1 | # Python tools to manage netCDF files. |
---|
2 | # L. Fita, CIMA. Mrch 2019 |
---|
3 | # More information at: http://www.xn--llusfb-5va.cat/python/PyNCplot |
---|
4 | # |
---|
5 | # pyNCplot and its component geometry_tools.py comes with ABSOLUTELY NO WARRANTY. |
---|
6 | # This work is licendes under a Creative Commons |
---|
7 | # Attribution-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-sa/4.0) |
---|
8 | # |
---|
9 | ## Script for geometry calculations and operations as well as definition of different |
---|
10 | ### standard objects and shapes |
---|
11 | |
---|
12 | import numpy as np |
---|
13 | import matplotlib as mpl |
---|
14 | from mpl_toolkits.mplot3d import Axes3D |
---|
15 | import matplotlib.pyplot as plt |
---|
16 | |
---|
17 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
18 | |
---|
19 | ####### Contents: |
---|
20 | # deg_deci: Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
21 | # dist_points: Function to provide the distance between two points |
---|
22 | # multi_rotate_2D: Function to rotate multiple vectors by a certain angle in the plain |
---|
23 | # position_sphere: Function to tranform fom a point in lon, lat deg coordinates to |
---|
24 | # cartesian coordinates over an sphere |
---|
25 | # rotate_2D: Function to rotate a vector by a certain angle in the plain |
---|
26 | # rotate_line2D: Function to rotate a line given by 2 pairs of x,y coordinates by a |
---|
27 | # certain angle in the plain |
---|
28 | # rotate_lines2D: Function to rotate multiple lines given by mulitple pars of x,y |
---|
29 | # coordinates by a certain angle in the plain |
---|
30 | # spheric_line: Function to transform a series of locations in lon, lat coordinates |
---|
31 | # to x,y,z over an 3D spaceFunction to provide coordinates of a line on a 3D space |
---|
32 | |
---|
33 | ## Shapes/objects |
---|
34 | # ellipse_polar: Function to determine an ellipse from its center and polar coordinates |
---|
35 | # surface_sphere: Function to provide an sphere as matrix of x,y,z coordinates |
---|
36 | |
---|
37 | ## Plotting |
---|
38 | # plot_sphere: Function to plot an sphere and determine which standard lines will be |
---|
39 | # also drawn |
---|
40 | |
---|
41 | def deg_deci(angle): |
---|
42 | """ Function to pass from degrees [deg, minute, sec] to decimal angles [rad] |
---|
43 | angle: list of [deg, minute, sec] to pass |
---|
44 | >>> deg_deci([41., 58., 34.]) |
---|
45 | 0.732621346072 |
---|
46 | """ |
---|
47 | fname = 'deg_deci' |
---|
48 | |
---|
49 | deg = np.abs(angle[0]) + np.abs(angle[1])/60. + np.abs(angle[2])/3600. |
---|
50 | |
---|
51 | if angle[0] < 0.: deg = -deg*np.pi/180. |
---|
52 | else: deg = deg*np.pi/180. |
---|
53 | |
---|
54 | return deg |
---|
55 | |
---|
56 | def position_sphere(radii, alpha, beta): |
---|
57 | """ Function to tranform fom a point in lon, lat deg coordinates to cartesian |
---|
58 | coordinates over an sphere |
---|
59 | radii: radii of the sphere |
---|
60 | alpha: longitude of the point |
---|
61 | beta: latitude of the point |
---|
62 | >>> position_sphere(10., 30., 45.) |
---|
