[2411] | 1 | # Python tools to manage netCDF files. |
---|
| 2 | # L. Fita, CIMA. Mrch 2019 |
---|
| 3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
| 4 | # |
---|
| 5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
| 6 | # This work is licendes under a Creative Commons |
---|
| 7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
| 8 | # |
---|
| 9 | ## Script for geometry calculations and operations as well as definition of different |
---|
| 10 | ### standard objects and shapes |
---|
| 11 | |
---|
| 12 | import numpy as np |
---|
| 13 | import matplotlib as mpl |
---|
| 14 | from mpl_toolkits.mplot3d import Axes3D |
---|
| 15 | import matplotlib.pyplot as plt |
---|
| 16 | |
---|
[2413] | 17 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
| 18 | |
---|
[2411] | 19 | ####### Contents: |
---|
| 20 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
[2413] | 21 | # dist_points: Function to provide the distance between two points |
---|
[2412] | 22 | # multi_rotate_2D: Function to rotate multiple vectors by a certain angle in the plain |
---|
[2411] | 23 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
| 24 | # cartesian coordinates over an sphere |
---|
[2412] | 25 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
| 26 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
| 27 | # certain angle in the plain |
---|
| 28 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
| 29 | # coordinates by a certain angle in the plain |
---|
[2411] | 30 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
| 31 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
| 32 | |
---|
[2412] | 33 | ## Shapes/objects |
---|
| 34 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
[2413] | 35 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
[2412] | 36 | |
---|
[2411] | 37 | ## Plotting |
---|
| 38 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
| 39 | # also drawn |
---|
| 40 | |
---|
| 41 | def deg_deci(angle): |
---|
| 42 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
| 43 | angle: list of [deg, minute, sec] to pass |
---|
| 44 | >>> deg_deci([41., 58., 34.]) |
---|
| 45 | 0.732621346072 |
---|
| 46 | """ |
---|
| 47 | fname = 'deg_deci' |
---|
| 48 | |
---|
| 49 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
| 50 | |
---|
| 51 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
| 52 | else: deg = deg*np.pi/180. |
---|
| 53 | |
---|
| 54 | return deg |
---|
| 55 | |
---|
| 56 | def position_sphere(radii, alpha, beta): |
---|
| 57 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
| 58 | coordinates over an sphere |
---|
| 59 | radii: radii of the sphere |
---|
| 60 | alpha: longitude of the point |
---|
| 61 | beta: latitude of the point |
---|
| 62 | >>> position_sphere(10., 30., 45.) |
---|
| 63 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
| 64 | """ |
---|
| 65 | fname = 'position_sphere' |
---|
| 66 | |
---|
| 67 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
| 68 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
| 69 | zpt = radii*np.sin(beta) |
---|
| 70 | |
---|
| 71 | return xpt, ypt, zpt |
---|
| 72 | |
---|
| 73 | def spheric_line(radii,lon,lat): |
---|
| 74 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
| 75 | over an 3D space |
---|
| 76 | radii: radius of the sphere |
---|
| 77 | lon: array of angles along longitudes |
---|
| 78 | lat: array of angles along latitudes |
---|
| 79 | """ |
---|
| 80 | fname = 'spheric_line' |
---|
| 81 | |
---|
| 82 | Lint = lon.shape[0] |
---|
| 83 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
| 84 | |
---|
| 85 | for iv in range(Lint): |
---|
| 86 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
| 87 | |
---|
| 88 | return coords |
---|
| 89 | |
---|
[2412] | 90 | def rotate_2D(vector, angle): |
---|
| 91 | """ Function to rotate a vector by a certain angle in the plain |
---|
| 92 | vector= vector to rotate [y, x] |
---|
| 93 | angle= angle to rotate [rad] |
---|
| 94 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
| 95 | [ 0.70710678 -0.70710678] |
---|
| 96 | """ |
---|
| 97 | fname = 'rotate_2D' |
---|
| 98 | |
---|
| 99 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
| 100 | |
---|
| 101 | rotmat[0,0] = np.cos(angle) |
---|
| 102 | rotmat[0,1] = -np.sin(angle) |
