Changeset 2193 in lmdz_wrf for trunk/tools/generic_tools.py
- Timestamp:
- Oct 18, 2018, 3:31:10 PM (6 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/tools/generic_tools.py
r2192 r2193 138 138 # list_norepeatcombos: Function to all possible (Num-1)-combinations of a Num values without repetitions 139 139 # lstring_values: Function to provide a new list-string from a string which is a list of word separated by a character if some values are repeated they are not included 140 # mat_dimreshape: Function to reshape a matrix on a new one according to values along their dimensions 140 141 # maxNcounts: Function to provide a value according to the maximum number of repeated values along a given axis 141 142 # minNcounts: Function to provide a value according to the minimum number of repeated values along a given axis … … 9831 9832 if shape1[idn] != shape2[idn]: 9832 9833 print errormsg 9833 print ' ' +fname+ ': length of',idn,'di emsion in mat1 and mat2 differ !!'9834 print ' ' +fname+ ': length of',idn,'dimension in mat1 and mat2 differ !!' 9834 9835 print ' Length mat 1:', shape1[idn],' Length mat2:', shape2[idn] 9835 9836 print ' shape mat 1:', shape1, 'mat 2:', shape2 … … 14561 14562 return rightCFtimeu 14562 14563 14563 def masks_mult(dimns1, mask1, dimns2, mask2, dimsuse, shapeuse, nonusemaskdims): 14564 """ Function to multiply two sets of masks on coincident diensions 14565 dimns1= list of dimensions names for mask 1 14566 mask1= mask 1 14567 dimns2= list of dimensions names for mask 2 14568 mask2= mask 2 14569 dimnuse= list of dimensions to use 14570 shapeuse: shape of being used 14571 nonusedmaskdims: dictionary with values of the given dimennsios of the masks 14572 not to be used 14573 """ 14574 fname = 'masks_mult' 14575 14576 coincdims = list(set(dimns1) & set(dimns2)) 14577 NOTcoincdims = list(set(dimns1) - set(dimns2)) 14578 print coincdims 14579 print NOTcoincdims 14564 def mat_dimreshape(dimns, values, dimnsuse, shapeuse, nonusevaluesdims): 14565 """ Function to reshape a matrix on a new one according to values along their 14566 dimensions 14567 dimns= list of dimensions names of the input matrix 14568 values= values of the matrix 14569 dimnsuse= list of dimensions to use 14570 shapeuse: list with shape of being produced 14571 nonusevaluesdims: dictionary to provide index values to that non-concident 14572 dimennsios of [values] from [dimnuse] 14573 >>> mask1 = np.zeros((3,3,3), dtype=bool) 14574 mask1[1,:,:] = True 14575 print mat_dimreshape(['dt', 'dy', 'dx'], mask1, ['dz', 'dy', 'dx'], [2, 3, 3], {'dt': 0}) 14576 14577 [[[False False False] 14578 [False False False] 14579 [False False False]] 14580 14581 [[False False False] 14582 [False False False] 14583 [False False False]]] 14584 >>> mask2 = np.zeros((2,3), dtype=bool) 14585 mask2[1,1] = True 14586 mat_dimreshape(['dt', 'dy'], mask2, ['dz', 'dy', 'dx'], [3, 3, 3], {'dt': 1}) 14587 [[[False False False] 14588 [ True True True] 14589 [False False False]] 14590 14591 [[False False False] 14592 [ True True True] 14593 [False False False]] 14594 14595 [[False False False] 14596 [ True True True] 14597 [False False False]]] 14598 """ 14599 fname = 'mat_dimreshape' 14600 14601 coincdims = list(set(dimns) & set(dimnsuse)) 14602 NOTcoincdims = list(set(dimnsuse) - set(dimns)) 14580 14603 14581 NOTsliceuse = [] 14604 newvalues = np.zeros(tuple(shapeuse), dtype=values.dtype) 14605 14606 # Slices to fill new matrix 14607 newslices = provide_slices(dimnsuse, shapeuse, NOTcoincdims) 14608 14609 # Getting values to use to fill new matrix from values 14610 shapevals = values.shape 14611 slcvalues = [] 14582 14612 idim = 0 14583 for dimn in dimsuse: 14584 if not searchInlist(dimns1, dimn): 14585 NOTsliceuse.append(dimn) 14586 continue 14587 if searchInlist(dimns2, dimn): 14588 NOTsliceuse.append(dimn) 14589 continue 14590 14591 mask = np.zeros(shapeuse, dtype=bool) 14592 slices = [] 14593 idim = 0 14594 for dimn in dimsuse: 14595 if searchInlist(NOTsliceuse, dimn): 14596 slices.append(-9) 14613 for dn in dimns: 14614 if searchInlist(coincdims,dn): 14615 slcvalues.append(slice(0,shapevals[idim])) 14597 14616 else: 14598 slices.append(slice(0,shapeuse[idim])) 14599 idim = idim+1 14600 14601 finalslc = [] 14602 idim = 0 14603 for slc in slices: 14604 if type(slc) == type(slice(0,1)): 14605 finalslc.append(slc) 14606 else: 14607 finalslc.append(range(shapeuse[idim])) 14617 if not nonusevaluesdims.has_key(dn): 14618 print errormsg 14619 print ' ' + fname + ": non-concident dimension '" + dn + \ 14620 "' requires a value to proceed in dictionary 'nonusevaluesdims'!!" 14621 print ' values provided _______' 14622 printing_dictionary(nonusevaluesdims) 14623 quit(-1) 14624 else: 14625 slcvalues.append(nonusevaluesdims[dn]) 14608 14626 idim = idim + 1 14609 14627 14610 print 'finalslc:', finalslc 14611 14612 14613 14614 14615 return 14616 14617 mask1 = np.zeros((3,3,3), dtype=bool).reshape(3,3,3) 14618 mask1[1,:,:] = True 14619 14620 mask2 = np.zeros((3,3,3), dtype=bool).reshape(3,3,3) 14621 mask2[1,1,1] = True 14622 14623 masks_mult(['dt', 'dx', 'dy'], mask1, ['dt', 'dx', 'dy'], mask2, ['dz', 'dy', 'dx'], (2, 3, 3), {'dt': 0}) 14628 slicevals = values[tuple(slcvalues)] 14629 14630 # Checking for consistency 14631 newvalslc = newvalues[tuple(newslices[0])] 14632 matsame = same_shape(slicevals, newvalslc, quitval=False) 14633 if not matsame: 14634 print errormsg 14635 print ' ' + fname + ": not coincident shapes of matrices !!" 14636 print ' shape of example of slice for new values:', newvalslc.shape 14637 print ' example of slice from the newvalues:', newslices[0] 14638 print ' shape of values:', values.shape 14639 print ' shape of slice from values to fill:', slicevals.shape 14640 print ' slice of values:', slcvalues 14641 print ' check dimensions and values provided ________' 14642 print ' * dimension names of values:', dimns 14643 print ' * dimensions of new values:', dimnsuse 14644 print ' * shape of new values:', shapeuse 14645 print ' * selected indices from values for non-coincident dimensions' 14646 printing_dictionary(nonusevaluesdims) 14647 quit(-1) 14648 14649 Nnewslices = len(newslices) 14650 for islc in range(Nnewslices): 14651 slc = newslices[islc] 14652 newvalues[tuple(slc)] = slicevals 14653 14654 return newvalues 14624 14655 14625 14656 #quit()
Note: See TracChangeset
for help on using the changeset viewer.