63 | (0.81031678432964027, -5.1903473778327376, 8.5090352453411846 |
---|
64 | """ |
---|
65 | fname = 'position_sphere' |
---|
66 | |
---|
67 | xpt = radii*np.cos(beta)*np.cos(alpha) |
---|
68 | ypt = radii*np.cos(beta)*np.sin(alpha) |
---|
69 | zpt = radii*np.sin(beta) |
---|
70 | |
---|
71 | return xpt, ypt, zpt |
---|
72 | |
---|
73 | def spheric_line(radii,lon,lat): |
---|
74 | """ Function to transform a series of locations in lon, lat coordinates to x,y,z |
---|
75 | over an 3D space |
---|
76 | radii: radius of the sphere |
---|
77 | lon: array of angles along longitudes |
---|
78 | lat: array of angles along latitudes |
---|
79 | """ |
---|
80 | fname = 'spheric_line' |
---|
81 | |
---|
82 | Lint = lon.shape[0] |
---|
83 | coords = np.zeros((Lint,3), dtype=np.float) |
---|
84 | |
---|
85 | for iv in range(Lint): |
---|
86 | coords[iv,:] = position_sphere(radii, lon[iv], lat[iv]) |
---|
87 | |
---|
88 | return coords |
---|
89 | |
---|
90 | def rotate_2D(vector, angle): |
---|
91 | """ Function to rotate a vector by a certain angle in the plain |
---|
92 | vector= vector to rotate [y, x] |
---|
93 | angle= angle to rotate [rad] |
---|
94 | >>> rotate_2D(np.array([1.,0.]), np.pi/4.) |
---|
95 | [ 0.70710678 -0.70710678] |
---|
96 | """ |
---|
97 | fname = 'rotate_2D' |
---|
98 | |
---|
99 | rotmat = np.zeros((2,2), dtype=np.float) |
---|
100 | |
---|
101 | rotmat[0,0] = np.cos(angle) |
---|
102 | rotmat[0,1] = -np.sin(angle) |
---|
103 | rotmat[1,0] = np.sin(angle) |
---|
104 | rotmat[1,1] = np.cos(angle) |
---|
105 | |
---|
106 | rotvector = np.zeros((2), dtype=np.float) |
---|
107 | |
---|
108 | vecv = np.zeros((2), dtype=np.float) |
---|
109 | |
---|
110 | # Unifying vector |
---|
111 | modvec = vector[0]**2+vector[1]**2 |
---|
112 | if modvec != 0: |
---|
113 | vecv[0] = vector[1]/modvec |
---|
114 | vecv[1] = vector[0]/modvec |
---|
115 | |
---|
116 | rotvec = np.matmul(rotmat, vecv) |
---|
117 | rotvec = np.where(np.abs(rotvec) < 1.e-7, 0., rotvec) |
---|
118 | |
---|
119 | rotvector[0] = rotvec[1]*modvec |
---|
120 | rotvector[1] = rotvec[0]*modvec |
---|
121 | |
---|
122 | return rotvector |
---|
123 | |
---|
124 | def multi_rotate_2D(vectors, angle): |
---|
125 | """ Function to rotate multiple vectors by a certain angle in the plain |
---|
126 | line= matrix of vectors to rotate |
---|
127 | angle= angle to rotate [rad] |
---|
128 | >>> square = np.zeros((4,2), dtype=np.float) |
---|
129 | >>> square[0,:] = [-0.5,-0.5] |
---|
130 | >>> square[1,:] = [0.5,-0.5] |
---|
131 | >>> square[2,:] = [0.5,0.5] |
---|
132 | >>> square[3,:] = [-0.5,0.5] |
---|
133 | >>> multi_rotate_2D(square, np.pi/4.) |
---|
134 | [[-0.70710678 0. ] |
---|
135 | [ 0. -0.70710678] |
---|
136 | [ 0.70710678 0. ] |
---|
137 | [ 0. 0.70710678]] |
---|
138 | """ |
---|
139 | fname = 'multi_rotate_2D' |
---|
140 | |
---|
141 | rotvecs = np.zeros(vectors.shape, dtype=np.float) |
---|
142 | |
---|
143 | Nvecs = vectors.shape[0] |
---|
144 | for iv in range(Nvecs): |
---|
145 | rotvecs[iv,:] = rotate_2D(vectors[iv,:], angle) |
---|
146 | |
---|
147 | return rotvecs |
---|
148 | |
