[1675] | 1 | # Tools for the compute of diagnostics |
---|
| 2 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina |
---|
| 3 | |
---|
| 4 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
| 5 | # compute_accum: Function to compute the accumulation of a variable |
---|
| 6 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
| 7 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 8 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
| 9 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
| 10 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
| 11 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
| 12 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
| 13 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
| 14 | # compute_prw: Function to compute water vapour path (prw) |
---|
| 15 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
| 16 | # compute_td: Function to compute the dew point temperature |
---|
| 17 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
[1687] | 18 | # C_diagnostic: Class to compute generic variables |
---|
[1675] | 19 | # compute_wds: Function to compute the wind direction |
---|
| 20 | # compute_wss: Function to compute the wind speed |
---|
| 21 | # compute_WRFta: Function to compute WRF air temperature |
---|
| 22 | # compute_WRFtd: Function to compute WRF dew-point air temperature |
---|
[1687] | 23 | # compute_WRFua: Function to compute geographical rotated WRF x-wind |
---|
| 24 | # compute_WRFva: Function to compute geographical rotated WRF y-wind |
---|
[1675] | 25 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
[1687] | 26 | # compute_WRFuas: Function to compute geographical rotated WRF 2-meter x-wind |
---|
| 27 | # compute_WRFvas: Function to compute geographical rotated WRF 2-meter y-wind |
---|
[1675] | 28 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
| 29 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
| 30 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
| 31 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
[1687] | 32 | # W_diagnostic: Class to compute WRF diagnostics variables |
---|
[1675] | 33 | |
---|
| 34 | # Others just providing variable values |
---|
| 35 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
| 36 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
| 37 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
[1685] | 38 | # var_td: Function to compute dew-point air temperature from temperature and pressure values |
---|
[1675] | 39 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
| 40 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
[1687] | 41 | # var_wd: Function to compute the wind direction |
---|
| 42 | # var_wd: Function to compute the wind speed |
---|
[1675] | 43 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
| 44 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
| 45 | |
---|
| 46 | import numpy as np |
---|
| 47 | from netCDF4 import Dataset as NetCDFFile |
---|
| 48 | import os |
---|
| 49 | import re |
---|
| 50 | import nc_var_tools as ncvar |
---|
| 51 | import generic_tools as gen |
---|
| 52 | import datetime as dtime |
---|
| 53 | import module_ForDiag as fdin |
---|
| 54 | import module_ForDef as fdef |
---|
| 55 | |
---|
| 56 | main = 'diag_tools.py' |
---|
| 57 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
| 58 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
| 59 | |
---|
| 60 | # Constants |
---|
| 61 | grav = fdef.module_definitions.grav |
---|
| 62 | |
---|
[1687] | 63 | # Available WRFiag |
---|
| 64 | Wavailablediags = ['p', 'ta', 'td', 'ua', 'va', 'uas', 'vas', 'wd', 'ws', 'zg'] |
---|
| 65 | |
---|
| 66 | # Available General diagnostics |
---|
| 67 | Cavailablediags = ['td', 'wd', 'ws'] |
---|
| 68 | |
---|
[1675] | 69 | # Gneral information |
---|
| 70 | ## |
---|
| 71 | def reduce_spaces(string): |
---|
| 72 | """ Function to give words of a line of text removing any extra space |
---|
| 73 | """ |
---|
| 74 | values = string.replace('\n','').split(' ') |
---|
| 75 | vals = [] |
---|
| 76 | for val in values: |
---|
| 77 | if len(val) > 0: |
---|
| 78 | vals.append(val) |
---|
| 79 | |
---|
| 80 | return vals |
---|
| 81 | |
---|
| 82 | def variable_combo(varn,combofile): |
---|
| 83 | """ Function to provide variables combination from a given variable name |
---|
| 84 | varn= name of the variable |
---|
| 85 | combofile= ASCII file with the combination of variables |
---|
| 86 | [varn] [combo] |
---|
| 87 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
| 88 | [WRFdt] to get WRF time-step (from general attributes) |
---|
| 89 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
| 90 | deaccum@RAINNC@XTIME@prnc |
---|
| 91 | """ |
---|
| 92 | fname = 'variable_combo' |
---|
| 93 | |