---|
| 103 | rotmat[1,0] = np.sin(angle) |
---|
| 104 | rotmat[1,1] = np.cos(angle) |
---|
| 105 | |
---|
| 106 | rotvector = np.zeros((2), dtype=np.float) |
---|
| 107 | |
---|
| 108 | vecv = np.zeros((2), dtype=np.float) |
---|
| 109 | |
---|
| 110 | # Unifying vector |
---|
| 111 | modvec = vector[0]**2+vector[1]**2 |
---|
| 112 | if modvec != 0: |
---|
| 113 | vecv[0] = vector[1]/modvec |
---|
| 114 | vecv[1] = vector[0]/modvec |
---|
| 115 | |
---|
| 116 | rotvec = np.matmul(rotmat, vecv) |
---|
| 117 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
| 118 | |
---|
| 119 | rotvector[0] = rotvec[1]*modvec |
---|
| 120 | rotvector[1] = rotvec[0]*modvec |
---|
| 121 | |
---|
| 122 | return rotvector |
---|
| 123 | |
---|
| 124 | def multi_rotate_2D(vectors, angle): |
---|
| 125 | """ Function to rotate multiple vectors by a certain angle in the plain |
---|
| 126 | line= matrix of vectors to rotate |
---|
| 127 | angle= angle to rotate [rad] |
---|
| 128 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
| 129 | >>> square[0,:] = [-0.5,-0.5] |
---|
| 130 | >>> square[1,:] = [0.5,-0.5] |
---|
| 131 | >>> square[2,:] = [0.5,0.5] |
---|
| 132 | >>> square[3,:] = [-0.5,0.5] |
---|
| 133 | >>> multi_rotate_2D(square, np.pi/4.) |
---|
| 134 | [[-0.70710678 0. ] |
---|
| 135 | [ 0. -0.70710678] |
---|
| 136 | [ 0.70710678 0. ] |
---|
| 137 | [ 0. 0.70710678]] |
---|
| 138 | """ |
---|
| 139 | fname = 'multi_rotate_2D' |
---|
| 140 | |
---|
| 141 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
| 142 | |
---|
| 143 | Nvecs = vectors.shape[0] |
---|
| 144 | for iv in range(Nvecs): |
---|
| 145 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
| 146 | |
---|
| 147 | return rotvecs |
---|
| 148 | |
---|
| 149 | def rotate_line2D(line, angle): |
---|
| 150 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
| 151 | angle in the plain |
---|
| 152 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
| 153 | angle= angle to rotate [rad] |
---|
| 154 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
| 155 | [[ 0. 0. ] |
---|
| 156 | [0.70710678 -0.70710678]] |
---|
| 157 | """ |
---|
| 158 | fname = 'rotate_2D' |
---|
| 159 | |
---|
| 160 | rotline = np.zeros((2,2), dtype=np.float) |
---|
| 161 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
| 162 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
| 163 | |
---|
| 164 | return rotline |
---|
| 165 | |
---|
| 166 | def rotate_lines2D(lines, angle): |
---|
| 167 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
| 168 | by a certain angle in the plain |
---|
| 169 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
| 170 | angle= angle to rotate [rad] |
---|
| 171 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
| 172 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
| 173 | >>> square[0,1,:] = [0.5,-0.5] |
---|
| 174 | >>> square[1,0,:] = [0.5,-0.5] |
---|
| 175 | >>> square[1,1,:] = [0.5,0.5] |
---|
| 176 | >>> square[2,0,:] = [0.5,0.5] |
---|
| 177 | >>> square[2,1,:] = [-0.5,0.5] |
---|
| 178 | >>> square[3,0,:] = [-0.5,0.5] |
---|
| 179 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
| 180 | >>> rotate_lines2D(square, np.pi/4.) |
---|
| 181 | [[[-0.70710678 0. ] |
---|
| 182 | [ 0. -0.70710678]] |
---|
| 183 | |
---|
| 184 | [[ 0. -0.70710678] |
---|
| 185 | [ 0.70710678 0. ]] |
---|
| 186 | |
---|
| 187 | [[ 0.70710678 0. ] |
---|
| 188 | [ 0. 0.70710678]] |
---|
| 189 | |
---|
| 190 | [[ 0. 0.70710678] |
---|
| 191 | [-0.70710678 0. ]]] |
---|
| 192 | """ |
---|
| 193 | fname = 'rotate_lines2D' |
---|
| 194 | |
---|
| 195 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
| 196 | |
---|
| 197 | Nlines = lines.shape[0] |
---|
| 198 | for il in range(Nlines): |
---|
| 199 | line = np.zeros((2,2), dtype=np.float) |
---|
| 200 | line[0,:] = lines[il,0,:] |
---|
| 201 | line[1,:] = lines[il,1,:] |
---|
| 202 | |
---|
| 203 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
| 204 | |
---|
| 205 | return rotlines |
---|
| 206 | |
---|
[2414] | 207 | def dist_points(ptA, ptB): |
---|
| 208 | """ Function to provide the distance between two points |
---|
| 209 | ptA: coordinates of the point A [yA, xA] |
---|
| 210 | ptB: coordinates of the point B [yB, xB] |
---|
| 211 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