---|
149 | def rotate_line2D(line, angle): |
---|
150 | """ Function to rotate a line given by 2 pairs of x,y coordinates by a certain |
---|
151 | angle in the plain |
---|
152 | line= line to rotate as couple of points [[y0,x0], [y1,x1]] |
---|
153 | angle= angle to rotate [rad] |
---|
154 | >>> rotate_line2D(np.array([[0.,0.], [1.,0.]]), np.pi/4.) |
---|
155 | [[ 0. 0. ] |
---|
156 | [0.70710678 -0.70710678]] |
---|
157 | """ |
---|
158 | fname = 'rotate_2D' |
---|
159 | |
---|
160 | rotline = np.zeros((2,2), dtype=np.float) |
---|
161 | rotline[0,:] = rotate_2D(line[0,:], angle) |
---|
162 | rotline[1,:] = rotate_2D(line[1,:], angle) |
---|
163 | |
---|
164 | return rotline |
---|
165 | |
---|
166 | def rotate_lines2D(lines, angle): |
---|
167 | """ Function to rotate multiple lines given by mulitple pars of x,y coordinates |
---|
168 | by a certain angle in the plain |
---|
169 | line= matrix of N couples of points [N, [y0,x0], [y1,x1]] |
---|
170 | angle= angle to rotate [rad] |
---|
171 | >>> square = np.zeros((4,2,2), dtype=np.float) |
---|
172 | >>> square[0,0,:] = [-0.5,-0.5] |
---|
173 | >>> square[0,1,:] = [0.5,-0.5] |
---|
174 | >>> square[1,0,:] = [0.5,-0.5] |
---|
175 | >>> square[1,1,:] = [0.5,0.5] |
---|
176 | >>> square[2,0,:] = [0.5,0.5] |
---|
177 | >>> square[2,1,:] = [-0.5,0.5] |
---|
178 | >>> square[3,0,:] = [-0.5,0.5] |
---|
179 | >>> square[3,1,:] = [-0.5,-0.5] |
---|
180 | >>> rotate_lines2D(square, np.pi/4.) |
---|
181 | [[[-0.70710678 0. ] |
---|
182 | [ 0. -0.70710678]] |
---|
183 | |
---|
184 | [[ 0. -0.70710678] |
---|
185 | [ 0.70710678 0. ]] |
---|
186 | |
---|
187 | [[ 0.70710678 0. ] |
---|
188 | [ 0. 0.70710678]] |
---|
189 | |
---|
190 | [[ 0. 0.70710678] |
---|
191 | [-0.70710678 0. ]]] |
---|
192 | """ |
---|
193 | fname = 'rotate_lines2D' |
---|
194 | |
---|
195 | rotlines = np.zeros(lines.shape, dtype=np.float) |
---|
196 | |
---|
197 | Nlines = lines.shape[0] |
---|
198 | for il in range(Nlines): |
---|
199 | line = np.zeros((2,2), dtype=np.float) |
---|
200 | line[0,:] = lines[il,0,:] |
---|
201 | line[1,:] = lines[il,1,:] |
---|
202 | |
---|
203 | rotlines[il,:,:] = rotate_line2D(line, angle) |
---|
204 | |
---|
205 | return rotlines |
---|
206 | |
---|
207 | def dist_points(ptA, ptB): |
---|
208 | """ Function to provide the distance between two points |
---|
209 | ptA: coordinates of the point A [yA, xA] |
---|
210 | ptB: coordinates of the point B [yB, xB] |
---|
211 | >>> dist_points([1.,1.], [-1.,-1.]) |
---|
212 | 2.82842712475 |
---|
213 | """ |
---|
214 | fname = 'dist_points' |
---|
215 | |
---|
216 | dist = np.sqrt( (ptA[0]-ptB[0])**2 + (ptA[1]-ptB[1])**2) |
---|
217 | |
---|
218 | return dist |
---|
219 | |
---|
220 | ####### ###### ##### #### ### ## # |
---|
221 | # Shapes/objects |
---|
222 | |
---|
223 | def surface_sphere(radii,Npts): |
---|
224 | """ Function to provide an sphere as matrix of x,y,z coordinates |
---|
225 | radii: radii of the sphere |
---|
226 | Npts: number of points to discretisize longitues (half for latitudes) |
---|
227 | """ |
---|
228 | fname = 'surface_sphere' |
---|
229 | |