---|
| 94 | if varn == 'h': |
---|
| 95 | print fname + '_____________________________________________________________' |
---|
| 96 | print variable_combo.__doc__ |
---|
| 97 | quit() |
---|
| 98 | |
---|
| 99 | if not os.path.isfile(combofile): |
---|
| 100 | print errormsg |
---|
| 101 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
| 102 | "' does not exist!!" |
---|
| 103 | quit(-1) |
---|
| 104 | |
---|
| 105 | objf = open(combofile, 'r') |
---|
| 106 | |
---|
| 107 | found = False |
---|
| 108 | for line in objf: |
---|
| 109 | linevals = reduce_spaces(line) |
---|
| 110 | varnf = linevals[0] |
---|
| 111 | combo = linevals[1].replace('\n','') |
---|
| 112 | if varn == varnf: |
---|
| 113 | found = True |
---|
| 114 | break |
---|
| 115 | |
---|
| 116 | if not found: |
---|
| 117 | print errormsg |
---|
| 118 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
| 119 | "' !!" |
---|
| 120 | combo='ERROR' |
---|
| 121 | |
---|
| 122 | objf.close() |
---|
| 123 | |
---|
| 124 | return combo |
---|
| 125 | |
---|
| 126 | # Mathematical operators |
---|
| 127 | ## |
---|
| 128 | def compute_accum(varv, dimns, dimvns): |
---|
| 129 | """ Function to compute the accumulation of a variable |
---|
| 130 | compute_accum(varv, dimnames, dimvns) |
---|
| 131 | [varv]= values to accum (assuming [t,]) |
---|
| 132 | [dimns]= list of the name of the dimensions of the [varv] |
---|
| 133 | [dimvns]= list of the name of the variables with the values of the |
---|
| 134 | dimensions of [varv] |
---|
| 135 | """ |
---|
| 136 | fname = 'compute_accum' |
---|
| 137 | |
---|
| 138 | deacdims = dimns[:] |
---|
| 139 | deacvdims = dimvns[:] |
---|
| 140 | |
---|
| 141 | slicei = [] |
---|
| 142 | slicee = [] |
---|
| 143 | |
---|
| 144 | Ndims = len(varv.shape) |
---|
| 145 | for iid in range(0,Ndims): |
---|
| 146 | slicei.append(slice(0,varv.shape[iid])) |
---|
| 147 | slicee.append(slice(0,varv.shape[iid])) |
---|
| 148 | |
---|
| 149 | slicee[0] = np.arange(varv.shape[0]) |
---|
| 150 | slicei[0] = np.arange(varv.shape[0]) |
---|
| 151 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
| 152 | |
---|
| 153 | vari = varv[tuple(slicei)] |
---|
| 154 | vare = varv[tuple(slicee)] |
---|
| 155 | |
---|
| 156 | ac = vari*0. |
---|
| 157 | for it in range(1,varv.shape[0]): |
---|
| 158 | ac[it,] = ac[it-1,] + vare[it,] |
---|
| 159 | |
---|
| 160 | return ac, deacdims, deacvdims |
---|
| 161 | |
---|
| 162 | def compute_deaccum(varv, dimns, dimvns): |
---|
| 163 | """ Function to compute the deaccumulation of a variable |
---|
| 164 | compute_deaccum(varv, dimnames, dimvns) |
---|
| 165 | [varv]= values to deaccum (assuming [t,]) |
---|
| 166 | [dimns]= list of the name of the dimensions of the [varv] |
---|
| 167 | [dimvns]= list of the name of the variables with the values of the |
---|
| 168 | dimensions of [varv] |
---|
| 169 | """ |
---|
| 170 | fname = 'compute_deaccum' |
---|
| 171 | |
---|
| 172 | deacdims = dimns[:] |
---|
| 173 | deacvdims = dimvns[:] |
---|
| 174 | |
---|
| 175 | slicei = [] |
---|
| 176 | slicee = [] |
---|
| 177 | |
---|
| 178 | Ndims = len(varv.shape) |
---|
| 179 | for iid in range(0,Ndims): |
---|
| 180 | slicei.append(slice(0,varv.shape[iid])) |
---|
| 181 | slicee.append(slice(0,varv.shape[iid])) |
---|
| 182 | |
---|
| 183 | slicee[0] = np.arange(varv.shape[0]) |
---|
| 184 | slicei[0] = np.arange(varv.shape[0]) |
---|
| 185 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
| 186 | |
---|
| 187 | vari = varv[tuple(slicei)] |
---|
| 188 | vare = varv[tuple(slicee)] |
---|
| 189 | |
---|
| 190 | deac = vare - vari |
---|
| 191 | |
---|
| 192 | return deac, deacdims, deacvdims |
---|
| 193 | |
---|
| 194 | def derivate_centered(var,dim,dimv): |
---|
| 195 | """ Function to compute the centered derivate of a given field |
---|
| 196 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
| 197 | [var]= variable |
---|
| 198 | [dim]= which dimension to compute the derivate |
---|
| 199 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
| 200 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
| 201 | [[ 0. 1. 2. 0.] |
---|
| 202 | [ 0. 5. 6. 0.] |
---|
| 203 | [ 0. 9. 10. 0.] |
---|
| 204 | [ 0. 13. 14. 0.]] |
---|
| 205 | """ |
---|
| 206 | |
---|
| 207 | fname = 'derivate_centered' |
---|
| 208 | |
---|
| 209 | vark = var.dtype |
---|
| 210 | |
---|
| 211 | if hasattr(dimv, "__len__"): |
---|
| 212 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
| 213 | if len(var.shape) != len(dimv.shape): |
---|
| 214 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
| 215 | if len(var.shape) - len(dimv.shape) == 1: |
---|
| 216 | for iz in range(var.shape[0]): |
---|
| 217 | dimvals[iz,] = dimv |
---|
| 218 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