| 212 | 2.82842712475 |
---|
| 213 | """ |
---|
| 214 | fname = 'dist_points' |
---|
| 215 | |
---|
| 216 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
| 217 | |
---|
| 218 | return dist |
---|
| 219 | |
---|
[2412] | 220 | ####### ###### ##### #### ### ## # |
---|
| 221 | # Shapes/objects |
---|
| 222 | |
---|
[2413] | 223 | def surface_sphere(radii,Npts): |
---|
| 224 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
| 225 | radii: radii of the sphere |
---|
| 226 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
| 227 | """ |
---|
| 228 | fname = 'surface_sphere' |
---|
| 229 | |
---|
| 230 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
| 231 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
| 232 | for ia in range(Npts): |
---|
| 233 | alpha = ia*2*np.pi/(Npts-1) |
---|
| 234 | for ib in range(Npts/2): |
---|
| 235 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
| 236 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
| 237 | for ib in range(Npts/2): |
---|
| 238 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
| 239 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
| 240 | |
---|
| 241 | return sphereup, spheredown |
---|
| 242 | |
---|
[2412] | 243 | def ellipse_polar(c, a, b, Nang=100): |
---|
| 244 | """ Function to determine an ellipse from its center and polar coordinates |
---|
| 245 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
| 246 | c= coordinates of the center |
---|
| 247 | a= distance major axis |
---|
| 248 | b= distance minor axis |
---|
| 249 | Nang= number of angles to use |
---|
| 250 | """ |
---|
| 251 | fname = 'ellipse_polar' |
---|
| 252 | |
---|
| 253 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
| 254 | |
---|
| 255 | dtheta = 2*np.pi/(Nang-1) |
---|
| 256 | |
---|
| 257 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
| 258 | for ia in range(Nang): |
---|
| 259 | theta = dtheta*ia |
---|
| 260 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
| 261 | x = rad*np.cos(theta) |
---|
| 262 | y = rad*np.sin(theta) |
---|
| 263 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
| 264 | |
---|
| 265 | return ellipse |
---|
| 266 | |
---|
[2413] | 267 | def hyperbola_polar(a, b, Nang=100): |
---|
| 268 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
| 269 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
| 270 | x^2/a^2 - y^2/b^2 = 1 |
---|
| 271 | a= x-parameter |
---|
| 272 | y= y-parameter |
---|
| 273 | Nang= number of angles to use |
---|
| 274 | DOES NOT WORK!!!! |
---|
| 275 | """ |
---|
| 276 | fname = 'hyperbola_polar' |
---|
[2412] | 277 | |
---|
[2413] | 278 | dtheta = 2.*np.pi/(Nang-1) |
---|
| 279 | |
---|
| 280 | # Positive branch |
---|
| 281 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
| 282 | for ia in range(Nang): |
---|
| 283 | theta = dtheta*ia |
---|
| 284 | x = a*np.cosh(theta) |
---|
| 285 | y = b*np.sinh(theta) |
---|
| 286 | hyperbola_p[ia,:] = [y,x] |
---|
| 287 | |
---|
| 288 | # Negative branch |
---|
| 289 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
| 290 | for ia in range(Nang): |
---|
| 291 | theta = dtheta*ia |
---|
| 292 | x = -a*np.cosh(theta) |
---|
| 293 | y = b*np.sinh(theta) |
---|
| 294 | hyperbola_n[ia,:] = [y,x] |
---|
| 295 | |
---|
| 296 | return hyperbola_p, hyperbola_n |
---|
| 297 | |
---|
| 298 | def circ_sec(ptA, ptB, radii, Nang=100): |
---|
| 299 | """ Function union of point A and B by a section of a circle |
---|
| 300 | ptA= coordinates od the point A [yA, xA] |
---|
| 301 | ptB= coordinates od the point B [yB, xB] |
---|
| 302 | radii= radi of the circle to use to unite the points |
---|
| 303 | Nang= amount of angles to use |
---|
| 304 | """ |
---|
| 305 | fname = 'circ_sec' |
---|
| 306 | |
---|
| 307 | distAB = dist_points(ptA,ptB) |
---|
| 308 | |
---|
| 309 | if distAB > radii: |
---|
| 310 | print errormsg |
---|
| 311 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
| 312 | "between points !!" |
---|
| 313 | print ' distance between points:', distAB |
---|
| 314 | quit(-1) |
---|
| 315 | |
---|
[2414] | 316 | # Coordinate increments |
---|
| 317 | dAB = np.abs(ptA-ptB) |
---|
[2413] | 318 | |
---|
[2414] | 319 | # angle of the circular section joining points |
---|
| 320 | tottheta = 2.*np.arcsin(distAB/2./radii) |
