|
| 222 | deltam_reg_complete(ig,iloop,islope) = (dm_h2o_regolith_slope(ig,iloop,islope) - m_h2o_completesoil(ig,iloop,islope)) & |
---|
| 223 | *(layer_PEM(iloop+1) - layer_PEM(iloop)) |
---|
| 224 | else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! |
---|
| 225 | deltam_reg_complete(ig,iloop,islope) = 0. |
---|
| 226 | endif |
---|
| 227 | deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) |
---|
| 228 | enddo |
---|
| 229 | delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 230 | enddo |
---|
| 231 | enddo |
---|
| 232 | m_h2o_completesoil(:,:,:) = dm_h2o_regolith_slope(:,:,:) |
---|
| 233 | |
---|
[2794] | 234 | RETURN |
---|
[2842] | 235 | #endif |
---|
[2794] | 236 | end subroutine |
---|
| 237 | |
---|
[2863] | 238 | !------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
---|
| 239 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 240 | !!! |
---|
| 241 | !!! Purpose: Compute CO2 following the methods from Zent & Quinn 1995 |
---|
| 242 | !!! |
---|
| 243 | !!! Author: LL, 01/2023 |
---|
| 244 | !!! |
---|
| 245 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 246 | |
---|
| 247 | SUBROUTINE regolith_co2adsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,& |
---|
| 248 | tsoil_PEM,TI_PEM,m_co2_completesoil,delta_mreg) |
---|
[2985] | 249 | |
---|
[2895] | 250 | use comsoil_h_PEM, only: layer_PEM, mlayer_PEM,index_breccia,index_bedrock,index_breccia |
---|
[2794] | 251 | use comslope_mod, only : subslope_dist,def_slope_mean |
---|
| 252 | use vertical_layers_mod, ONLY: ap,bp |
---|
[2944] | 253 | use constants_marspem_mod, only: m_co2, m_noco2,rho_regolith |
---|
[3082] | 254 | #ifndef CPP_STD |
---|
| 255 | use comcstfi_h, only: pi |
---|
| 256 | #else |
---|
| 257 | use comcstfi_mod, only: pi |
---|
| 258 | #endif |
---|
[2794] | 259 | |
---|
| 260 | IMPLICIT NONE |
---|
[2863] | 261 | ! Inputs: |
---|
[2794] | 262 | INTEGER,INTENT(IN) :: ngrid, nslope, nsoil_PEM,timelen ! size dimension |
---|
| 263 | REAL,INTENT(IN) :: ps(ngrid,timelen) ! Average surface pressure [Pa] |
---|
| 264 | REAL,INTENT(IN) :: tsoil_PEM(ngrid,nsoil_PEM,nslope) ! Mean Soil Temperature [K] |
---|
| 265 | REAL,INTENT(IN) :: TI_PEM(ngrid,nsoil_PEM,nslope) ! Mean Thermal Inertia [USI] |
---|
| 266 | REAL,INTENT(IN) :: tend_h2oglaciers(ngrid,nslope),tend_co2glaciers(ngrid,nslope) !tendancies on the glaciers () |
---|
| 267 | REAL,INTENT(IN) :: q_co2(ngrid,timelen),q_h2o(ngrid,timelen) ! Mass mixing ratio of co2 and h2o in the first layer (kg/kg) |
---|
| 268 | REAL,INTENT(IN) :: waterice(ngrid,nslope) ! water ice at the surface [kg/m^2] |
---|
| 269 | REAL,INTENT(IN) :: co2ice(ngrid,nslope) ! co2 ice at the surface [kg/m^2] |
---|
| 270 | |
---|
| 271 | ! Outputs: |
---|
| 272 | REAL,INTENT(INOUT) :: m_co2_completesoil(ngrid,nsoil_PEM,nslope) ! Density of co2 adsorbed (kg/m^3) |
---|
[2863] | 273 | REAL,INTENT(OUT) :: delta_mreg(ngrid) ! Difference density of co2 adsorbed (kg/m^3) |
---|
[2794] | 274 | |
---|
| 275 | ! Constants: |
---|
| 276 | |
---|
| 277 | REAL :: alpha = 7.512e-6 ! Zent & Quinn 1995 |
---|
| 278 | REAL :: beta = -1541.5 ! Zent & Quinn 1995 |
---|
| 279 | REAL :: inertie_thresold = 800. ! TI > 800 means cementation |
---|
| 280 | real :: m_theta = 4.27e-7 ! Mass of co2 per m^2 absorbed |
---|
[2895] | 281 | ! real :: as = 18.9e3 ! Specific area, Buhler & Piqueux 2021 |