| 219 | for it in range(var.shape[0]): |
---|
| 220 | for iz in range(var.shape[1]): |
---|
| 221 | dimvals[it,iz,] = dimv |
---|
| 222 | else: |
---|
| 223 | print errormsg |
---|
| 224 | print ' ' + fname + ': dimension difference between variable', \ |
---|
| 225 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
| 226 | ' not ready !!!' |
---|
| 227 | quit(-1) |
---|
| 228 | else: |
---|
| 229 | dimvals = dimv |
---|
| 230 | else: |
---|
| 231 | # dimension values are identical everywhere! |
---|
| 232 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
| 233 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
| 234 | |
---|
| 235 | derivate = np.zeros((var.shape), dtype=vark) |
---|
| 236 | if dim > len(var.shape) - 1: |
---|
| 237 | print errormsg |
---|
| 238 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
| 239 | 'shape:', var.shape,'!!!' |
---|
| 240 | quit(-1) |
---|
| 241 | |
---|
| 242 | slicebef = [] |
---|
| 243 | sliceaft = [] |
---|
| 244 | sliceder = [] |
---|
| 245 | |
---|
| 246 | for id in range(len(var.shape)): |
---|
| 247 | if id == dim: |
---|
| 248 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
| 249 | sliceaft.append(slice(2,var.shape[id])) |
---|
| 250 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
| 251 | else: |
---|
| 252 | slicebef.append(slice(0,var.shape[id])) |
---|
| 253 | sliceaft.append(slice(0,var.shape[id])) |
---|
| 254 | sliceder.append(slice(0,var.shape[id])) |
---|
| 255 | |
---|
| 256 | if hasattr(dimv, "__len__"): |
---|
| 257 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
| 258 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
| 259 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
| 260 | else: |
---|
| 261 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
| 262 | (2.*dimv) |
---|
| 263 | |
---|
| 264 | # print 'before________' |
---|
| 265 | # print var[tuple(slicebef)] |
---|
| 266 | |
---|
| 267 | # print 'after________' |
---|
| 268 | # print var[tuple(sliceaft)] |
---|
| 269 | |
---|
| 270 | return derivate |
---|
| 271 | |
---|
| 272 | def rotational_z(Vx,Vy,pos): |
---|
| 273 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
| 274 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
| 275 | [Vx]= Variable component x |
---|
| 276 | [Vy]= Variable component y |
---|
| 277 | [pos]= poisition of the grid points |
---|
| 278 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
| 279 | [[ 0. 1. 2. 0.] |
---|
| 280 | [ -4. 0. 0. -7.] |
---|
| 281 | [ -8. 0. 0. -11.] |
---|
| 282 | [ 0. 13. 14. 0.]] |
---|
| 283 | """ |
---|
| 284 | |
---|
| 285 | fname = 'rotational_z' |
---|
| 286 | |
---|
| 287 | ndims = len(Vx.shape) |
---|
| 288 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
| 289 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
| 290 | |
---|
| 291 | rot = rot1 - rot2 |
---|
| 292 | |
---|
| 293 | return rot |
---|
| 294 | |
---|
| 295 | # Diagnostics |
---|
| 296 | ## |
---|
| 297 | |
---|
| 298 | def var_clt(cfra): |
---|
| 299 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 300 | LMDZ using 1D vertical column values |
---|
| 301 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 302 | """ |
---|
| 303 | ZEPSEC=1.0E-12 |
---|
| 304 | |
---|
| 305 | fname = 'var_clt' |
---|
| 306 | |
---|
| 307 | zclear = 1. |
---|
| 308 | zcloud = 0. |
---|
| 309 | |
---|
| 310 | dz = cfra.shape[0] |
---|
| 311 | for iz in range(dz): |
---|
| 312 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
| 313 | clt = 1. - zclear |
---|
| 314 | zcloud = cfra[iz] |
---|
| 315 | |
---|
| 316 | return clt |
---|
| 317 | |
---|
| 318 | def compute_clt(cldfra, dimns, dimvns): |
---|
| 319 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 320 | LMDZ |
---|
| 321 | compute_clt(cldfra, dimnames) |
---|
| 322 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 323 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 324 | [dimvns]= list of the name of the variables with the values of the |
---|
| 325 | dimensions of [cldfra] |
---|
| 326 | """ |
---|
| 327 | fname = 'compute_clt' |
---|
| 328 | |
---|
| 329 | cltdims = dimns[:] |
---|
| 330 | cltvdims = dimvns[:] |
---|
| 331 | |
---|
| 332 | if len(cldfra.shape) == 4: |
---|
| 333 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
| 334 | dtype=np.float) |
---|
| 335 | dx = cldfra.shape[3] |
---|
| 336 | dy = cldfra.shape[2] |
---|
| 337 | dz = cldfra.shape[1] |
---|
| 338 | dt = cldfra.shape[0] |
---|
| 339 | cltdims.pop(1) |
---|
| 340 | cltvdims.pop(1) |
---|
| 341 | |
---|
| 342 | for it in range(dt): |
---|
| 343 | for ix in range(dx): |
---|
| 344 | for iy in range(dy): |
---|
| 345 | zclear = 1. |
---|
| 346 | zcloud = 0. |
---|
| 347 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 348 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