---|
| 321 | |
---|
| 322 | # center along coincident bisection of the union |
---|
| 323 | xcc = -radii |
---|
| 324 | ycc = 0. |
---|
| 325 | |
---|
| 326 | # Angle of the points |
---|
| 327 | pttheta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
| 328 | |
---|
| 329 | # rotating the position of the center |
---|
| 330 | rotang = np.pi/2.-pttheta |
---|
| 331 | |
---|
| 332 | newcc = rotate_line2D(np.array([[ycc,xcc], [0.,0.]]), rotang) |
---|
| 333 | print newcc |
---|
| 334 | |
---|
| 335 | quit() |
---|
| 336 | |
---|
[2413] | 337 | dtheta = np.abs(tottheta)/(Nang-1) |
---|
| 338 | if sign == 1: |
---|
| 339 | dtheta = dtheta*(-1.) |
---|
| 340 | |
---|
[2414] | 341 | print 'Lluis tottheta:', tottheta*180./np.pi, 'dtheta:', dtheta*180./np.pi, 'c:', xc,yc |
---|
| 342 | |
---|
[2413] | 343 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
| 344 | for ia in range(Nang): |
---|
| 345 | theta = dtheta*ia |
---|
| 346 | x = radii*np.cos(theta) |
---|
| 347 | y = radii*np.sin(theta) |
---|
| 348 | |
---|
[2414] | 349 | circ_sec[ia,:] = [y+yc,x+xc] |
---|
| 350 | print ia, 'Lluis xy:', x,y, 'circ', circ_sec[ia,:] |
---|
[2413] | 351 | |
---|
| 352 | return circ_sec |
---|
| 353 | |
---|
| 354 | # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html |
---|
| 355 | def zsailing_boat(length=10., beam=3., sternbp=0.5): |
---|
| 356 | """ Function to define an schematic boat from the z-plane |
---|
| 357 | length: length of the boat |
---|
| 358 | beam: beam of the boat |
---|
| 359 | sternbp: beam at stern as percentage of beam |
---|
| 360 | """ |
---|
| 361 | fname = 'zsailing_boat' |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | |
---|
| 365 | return boat |
---|
| 366 | |
---|
[2411] | 367 | ####### ####### ##### #### ### ## # |
---|
| 368 | # Plotting |
---|
| 369 | |
---|
| 370 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
| 371 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
| 372 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
| 373 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
| 374 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
| 375 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
| 376 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
| 377 | """ Function to plot an sphere and determine which standard lines will be also |
---|
| 378 | drawn |
---|
| 379 | iazm: azimut of the camera form the sphere |
---|
| 380 | iele: elevation of the camera form the sphere |
---|
| 381 | dist: distance of the camera form the sphere |
---|
| 382 | Npts: Resolution for the sphere |
---|
| 383 | radii: radius of the sphere |
---|
| 384 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
| 385 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
| 386 | drwxline: whether x-axis line should be drawn |
---|
| 387 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
| 388 | drwyline: whether y-axis line should be drawn |
---|
| 389 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
| 390 | drwzline: whether z-axis line should be drawn |
---|
| 391 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
| 392 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
| 393 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
| 394 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
| 395 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
| 396 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
| 397 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
| 398 | """ |
---|
| 399 | fname = 'plot_sphere' |
---|
| 400 | |
---|
| 401 | iazmrad = iazm*np.pi/180. |
---|
| 402 | ielerad = iele*np.pi/180. |
---|
| 403 | |
---|
| 404 | # 3D surface Sphere |
---|
| 405 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
| 406 | |
---|
| 407 | # greenwhich |
---|
| 408 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
| 409 | ia=np.pi-ielerad |
---|
| 410 | else: |
---|
| 411 | ia=0.-ielerad |
---|
| 412 | ea=ia+np.pi |
---|
| 413 | da = (ea-ia)/(Npts-1) |
---|
| 414 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 415 | alpha = np.zeros((Npts), dtype=np.float) |
---|
| 416 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
| 417 | ia=ea+0. |
---|
| 418 | ea=ia+np.pi |
---|
| 419 | da = (ea-ia)/(Npts-1) |
---|