---|
230 | sphereup = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
231 | spheredown = np.zeros((3,Npts/2,Npts), dtype=np.float) |
---|
232 | for ia in range(Npts): |
---|
233 | alpha = ia*2*np.pi/(Npts-1) |
---|
234 | for ib in range(Npts/2): |
---|
235 | beta = ib*np.pi/(2.*(Npts/2-1)) |
---|
236 | sphereup[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
237 | for ib in range(Npts/2): |
---|
238 | beta = -ib*np.pi/(2.*(Npts/2-1)) |
---|
239 | spheredown[:,ib,ia] = position_sphere(radii, alpha, beta) |
---|
240 | |
---|
241 | return sphereup, spheredown |
---|
242 | |
---|
243 | def ellipse_polar(c, a, b, Nang=100): |
---|
244 | """ Function to determine an ellipse from its center and polar coordinates |
---|
245 | FROM: https://en.wikipedia.org/wiki/Ellipse |
---|
246 | c= coordinates of the center |
---|
247 | a= distance major axis |
---|
248 | b= distance minor axis |
---|
249 | Nang= number of angles to use |
---|
250 | """ |
---|
251 | fname = 'ellipse_polar' |
---|
252 | |
---|
253 | if np.mod(Nang,2) == 0: Nang=Nang+1 |
---|
254 | |
---|
255 | dtheta = 2*np.pi/(Nang-1) |
---|
256 | |
---|
257 | ellipse = np.zeros((Nang,2), dtype=np.float) |
---|
258 | for ia in range(Nang): |
---|
259 | theta = dtheta*ia |
---|
260 | rad = a*b/np.sqrt( (b*np.cos(theta))**2 + (a*np.sin(theta))**2 ) |
---|
261 | x = rad*np.cos(theta) |
---|
262 | y = rad*np.sin(theta) |
---|
263 | ellipse[ia,:] = [y+c[0],x+c[1]] |
---|
264 | |
---|
265 | return ellipse |
---|
266 | |
---|
267 | def hyperbola_polar(a, b, Nang=100): |
---|
268 | """ Fcuntion to determine an hyperbola in polar coordinates |
---|
269 | FROM: https://en.wikipedia.org/wiki/Hyperbola#Polar_coordinates |
---|
270 | x^2/a^2 - y^2/b^2 = 1 |
---|
271 | a= x-parameter |
---|
272 | y= y-parameter |
---|
273 | Nang= number of angles to use |
---|
274 | DOES NOT WORK!!!! |
---|
275 | """ |
---|
276 | fname = 'hyperbola_polar' |
---|
277 | |
---|
278 | dtheta = 2.*np.pi/(Nang-1) |
---|
279 | |
---|
280 | # Positive branch |
---|
281 | hyperbola_p = np.zeros((Nang,2), dtype=np.float) |
---|
282 | for ia in range(Nang): |
---|
283 | theta = dtheta*ia |
---|
284 | x = a*np.cosh(theta) |
---|
285 | y = b*np.sinh(theta) |
---|
286 | hyperbola_p[ia,:] = [y,x] |
---|
287 | |
---|
288 | # Negative branch |
---|
289 | hyperbola_n = np.zeros((Nang,2), dtype=np.float) |
---|
290 | for ia in range(Nang): |
---|
291 | theta = dtheta*ia |
---|
292 | x = -a*np.cosh(theta) |
---|
293 | y = b*np.sinh(theta) |
---|
294 | hyperbola_n[ia,:] = [y,x] |
---|
295 | |
---|
296 | return hyperbola_p, hyperbola_n |
---|
297 | |
---|
298 | def circ_sec(ptA, ptB, radii, Nang=100): |
---|
299 | """ Function union of point A and B by a section of a circle |
---|
300 | ptA= coordinates od the point A [yA, xA] |
---|
301 | ptB= coordinates od the point B [yB, xB] |
---|
302 | radii= radi of the circle to use to unite the points |
---|
303 | Nang= amount of angles to use |
---|
304 | """ |
---|
305 | fname = 'circ_sec' |
---|
306 | |
---|
307 | distAB = dist_points(ptA,ptB) |
---|
308 | |
---|
309 | if distAB > radii: |
---|
310 | print errormsg |