| 349 | |
---|
| 350 | else: |
---|
| 351 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
| 352 | dx = cldfra.shape[2] |
---|
| 353 | dy = cldfra.shape[1] |
---|
| 354 | dy = cldfra.shape[0] |
---|
| 355 | cltdims.pop(0) |
---|
| 356 | cltvdims.pop(0) |
---|
| 357 | for ix in range(dx): |
---|
| 358 | for iy in range(dy): |
---|
| 359 | zclear = 1. |
---|
| 360 | zcloud = 0. |
---|
| 361 | gen.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 362 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
| 363 | |
---|
| 364 | return clt, cltdims, cltvdims |
---|
| 365 | |
---|
| 366 | def Forcompute_clt(cldfra, dimns, dimvns): |
---|
| 367 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
| 368 | LMDZ via a Fortran module |
---|
| 369 | compute_clt(cldfra, dimnames) |
---|
| 370 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 371 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 372 | [dimvns]= list of the name of the variables with the values of the |
---|
| 373 | dimensions of [cldfra] |
---|
| 374 | """ |
---|
| 375 | fname = 'Forcompute_clt' |
---|
| 376 | |
---|
| 377 | cltdims = dimns[:] |
---|
| 378 | cltvdims = dimvns[:] |
---|
| 379 | |
---|
| 380 | |
---|
| 381 | if len(cldfra.shape) == 4: |
---|
| 382 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
| 383 | dtype=np.float) |
---|
| 384 | dx = cldfra.shape[3] |
---|
| 385 | dy = cldfra.shape[2] |
---|
| 386 | dz = cldfra.shape[1] |
---|
| 387 | dt = cldfra.shape[0] |
---|
| 388 | cltdims.pop(1) |
---|
| 389 | cltvdims.pop(1) |
---|
| 390 | |
---|
| 391 | clt = fdin.module_fordiagnostics.compute_clt4d2(cldfra[:]) |
---|
| 392 | |
---|
| 393 | else: |
---|
| 394 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
| 395 | dx = cldfra.shape[2] |
---|
| 396 | dy = cldfra.shape[1] |
---|
| 397 | dy = cldfra.shape[0] |
---|
| 398 | cltdims.pop(0) |
---|
| 399 | cltvdims.pop(0) |
---|
| 400 | |
---|
| 401 | clt = fdin.module_fordiagnostics.compute_clt3d1(cldfra[:]) |
---|
| 402 | |
---|
| 403 | return clt, cltdims, cltvdims |
---|
| 404 | |
---|
| 405 | def var_cllmh(cfra, p): |
---|
| 406 | """ Fcuntion to compute cllmh on a 1D column |
---|
| 407 | """ |
---|
| 408 | |
---|
| 409 | fname = 'var_cllmh' |
---|
| 410 | |
---|
| 411 | ZEPSEC =1.0E-12 |
---|
| 412 | prmhc = 440.*100. |
---|
| 413 | prmlc = 680.*100. |
---|
| 414 | |
---|
| 415 | zclearl = 1. |
---|
| 416 | zcloudl = 0. |
---|
| 417 | zclearm = 1. |
---|
| 418 | zcloudm = 0. |
---|
| 419 | zclearh = 1. |
---|
| 420 | zcloudh = 0. |
---|
| 421 | |
---|
| 422 | dvz = cfra.shape[0] |
---|
| 423 | |
---|
| 424 | cllmh = np.ones((3), dtype=np.float) |
---|
| 425 | |
---|
| 426 | for iz in range(dvz): |
---|
| 427 | if p[iz] < prmhc: |
---|
| 428 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
| 429 | np.min([zcloudh,1.-ZEPSEC])) |
---|
| 430 | zcloudh = cfra[iz] |
---|
| 431 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
| 432 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
| 433 | np.min([zcloudm,1.-ZEPSEC])) |
---|
| 434 | zcloudm = cfra[iz] |
---|
| 435 | elif p[iz] >= prmlc: |
---|
| 436 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
| 437 | np.min([zcloudl,1.-ZEPSEC])) |
---|
| 438 | zcloudl = cfra[iz] |
---|
| 439 | |
---|
| 440 | cllmh = 1.- cllmh |
---|
| 441 | |
---|
| 442 | return cllmh |
---|
| 443 | |
---|
| 444 | def Forcompute_cllmh(cldfra, pres, dimns, dimvns): |
---|
| 445 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
| 446 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 447 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 448 | [pres] = pressure field |
---|
| 449 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 450 | [dimvns]= list of the name of the variables with the values of the |
---|
| 451 | dimensions of [cldfra] |
---|
| 452 | """ |
---|
| 453 | fname = 'Forcompute_cllmh' |
---|
| 454 | |
---|
| 455 | cllmhdims = dimns[:] |
---|
| 456 | cllmhvdims = dimvns[:] |
---|
| 457 | |
---|
| 458 | if len(cldfra.shape) == 4: |
---|
| 459 | dx = cldfra.shape[3] |
---|
| 460 | dy = cldfra.shape[2] |
---|
| 461 | dz = cldfra.shape[1] |
---|
| 462 | dt = cldfra.shape[0] |
---|
| 463 | cllmhdims.pop(1) |
---|
| 464 | cllmhvdims.pop(1) |
---|
| 465 | |
---|
| 466 | cllmh = fdin.module_fordiagnostics.compute_cllmh4d2(cldfra[:], pres[:]) |
---|
| 467 | |
---|
| 468 | else: |
---|
| 469 | dx = cldfra.shape[2] |
---|
| 470 | dy = cldfra.shape[1] |
---|
| 471 | dz = cldfra.shape[0] |
---|
| 472 | cllmhdims.pop(0) |
---|
| 473 | cllmhvdims.pop(0) |
---|
| 474 | |
---|
| 475 | cllmh = fdin.module_fordiagnostics.compute_cllmh3d1(cldfra[:], pres[:]) |
---|
| 476 | |
---|
| 477 | return cllmh, cllmhdims, cllmhvdims |
---|
| 478 | |
---|