---|
| 282 | real :: as = 9.48e4 ! same as previous but from zent |
---|
| 283 | real :: as_breccia = 1.7e4 ! Specific area of basalt, Zent 1997 |
---|
[2794] | 284 | ! Local |
---|
| 285 | real :: A,B ! Used to compute the mean mass above the surface |
---|
| 286 | INTEGER :: ig,islope,iloop,it ! for loops |
---|
| 287 | REAL :: dm_co2_regolith_slope(ngrid,nsoil_PEM,nslope) ! elementary mass adsorded per mesh per slope |
---|
[2863] | 288 | INTEGER :: ispermanent_co2glaciers(ngrid,nslope) ! Check if the co2 glacier is permanent |
---|
| 289 | INTEGER :: ispermanent_h2oglaciers(ngrid,nslope) ! Check if the h2o glacier is permanent |
---|
[2895] | 290 | REAL :: deltam_reg_complete(ngrid,index_breccia,nslope) ! Difference in the mass per slope and soil layer (kg/m^3) |
---|
[2794] | 291 | REAL :: deltam_reg_slope(ngrid,nslope) ! Difference in the mass per slope (kg/m^3) |
---|
| 292 | REAL :: m_h2o_adsorbed(ngrid,nsoil_PEM,nslope) ! Density of CO2 adsorbed (kg/m^3) |
---|
| 293 | REAL :: theta_h2o_adsorbed(ngrid,nsoil_PEM,nslope) ! Fraction of the pores occupied by H2O molecules |
---|
[2863] | 294 | REAL :: delta_mh2o(ngrid) ! Difference density of h2o adsorbed (kg/m^3) |
---|
[2794] | 295 | !timelen array are allocated because heavy ... |
---|
| 296 | real,allocatable :: mass_mean(:,:) ! mean mass above the surface |
---|
| 297 | real,allocatable :: zplev_mean(:,:) ! pressure above the surface |
---|
| 298 | real,allocatable :: pco2(:,:) ! partial pressure above the surface |
---|
| 299 | real, allocatable :: pco2_avg(:) ! yearly averaged |
---|
| 300 | |
---|
| 301 | ! 0. Some initializations |
---|
| 302 | |
---|
| 303 | allocate(mass_mean(ngrid,timelen)) |
---|
| 304 | allocate(zplev_mean(ngrid,timelen)) |
---|
| 305 | allocate(pco2(ngrid,timelen)) |
---|
| 306 | allocate(pco2_avg(ngrid)) |
---|
[2842] | 307 | |
---|
[2985] | 308 | |
---|
[2794] | 309 | |
---|
| 310 | m_h2o_adsorbed(:,:,:) = 0. |
---|
| 311 | A =(1/m_co2 - 1/m_noco2) |
---|
| 312 | B=1/m_noco2 |
---|
| 313 | |
---|
| 314 | dm_co2_regolith_slope(:,:,:) = 0 |
---|
| 315 | delta_mreg(:) = 0. |
---|
| 316 | |
---|
[2985] | 317 | #ifndef CPP_STD |
---|
| 318 | |
---|
[3130] | 319 | !0.1 Look at perennial ice |
---|
[2794] | 320 | do ig = 1,ngrid |
---|
| 321 | do islope = 1,nslope |
---|
| 322 | if((abs(tend_h2oglaciers(ig,islope)).gt.1e-5).and.(abs(waterice(ig,islope)).gt.0)) then |
---|
| 323 | ispermanent_h2oglaciers(ig,islope) = 1 |
---|
| 324 | else |
---|
| 325 | ispermanent_h2oglaciers(ig,islope) = 0 |
---|
| 326 | endif |
---|
| 327 | |
---|
| 328 | if((abs(tend_co2glaciers(ig,islope)).gt.1e-5).and.(abs(co2ice(ig,islope)).gt.0)) then |
---|
| 329 | ispermanent_co2glaciers(ig,islope) = 1 |
---|
| 330 | else |
---|
| 331 | ispermanent_co2glaciers(ig,islope) = 0 |
---|
| 332 | endif |
---|
| 333 | enddo |
---|
| 334 | enddo |
---|
| 335 | |
---|
| 336 | ! 0.2 Compute the partial pressure of CO2 |
---|
| 337 | !a. the molecular mass into the column |
---|
| 338 | do ig = 1,ngrid |
---|
[2863] | 339 | mass_mean(ig,:) = 1./(A*q_co2(ig,:) +B) |
---|
[2794] | 340 | enddo |
---|
| 341 | |
---|
| 342 | ! b. pressure level |
---|
| 343 | do it = 1,timelen |
---|
| 344 | do ig = 1,ngrid |
---|
| 345 | zplev_mean(ig,it) = ap(1) + bp(1)*ps(ig,it) |
---|
| 346 | enddo |
---|
| 347 | enddo |
---|
| 348 | |
---|
| 349 | ! c. Vapor pressure |