---|
311 | print ' ' + fname + ': radii=', radii, " too small for the distance " + \ |
---|
312 | "between points !!" |
---|
313 | print ' distance between points:', distAB |
---|
314 | quit(-1) |
---|
315 | |
---|
316 | # Coordinate increments |
---|
317 | dAB = np.abs(ptA-ptB) |
---|
318 | |
---|
319 | # angle of the circular section joining points |
---|
320 | tottheta = 2.*np.arcsin(distAB/2./radii) |
---|
321 | |
---|
322 | # center along coincident bisection of the union |
---|
323 | xcc = -radii |
---|
324 | ycc = 0. |
---|
325 | |
---|
326 | # Angle of the points |
---|
327 | pttheta = np.arctan2(ptB[0]-ptA[0],ptB[1]-ptA[1]) |
---|
328 | |
---|
329 | # rotating the position of the center |
---|
330 | rotang = np.pi/2.-pttheta |
---|
331 | |
---|
332 | newcc = rotate_line2D(np.array([[ycc,xcc], [0.,0.]]), rotang) |
---|
333 | print newcc |
---|
334 | |
---|
335 | quit() |
---|
336 | |
---|
337 | dtheta = np.abs(tottheta)/(Nang-1) |
---|
338 | if sign == 1: |
---|
339 | dtheta = dtheta*(-1.) |
---|
340 | |
---|
341 | print 'Lluis tottheta:', tottheta*180./np.pi, 'dtheta:', dtheta*180./np.pi, 'c:', xc,yc |
---|
342 | |
---|
343 | circ_sec = np.zeros((Nang,2), dtype=np.float) |
---|
344 | for ia in range(Nang): |
---|
345 | theta = dtheta*ia |
---|
346 | x = radii*np.cos(theta) |
---|
347 | y = radii*np.sin(theta) |
---|
348 | |
---|
349 | circ_sec[ia,:] = [y+yc,x+xc] |
---|
350 | print ia, 'Lluis xy:', x,y, 'circ', circ_sec[ia,:] |
---|
351 | |
---|
352 | return circ_sec |
---|
353 | |
---|
354 | # FROM: http://www.photographers1.com/Sailing/NauticalTerms&Nomenclature.html |
---|
355 | def zsailing_boat(length=10., beam=3., sternbp=0.5): |
---|
356 | """ Function to define an schematic boat from the z-plane |
---|
357 | length: length of the boat |
---|
358 | beam: beam of the boat |
---|
359 | sternbp: beam at stern as percentage of beam |
---|
360 | """ |
---|
361 | fname = 'zsailing_boat' |
---|
362 | |
---|
363 | |
---|
364 | |
---|
365 | return boat |
---|
366 | |
---|
367 | ####### ####### ##### #### ### ## # |
---|
368 | # Plotting |
---|
369 | |
---|
370 | def plot_sphere(iazm=-60., iele=30., dist=10., Npts=100, radii=10, \ |
---|
371 | drwsfc=[True,True], colsfc=['#AAAAAA','#646464'], \ |
---|
372 | drwxline = True, linex=[':','b',2.], drwyline = True, liney=[':','r',2.], \ |
---|
373 | drwzline = True, linez=['-.','g',2.], drwxcline=[True,True], \ |
---|
374 | linexc=[['-','#646400',1.],['--','#646400',1.]], \ |
---|
375 | drwequator=[True,True], lineeq=[['-','#AA00AA',1.],['--','#AA00AA',1.]], \ |
---|
376 | drwgreeenwhich=[True,True], linegw=[['-','k',1.],['--','k',1.]]): |
---|
377 | """ Function to plot an sphere and determine which standard lines will be also |
---|
378 | drawn |
---|
379 | iazm: azimut of the camera form the sphere |
---|
380 | iele: elevation of the camera form the sphere |
---|
381 | dist: distance of the camera form the sphere |
---|
382 | Npts: Resolution for the sphere |
---|
383 | radii: radius of the sphere |
---|
384 | drwsfc: whether 'up' and 'down' portions of the sphere should be drawn |
---|