| 479 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
| 480 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
| 481 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
| 482 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
| 483 | [pres] = pressure field |
---|
| 484 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 485 | [dimvns]= list of the name of the variables with the values of the |
---|
| 486 | dimensions of [cldfra] |
---|
| 487 | """ |
---|
| 488 | fname = 'compute_cllmh' |
---|
| 489 | |
---|
| 490 | cllmhdims = dimns[:] |
---|
| 491 | cllmhvdims = dimvns[:] |
---|
| 492 | |
---|
| 493 | if len(cldfra.shape) == 4: |
---|
| 494 | dx = cldfra.shape[3] |
---|
| 495 | dy = cldfra.shape[2] |
---|
| 496 | dz = cldfra.shape[1] |
---|
| 497 | dt = cldfra.shape[0] |
---|
| 498 | cllmhdims.pop(1) |
---|
| 499 | cllmhvdims.pop(1) |
---|
| 500 | |
---|
| 501 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
| 502 | |
---|
| 503 | for it in range(dt): |
---|
| 504 | for ix in range(dx): |
---|
| 505 | for iy in range(dy): |
---|
| 506 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 507 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
| 508 | |
---|
| 509 | else: |
---|
| 510 | dx = cldfra.shape[2] |
---|
| 511 | dy = cldfra.shape[1] |
---|
| 512 | dz = cldfra.shape[0] |
---|
| 513 | cllmhdims.pop(0) |
---|
| 514 | cllmhvdims.pop(0) |
---|
| 515 | |
---|
| 516 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
| 517 | |
---|
| 518 | for ix in range(dx): |
---|
| 519 | for iy in range(dy): |
---|
| 520 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
| 521 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
| 522 | |
---|
| 523 | return cllmh, cllmhdims, cllmhvdims |
---|
| 524 | |
---|
| 525 | def compute_clivi(dens, qtot, dimns, dimvns): |
---|
| 526 | """ Function to compute cloud-ice water path (clivi) |
---|
| 527 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
| 528 | [qtot] = added mixing ratio of all cloud-ice species in [kgkg-1] (assuming [t],z,y,x) |
---|
| 529 | [dimns]= list of the name of the dimensions of [q] |
---|
| 530 | [dimvns]= list of the name of the variables with the values of the |
---|
| 531 | dimensions of [q] |
---|
| 532 | """ |
---|
| 533 | fname = 'compute_clivi' |
---|
| 534 | |
---|
| 535 | clividims = dimns[:] |
---|
| 536 | clivivdims = dimvns[:] |
---|
| 537 | |
---|
| 538 | if len(qtot.shape) == 4: |
---|
| 539 | clividims.pop(1) |
---|
| 540 | clivivdims.pop(1) |
---|
| 541 | else: |
---|
| 542 | clividims.pop(0) |
---|
| 543 | clivivdims.pop(0) |
---|
| 544 | |
---|
| 545 | data1 = dens*qtot |
---|
| 546 | clivi = np.sum(data1, axis=1) |
---|
| 547 | |
---|
| 548 | return clivi, clividims, clivivdims |
---|
| 549 | |
---|
| 550 | |
---|
| 551 | def compute_clwvl(dens, qtot, dimns, dimvns): |
---|
| 552 | """ Function to compute condensed water path (clwvl) |
---|
| 553 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
| 554 | [qtot] = added mixing ratio of all cloud-water species in [kgkg-1] (assuming [t],z,y,x) |
---|
| 555 | [dimns]= list of the name of the dimensions of [q] |
---|
| 556 | [dimvns]= list of the name of the variables with the values of the |
---|
| 557 | dimensions of [q] |
---|
| 558 | """ |
---|
| 559 | fname = 'compute_clwvl' |
---|
| 560 | |
---|
| 561 | clwvldims = dimns[:] |
---|
| 562 | clwvlvdims = dimvns[:] |
---|
| 563 | |
---|
| 564 | if len(qtot.shape) == 4: |
---|
| 565 | clwvldims.pop(1) |
---|
| 566 | clwvlvdims.pop(1) |
---|
| 567 | else: |
---|
| 568 | clwvldims.pop(0) |
---|
| 569 | clwvlvdims.pop(0) |
---|
| 570 | |
---|
| 571 | data1 = dens*qtot |
---|
| 572 | clwvl = np.sum(data1, axis=1) |
---|
| 573 | |
---|
| 574 | return clwvl, clwvldims, clwvlvdims |
---|
| 575 | |
---|
| 576 | def var_virtualTemp (temp,rmix): |
---|
| 577 | """ This function returns virtual temperature in K, |
---|
| 578 | temp: temperature [K] |
---|
| 579 | rmix: mixing ratio in [kgkg-1] |
---|
| 580 | """ |
---|
| 581 | |
---|
| 582 | fname = 'var_virtualTemp' |
---|
| 583 | |
---|
| 584 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
| 585 | |
---|
| 586 | return virtual |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
| 590 | """ Function to compute mslp on a 1D column |
---|
| 591 | """ |
---|
| 592 | |
---|
| 593 | fname = 'var_mslp' |
---|
| 594 | |
---|
| 595 | N = 1.0 |
---|
| 596 | expon=287.04*.0065/9.81 |
---|
| 597 | pref = 40000. |
---|
| 598 | |
---|
| 599 | # First find where about 400 hPa is located |
---|
| 600 | dz=len(pres) |
---|
| 601 | |
---|
| 602 | kref = -1 |
---|
| 603 | pinc = pres[0] - pres[dz-1] |
---|
| 604 | |
---|
| 605 | if pinc < 0.: |
---|
| 606 | for iz in range(1,dz): |
---|
| 607 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