---|
| 350 | pco2(:,:) = mass_mean(:,:)/m_co2*q_co2(:,:)*zplev_mean(:,:) |
---|
| 351 | pco2_avg(:) = sum(pco2(:,:),2)/timelen |
---|
| 352 | |
---|
| 353 | deallocate(zplev_mean) |
---|
| 354 | deallocate(mass_mean) |
---|
| 355 | deallocate(pco2) |
---|
| 356 | |
---|
| 357 | |
---|
| 358 | ! 1. Compute the fraction of the pores occupied by H2O |
---|
| 359 | |
---|
[2863] | 360 | call regolith_h2oadsorption(ngrid,nslope,nsoil_PEM,timelen,tend_h2oglaciers,tend_co2glaciers,waterice,co2ice,ps,q_co2,q_h2o,tsoil_PEM,TI_PEM, & |
---|
| 361 | theta_h2o_adsorbed, m_h2o_adsorbed,delta_mh2o) |
---|
| 362 | |
---|
[2794] | 363 | ! 2. we compute the mass of co2 adsorded in each layer of the meshes |
---|
| 364 | |
---|
| 365 | do ig = 1,ngrid |
---|
| 366 | do islope = 1,nslope |
---|
[2895] | 367 | do iloop = 1,index_breccia |
---|
[2794] | 368 | if((TI_PEM(ig,iloop,islope).lt.inertie_thresold).and.(ispermanent_h2oglaciers(ig,islope).eq.0).and.(ispermanent_co2glaciers(ig,islope).eq.0)) then |
---|
| 369 | dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1-theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig)/ & |
---|
| 370 | (alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) |
---|
| 371 | else |
---|
[2863] | 372 | if(abs(m_co2_completesoil(ig,iloop,islope)).lt.(1e-10)) then !!! we are at first call |
---|
[2794] | 373 | dm_co2_regolith_slope(ig,iloop,islope) = as*rho_regolith*m_theta*(1-theta_h2o_adsorbed(ig,iloop,islope))*alpha*pco2_avg(ig) & |
---|
| 374 | /(alpha*pco2_avg(ig)+sqrt(tsoil_PEM(ig,iloop,islope))*exp(beta/tsoil_PEM(ig,iloop,islope))) |
---|
| 375 | else ! no change: permanent ice stick the atoms of CO2 |
---|
| 376 | dm_co2_regolith_slope(ig,iloop,islope) = m_co2_completesoil(ig,iloop,islope) |
---|
| 377 | endif |
---|
| 378 | endif |
---|
[2895] | 379 | enddo |
---|
[2794] | 380 | enddo |
---|
| 381 | enddo |
---|
| 382 | |
---|
[2863] | 383 | ! 3. Check the exchange between the atmosphere and the regolith |
---|
[2794] | 384 | |
---|
| 385 | do ig = 1,ngrid |
---|
| 386 | delta_mreg(ig) = 0. |
---|
| 387 | do islope = 1,nslope |
---|
| 388 | deltam_reg_slope(ig,islope) = 0. |
---|
[2895] | 389 | do iloop = 1,index_breccia |
---|
[2794] | 390 | if((TI_PEM(ig,iloop,islope).lt.inertie_thresold).and.(ispermanent_h2oglaciers(ig,islope).eq.0).and.(ispermanent_co2glaciers(ig,islope).eq.0)) then |
---|
| 391 | deltam_reg_complete(ig,iloop,islope) = (dm_co2_regolith_slope(ig,iloop,islope) - m_co2_completesoil(ig,iloop,islope)) & |
---|
[2863] | 392 | *(layer_PEM(iloop+1) - layer_PEM(iloop)) |
---|
[2794] | 393 | else ! NO EXCHANGE AS ICE BLOCK THE DYNAMIC! |
---|
| 394 | deltam_reg_complete(ig,iloop,islope) = 0. |
---|
| 395 | endif |
---|
| 396 | deltam_reg_slope(ig,islope) = deltam_reg_slope(ig,islope) + deltam_reg_complete(ig,iloop,islope) |
---|
| 397 | enddo |
---|
| 398 | delta_mreg(ig) = delta_mreg(ig) + deltam_reg_slope(ig,islope)*subslope_dist(ig,islope)/cos(pi*def_slope_mean(islope)/180.) |
---|
| 399 | enddo |
---|
| 400 | enddo |
---|
[2863] | 401 | m_co2_completesoil(:,:,:) = dm_co2_regolith_slope(:,:,:) |
---|
[2794] | 402 | |
---|
| 403 | !======================================================================= |
---|
| 404 | RETURN |
---|
[2842] | 405 | #endif |
---|
[2794] | 406 | END |
---|
| 407 | |
---|
| 408 | |
---|
| 409 | end module |
---|