385 | colsfc: colors of the surface of the sphere portions ['up', 'down'] |
---|
386 | drwxline: whether x-axis line should be drawn |
---|
387 | linex: properties of the x-axis line ['type', 'color', 'wdith'] |
---|
388 | drwyline: whether y-axis line should be drawn |
---|
389 | liney: properties of the y-axis line ['type', 'color', 'wdith'] |
---|
390 | drwzline: whether z-axis line should be drawn |
---|
391 | linez: properties of the z-axis line ['type', 'color', 'wdith'] |
---|
392 | drwequator: whether 'front' and 'back' portions of the Equator should be drawn |
---|
393 | lineeq: properties of the lines 'front' and 'back' of the Equator |
---|
394 | drwgreeenwhich: whether 'front', 'back' portions of Greenqhich should be drawn |
---|
395 | linegw: properties of the lines 'front' and 'back' Greenwhich |
---|
396 | drwxcline: whether 'front', 'back' 90 line (lon=90., lon=270.) should be drawn |
---|
397 | linexc: properties of the lines 'front' and 'back' for the 90 line |
---|
398 | """ |
---|
399 | fname = 'plot_sphere' |
---|
400 | |
---|
401 | iazmrad = iazm*np.pi/180. |
---|
402 | ielerad = iele*np.pi/180. |
---|
403 | |
---|
404 | # 3D surface Sphere |
---|
405 | sfcsphereu, sfcsphered = surface_sphere(radii,Npts) |
---|
406 | |
---|
407 | # greenwhich |
---|
408 | if iazmrad > np.pi/2. and iazmrad < 3.*np.pi/2.: |
---|
409 | ia=np.pi-ielerad |
---|
410 | else: |
---|
411 | ia=0.-ielerad |
---|
412 | ea=ia+np.pi |
---|
413 | da = (ea-ia)/(Npts-1) |
---|
414 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
415 | alpha = np.zeros((Npts), dtype=np.float) |
---|
416 | greenwhichc = spheric_line(radii,alpha,beta) |
---|
417 | ia=ea+0. |
---|
418 | ea=ia+np.pi |
---|
419 | da = (ea-ia)/(Npts-1) |
---|
420 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
421 | greenwhichd = spheric_line(radii,alpha,beta) |
---|
422 | |
---|
423 | # Equator |
---|
424 | ia=np.pi-iazmrad/2. |
---|
425 | ea=ia+np.pi |
---|
426 | da = (ea-ia)/(Npts-1) |
---|
427 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
428 | beta = np.zeros((Npts), dtype=np.float) |
---|
429 | equatorc = spheric_line(radii,alpha,beta) |
---|
430 | ia=ea+0. |
---|
431 | ea=ia+np.pi |
---|
432 | da = (ea-ia)/(Npts-1) |
---|
433 | alpha = np.arange(ia,ea+da,da)[0:Npts] |
---|
434 | equatord = spheric_line(radii,alpha,beta) |
---|
435 | |
---|
436 | # 90 line |
---|
437 | if iazmrad > np.pi and iazmrad < 2.*np.pi: |
---|
438 | ia=3.*np.pi/2. + ielerad |
---|
439 | else: |
---|
440 | ia=np.pi/2. - ielerad |
---|
441 | if ielerad < 0.: |
---|
442 | ia = ia + np.pi |
---|
443 | ea=ia+np.pi |
---|
444 | da = (ea-ia)/(Npts-1) |
---|
445 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
446 | alpha = np.ones((Npts), dtype=np.float)*np.pi/2. |
---|
447 | xclinec = spheric_line(radii,alpha,beta) |
---|
448 | ia=ea+0. |
---|
449 | ea=ia+np.pi |
---|
450 | da = (ea-ia)/(Npts-1) |
---|
451 | beta = np.arange(ia,ea+da,da)[0:Npts] |
---|
452 | xclined = spheric_line(radii,alpha,beta) |
---|
453 | |
---|
454 | # x line |
---|
455 | xline = np.zeros((2,3), dtype=np.float) |
---|
456 | xline[0,:] = position_sphere(radii, 0., 0.) |