| 608 | kref = iz |
---|
| 609 | break |
---|
| 610 | else: |
---|
| 611 | for iz in range(dz-1): |
---|
| 612 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
| 613 | kref = iz |
---|
| 614 | break |
---|
| 615 | |
---|
| 616 | if kref == -1: |
---|
| 617 | print errormsg |
---|
| 618 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
| 619 | print ' values:',pres[:] |
---|
| 620 | quit(-1) |
---|
| 621 | |
---|
| 622 | mslp = 0. |
---|
| 623 | |
---|
| 624 | # We are below both the ground and the lowest data level. |
---|
| 625 | |
---|
| 626 | # First, find the model level that is closest to a "target" pressure |
---|
| 627 | # level, where the "target" pressure is delta-p less that the local |
---|
| 628 | # value of a horizontally smoothed surface pressure field. We use |
---|
| 629 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
| 630 | # passing through the temperature at this model level will be used |
---|
| 631 | # to define the temperature profile below ground. This is similar |
---|
| 632 | # to the Benjamin and Miller (1990) method, using |
---|
| 633 | # 700 hPa everywhere for the "target" pressure. |
---|
| 634 | |
---|
| 635 | # ptarget = psfc - 15000. |
---|
| 636 | ptarget = 70000. |
---|
| 637 | dpmin=1.e4 |
---|
| 638 | kupper = 0 |
---|
| 639 | if pinc > 0.: |
---|
| 640 | for iz in range(dz-1,0,-1): |
---|
| 641 | kupper = iz |
---|
| 642 | dp=np.abs( pres[iz] - ptarget ) |
---|
| 643 | if dp < dpmin: exit |
---|
| 644 | dpmin = np.min([dpmin, dp]) |
---|
| 645 | else: |
---|
| 646 | for iz in range(dz): |
---|
| 647 | kupper = iz |
---|
| 648 | dp=np.abs( pres[iz] - ptarget ) |
---|
| 649 | if dp < dpmin: exit |
---|
| 650 | dpmin = np.min([dpmin, dp]) |
---|
| 651 | |
---|
| 652 | pbot=np.max([pres[0], psfc]) |
---|
| 653 | # zbot=0. |
---|
| 654 | |
---|
| 655 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
| 656 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
| 657 | |
---|
| 658 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
| 659 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
| 660 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
| 661 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
| 662 | |
---|
| 663 | return mslp |
---|
| 664 | |
---|
| 665 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
| 666 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
| 667 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
| 668 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
| 669 | [psurface]= surface pressure field [Pa] |
---|
| 670 | [terrain]= topography [m] |
---|
| 671 | [temperature]= temperature [K] |
---|
| 672 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
| 673 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
| 674 | [dimvns]= list of the name of the variables with the values of the |
---|
| 675 | dimensions of [pres] |
---|
| 676 | """ |
---|
| 677 | |
---|
| 678 | fname = 'compute_mslp' |
---|
| 679 | |
---|
| 680 | mslpdims = list(dimns[:]) |
---|
| 681 | mslpvdims = list(dimvns[:]) |
---|
| 682 | |
---|
| 683 | if len(pressure.shape) == 4: |
---|
| 684 | mslpdims.pop(1) |
---|
| 685 | mslpvdims.pop(1) |
---|
| 686 | else: |
---|
| 687 | mslpdims.pop(0) |
---|
| 688 | mslpvdims.pop(0) |
---|
| 689 | |
---|
| 690 | if len(pressure.shape) == 4: |
---|
| 691 | dx = pressure.shape[3] |
---|
| 692 | dy = pressure.shape[2] |
---|
| 693 | dz = pressure.shape[1] |
---|
| 694 | dt = pressure.shape[0] |
---|
| 695 | |
---|
| 696 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
| 697 | |
---|
| 698 | # Terrain... to 2D ! |
---|
| 699 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
| 700 | if len(terrain.shape) == 3: |
---|
| 701 | terval = terrain[0,:,:] |
---|
| 702 | else: |
---|
| 703 | terval = terrain |
---|
| 704 | |
---|
| 705 | for ix in range(dx): |
---|
| 706 | for iy in range(dy): |
---|
| 707 | if terval[iy,ix] > 0.: |
---|
| 708 | for it in range(dt): |
---|
| 709 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
| 710 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
| 711 | qvapor[it,:,iy,ix]) |
---|
| 712 | |
---|
| 713 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
| 714 | else: |
---|
| 715 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
| 716 | |
---|
| 717 | else: |
---|
| 718 | dx = pressure.shape[2] |
---|
| 719 | dy = pressure.shape[1] |
---|
| 720 | dz = pressure.shape[0] |
---|
| 721 | |
---|
| 722 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
| 723 | |
---|
| 724 | # Terrain... to 2D ! |
---|
| 725 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
| 726 | if len(terrain.shape) == 3: |
---|
| 727 | terval = terrain[0,:,:] |
---|
| 728 | else: |
---|
| 729 | terval = terrain |
---|
| 730 | |
---|
| 731 | for ix in range(dx): |