| 420 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 421 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
| 422 | |
---|
| 423 | # Equator |
---|
| 424 | ia=np.pi-iazmrad/2. |
---|
| 425 | ea=ia+np.pi |
---|
| 426 | da = (ea-ia)/(Npts-1) |
---|
| 427 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 428 | beta = np.zeros((Npts), dtype=np.float) |
---|
| 429 | equatorc = spheric_line(radii,alpha,beta) |
---|
| 430 | ia=ea+0. |
---|
| 431 | ea=ia+np.pi |
---|
| 432 | da = (ea-ia)/(Npts-1) |
---|
| 433 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 434 | equatord = spheric_line(radii,alpha,beta) |
---|
| 435 | |
---|
| 436 | # 90 line |
---|
| 437 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
| 438 | ia=3.*np.pi/2. + ielerad |
---|
| 439 | else: |
---|
| 440 | ia=np.pi/2. - ielerad |
---|
| 441 | if ielerad < 0.: |
---|
| 442 | ia = ia + np.pi |
---|
| 443 | ea=ia+np.pi |
---|
| 444 | da = (ea-ia)/(Npts-1) |
---|
| 445 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 446 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
| 447 | xclinec = spheric_line(radii,alpha,beta) |
---|
| 448 | ia=ea+0. |
---|
| 449 | ea=ia+np.pi |
---|
| 450 | da = (ea-ia)/(Npts-1) |
---|
| 451 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
| 452 | xclined = spheric_line(radii,alpha,beta) |
---|
| 453 | |
---|
| 454 | # x line |
---|
| 455 | xline = np.zeros((2,3), dtype=np.float) |
---|
| 456 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
| 457 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
| 458 | |
---|
| 459 | # y line |
---|
| 460 | yline = np.zeros((2,3), dtype=np.float) |
---|
| 461 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
| 462 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
| 463 | |
---|
| 464 | # z line |
---|
| 465 | zline = np.zeros((2,3), dtype=np.float) |
---|
| 466 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
| 467 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
| 468 | |
---|
| 469 | fig = plt.figure() |
---|
| 470 | ax = fig.gca(projection='3d') |
---|
| 471 | |
---|
| 472 | # Sphere surface |
---|
| 473 | if drwsfc[0]: |
---|
| 474 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
| 475 | color=colsfc[0]) |
---|
| 476 | if drwsfc[1]: |
---|
| 477 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
| 478 | color=colsfc[1]) |
---|
| 479 | |
---|
| 480 | # greenwhich |
---|
| 481 | linev = linegw[0] |
---|
| 482 | if drwgreeenwhich[0]: |
---|
| 483 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
| 484 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
| 485 | linev = linegw[1] |
---|
| 486 | if drwgreeenwhich[1]: |
---|
| 487 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
| 488 | color=linev[1], linewidth=linev[2]) |
---|
| 489 | |
---|
| 490 | # Equator |
---|
| 491 | linev = lineeq[0] |
---|
| 492 | if drwequator[0]: |
---|
| 493 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
| 494 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
| 495 | linev = lineeq[1] |
---|
| 496 | if drwequator[1]: |
---|
| 497 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
| 498 | color=linev[1], linewidth=linev[2]) |
---|
| 499 | |
---|
| 500 | # 90line |
---|
| 501 | linev = linexc[0] |
---|
| 502 | if drwxcline[0]: |
---|
| 503 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
| 504 | linewidth=linev[2], label='90-line') |
---|
| 505 | linev = linexc[1] |
---|
| 506 | if drwxcline[1]: |
---|
| 507 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
| 508 | linewidth=linev[2]) |
---|
| 509 | |
---|
| 510 | # x line |
---|
| 511 | linev = linex |
---|
| 512 | if drwxline: |
---|
| 513 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
| 514 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') |
---|
| 515 | |
---|
| 516 | # y line |
---|
| 517 | linev = liney |
---|
| 518 | if drwyline: |
---|
| 519 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
| 520 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') |
---|
| 521 | |
---|
| 522 | # z line |
---|
| 523 | linev = linez |
---|
| 524 | if drwzline: |
---|
| 525 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
| 526 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') |
---|
| 527 | |
---|
| 528 | plt.legend() |
---|
| 529 | |
---|
| 530 | return fig, ax |
---|
| 531 | |
---|