---|
457 | xline[1,:] = position_sphere(radii, np.pi, 0.) |
---|
458 | |
---|
459 | # y line |
---|
460 | yline = np.zeros((2,3), dtype=np.float) |
---|
461 | yline[0,:] = position_sphere(radii, np.pi/2., 0.) |
---|
462 | yline[1,:] = position_sphere(radii, 3*np.pi/2., 0.) |
---|
463 | |
---|
464 | # z line |
---|
465 | zline = np.zeros((2,3), dtype=np.float) |
---|
466 | zline[0,:] = position_sphere(radii, 0., np.pi/2.) |
---|
467 | zline[1,:] = position_sphere(radii, 0., -np.pi/2.) |
---|
468 | |
---|
469 | fig = plt.figure() |
---|
470 | ax = fig.gca(projection='3d') |
---|
471 | |
---|
472 | # Sphere surface |
---|
473 | if drwsfc[0]: |
---|
474 | ax.plot_surface(sfcsphereu[0,:,:], sfcsphereu[1,:,:], sfcsphereu[2,:,:], \ |
---|
475 | color=colsfc[0]) |
---|
476 | if drwsfc[1]: |
---|
477 | ax.plot_surface(sfcsphered[0,:,:], sfcsphered[1,:,:], sfcsphered[2,:,:], \ |
---|
478 | color=colsfc[1]) |
---|
479 | |
---|
480 | # greenwhich |
---|
481 | linev = linegw[0] |
---|
482 | if drwgreeenwhich[0]: |
---|
483 | ax.plot(greenwhichc[:,0], greenwhichc[:,1], greenwhichc[:,2], linev[0], \ |
---|
484 | color=linev[1], linewidth=linev[2], label='Greenwich') |
---|
485 | linev = linegw[1] |
---|
486 | if drwgreeenwhich[1]: |
---|
487 | ax.plot(greenwhichd[:,0], greenwhichd[:,1], greenwhichd[:,2], linev[0], \ |
---|
488 | color=linev[1], linewidth=linev[2]) |
---|
489 | |
---|
490 | # Equator |
---|
491 | linev = lineeq[0] |
---|
492 | if drwequator[0]: |
---|
493 | ax.plot(equatorc[:,0], equatorc[:,1], equatorc[:,2], linev[0], \ |
---|
494 | color=linev[1], linewidth=linev[2], label='Equator') |
---|
495 | linev = lineeq[1] |
---|
496 | if drwequator[1]: |
---|
497 | ax.plot(equatord[:,0], equatord[:,1], equatord[:,2], linev[0], \ |
---|
498 | color=linev[1], linewidth=linev[2]) |
---|
499 | |
---|
500 | # 90line |
---|
501 | linev = linexc[0] |
---|
502 | if drwxcline[0]: |
---|
503 | ax.plot(xclinec[:,0], xclinec[:,1], xclinec[:,2], linev[0], color=linev[1], \ |
---|
504 | linewidth=linev[2], label='90-line') |
---|
505 | linev = linexc[1] |
---|
506 | if drwxcline[1]: |
---|
507 | ax.plot(xclined[:,0], xclined[:,1], xclined[:,2], linev[0], color=linev[1], \ |
---|
508 | linewidth=linev[2]) |
---|
509 | |
---|
510 | # x line |
---|
511 | linev = linex |
---|
512 | if drwxline: |
---|
513 | ax.plot([xline[0,0],xline[1,0]], [xline[0,1],xline[1,1]], \ |
---|
514 | [xline[0,2],xline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='xline') |
---|
515 | |
---|
516 | # y line |
---|
517 | linev = liney |
---|
518 | if drwyline: |
---|
519 | ax.plot([yline[0,0],yline[1,0]], [yline[0,1],yline[1,1]], \ |
---|
520 | [yline[0,2],yline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='yline') |
---|
521 | |
---|
522 | # z line |
---|
523 | linev = linez |
---|
524 | if drwzline: |
---|
525 | ax.plot([zline[0,0],zline[1,0]], [zline[0,1],zline[1,1]], \ |
---|
526 | [zline[0,2],zline[1,2]], linev[0], color=linev[1], linewidth=linev[2], label='zline') |
---|
527 | |
---|
528 | plt.legend() |
---|
529 | |
---|
530 | return fig, ax |
---|
531 | |
---|