---|
| 732 | for iy in range(dy): |
---|
| 733 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
| 734 | if terval[iy,ix] > 0.: |
---|
| 735 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
| 736 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
| 737 | else: |
---|
| 738 | mslpv[iy,ix] = psfc[iy,ix] |
---|
| 739 | |
---|
| 740 | return mslpv, mslpdims, mslpvdims |
---|
| 741 | |
---|
| 742 | def compute_OMEGAw(omega, p, t, dimns, dimvns): |
---|
| 743 | """ Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
| 744 | tacking: https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml |
---|
| 745 | [omega] = vertical velocity [in ms-1] (assuming [t],z,y,x) |
---|
| 746 | [p] = pressure in [Pa] (assuming [t],z,y,x) |
---|
| 747 | [t] = temperature in [K] (assuming [t],z,y,x) |
---|
| 748 | [dimns]= list of the name of the dimensions of [q] |
---|
| 749 | [dimvns]= list of the name of the variables with the values of the |
---|
| 750 | dimensions of [q] |
---|
| 751 | """ |
---|
| 752 | fname = 'compute_OMEGAw' |
---|
| 753 | |
---|
| 754 | rgas = 287.058 # J/(kg-K) => m2/(s2 K) |
---|
| 755 | g = 9.80665 # m/s2 |
---|
| 756 | |
---|
| 757 | wdims = dimns[:] |
---|
| 758 | wvdims = dimvns[:] |
---|
| 759 | |
---|
| 760 | rho = p/(rgas*t) # density => kg/m3 |
---|
| 761 | w = -omega/(rho*g) |
---|
| 762 | |
---|
| 763 | return w, wdims, wvdims |
---|
| 764 | |
---|
| 765 | def compute_prw(dens, q, dimns, dimvns): |
---|
| 766 | """ Function to compute water vapour path (prw) |
---|
| 767 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
| 768 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
| 769 | [dimns]= list of the name of the dimensions of [q] |
---|
| 770 | [dimvns]= list of the name of the variables with the values of the |
---|
| 771 | dimensions of [q] |
---|
| 772 | """ |
---|
| 773 | fname = 'compute_prw' |
---|
| 774 | |
---|
| 775 | prwdims = dimns[:] |
---|
| 776 | prwvdims = dimvns[:] |
---|
| 777 | |
---|
| 778 | if len(q.shape) == 4: |
---|
| 779 | prwdims.pop(1) |
---|
| 780 | prwvdims.pop(1) |
---|
| 781 | else: |
---|
| 782 | prwdims.pop(0) |
---|
| 783 | prwvdims.pop(0) |
---|
| 784 | |
---|
| 785 | data1 = dens*q |
---|
| 786 | prw = np.sum(data1, axis=1) |
---|
| 787 | |
---|
| 788 | return prw, prwdims, prwvdims |
---|
| 789 | |
---|
| 790 | def compute_rh(p, t, q, dimns, dimvns): |
---|
| 791 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
| 792 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
| 793 | [p] = pressure field (assuming in [hPa]) |
---|
| 794 | [q] = mixing ratio in [kgkg-1] |
---|
| 795 | [dimns]= list of the name of the dimensions of [t] |
---|
| 796 | [dimvns]= list of the name of the variables with the values of the |
---|
| 797 | dimensions of [t] |
---|
| 798 | """ |
---|
| 799 | fname = 'compute_rh' |
---|
| 800 | |
---|
| 801 | rhdims = dimns[:] |
---|
| 802 | rhvdims = dimvns[:] |
---|
| 803 | |
---|
| 804 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
| 805 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 806 | |
---|
| 807 | rh = q/data2 |
---|
| 808 | |
---|
| 809 | return rh, rhdims, rhvdims |
---|
| 810 | |
---|
| 811 | def compute_td(p, temp, qv, dimns, dimvns): |
---|
| 812 | """ Function to compute the dew point temperature |
---|
| 813 | [p]= pressure [Pa] |
---|
| 814 | [temp]= temperature [C] |
---|
| 815 | [qv]= mixing ratio [kgkg-1] |
---|
| 816 | [dimns]= list of the name of the dimensions of [p] |
---|
| 817 | [dimvns]= list of the name of the variables with the values of the |
---|
| 818 | dimensions of [p] |
---|
| 819 | """ |
---|
| 820 | fname = 'compute_td' |
---|
| 821 | |
---|
| 822 | # print ' ' + fname + ': computing dew-point temperature from TS as t and Tetens...' |
---|
| 823 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
| 824 | tk = temp |
---|
| 825 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 826 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 827 | |
---|
| 828 | rh = qv/data2 |
---|
| 829 | |
---|
| 830 | pa = rh * data1 |
---|
| 831 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 832 | |
---|
| 833 | tddims = dimns[:] |
---|
| 834 | tdvdims = dimvns[:] |
---|
| 835 | |
---|
| 836 | return td, tddims, tdvdims |
---|
| 837 | |
---|
| 838 | def var_WRFtime(timewrfv, refdate='19491201000000', tunitsval='minutes'): |
---|
| 839 | """ Function to copmute CFtimes from WRFtime variable |
---|
| 840 | refdate= [YYYYMMDDMIHHSS] format of reference date |
---|
| 841 | tunitsval= CF time units |
---|
| 842 | timewrfv= matrix string values of WRF 'Times' variable |
---|
| 843 | """ |
---|
| 844 | fname = 'var_WRFtime' |
---|
| 845 | |
---|
| 846 | yrref=refdate[0:4] |
---|
| 847 | monref=refdate[4:6] |
---|
| 848 | dayref=refdate[6:8] |
---|
| 849 | horref=refdate[8:10] |
---|
| 850 | minref=refdate[10:12] |
---|
| 851 | secref=refdate[12:14] |
---|
| 852 | |
---|
| 853 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
| 854 | ':' + secref |
---|
| 855 | |
---|
| 856 | dt = timewrfv.shape[0] |
---|
| 857 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
| 858 | |
---|
| 859 | for it in range(dt): |
---|
| 860 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
| 861 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
| 862 | |
---|
| 863 | tunits = tunitsval + ' since ' + refdateS |
---|
| 864 | |
---|
| 865 | return WRFtime, tunits |
---|
| 866 | |
---|
| 867 | def turbulence_var(varv, dimvn, dimn): |
---|
| 868 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
| 869 | x*=<x^2>_t-(<X>_t)^2 |
---|
| 870 | turbulence_var(varv,dimn) |
---|
| 871 | varv= values of the variable |
---|
| 872 | dimvn= names of the dimension of the variable |
---|
| 873 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
| 874 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
| 875 | [[ 54. 54. 54.] |
---|
| 876 | [ 54. 54. 54.] |
---|
| 877 | [ 54. 54. 54.]] |
---|
| 878 | """ |
---|
| 879 | fname = 'turbulence_varv' |
---|
| 880 | |
---|
| 881 | timedimid = dimvn.index(dimn['T']) |
---|
| 882 | |
---|
| 883 | varv2 = varv*varv |
---|
| 884 | |
---|
| 885 | vartmean = np.mean(varv, axis=timedimid) |
---|
| 886 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
| 887 | |
---|
| 888 | varvturb = var2tmean - (vartmean*vartmean) |
---|
| 889 | |
---|
| 890 | return varvturb |
---|
| 891 | |
---|
| 892 | def compute_turbulence(v, dimns, dimvns): |
---|
| 893 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
| 894 | x*=<x^2>_t-(<X>_t)^2 |
---|
| 895 | [v]= variable (assuming [[t],z,y,x]) |
---|
| 896 | [dimns]= list of the name of the dimensions of [v] |
---|
| 897 | [dimvns]= list of the name of the variables with the values of the |
---|
| 898 | dimensions of [v] |
---|
| 899 | """ |
---|
| 900 | fname = 'compute_turbulence' |
---|
| 901 | |
---|
| 902 | turbdims = dimns[:] |
---|
| 903 | turbvdims = dimvns[:] |
---|
| 904 | |
---|
| 905 | turbdims.pop(0) |
---|
| 906 | turbvdims.pop(0) |
---|
| 907 | |
---|
| 908 | v2 = v*v |
---|
| 909 | |
---|
| 910 | vartmean = np.mean(v, axis=0) |
---|
| 911 | var2tmean = np.mean(v2, axis=0) |
---|
| 912 | |
---|
| 913 | turb = var2tmean - (vartmean*vartmean) |
---|
| 914 | |
---|
| 915 | return turb, turbdims, turbvdims |
---|
| 916 | |
---|
| 917 | def compute_wds(u, v, dimns, dimvns): |
---|
| 918 | """ Function to compute the wind direction |
---|
| 919 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 920 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 921 | [dimns]= list of the name of the dimensions of [u] |
---|
| 922 | [dimvns]= list of the name of the variables with the values of the |
---|
| 923 | dimensions of [u] |
---|
| 924 | """ |
---|
| 925 | fname = 'compute_wds' |
---|
| 926 | |
---|
| 927 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
| 928 | theta = np.arctan2(v,u) |
---|
| 929 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 930 | |
---|
| 931 | wds = 360.*theta/(2.*np.pi) |
---|
| 932 | |
---|
| 933 | wdsdims = dimns[:] |
---|
| 934 | wdsvdims = dimvns[:] |
---|
| 935 | |
---|
| 936 | return wds, wdsdims, wdsvdims |
---|
| 937 | |
---|
| 938 | def compute_wss(u, v, dimns, dimvns): |
---|
| 939 | """ Function to compute the wind speed |
---|
| 940 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 941 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 942 | [dimns]= list of the name of the dimensions of [u] |
---|
| 943 | [dimvns]= list of the name of the variables with the values of the |
---|
| 944 | dimensions of [u] |
---|
| 945 | """ |
---|
| 946 | fname = 'compute_wss' |
---|
| 947 | |
---|
| 948 | # print ' ' + fname + ': computing wind speed as SQRT(v**2 + u**2) ...' |
---|
| 949 | wss = np.sqrt(u*u + v*v) |
---|
| 950 | |
---|
| 951 | wssdims = dimns[:] |
---|
| 952 | wssvdims = dimvns[:] |
---|
| 953 | |
---|
| 954 | return wss, wssdims, wssvdims |
---|
| 955 | |
---|
| 956 | def timeunits_seconds(dtu): |
---|
| 957 | """ Function to transform a time units to seconds |
---|
| 958 | timeunits_seconds(timeuv) |
---|
| 959 | [dtu]= time units value to transform in seconds |
---|
| 960 | """ |
---|
| 961 | fname='timunits_seconds' |
---|
| 962 | |
---|
| 963 | if dtu == 'years': |
---|
| 964 | times = 365.*24.*3600. |
---|
| 965 | elif dtu == 'weeks': |
---|
| 966 | times = 7.*24.*3600. |
---|
| 967 | elif dtu == 'days': |
---|
| 968 | times = 24.*3600. |
---|
| 969 | elif dtu == 'hours': |
---|
| 970 | times = 3600. |
---|
| 971 | elif dtu == 'minutes': |
---|
| 972 | times = 60. |
---|
| 973 | elif dtu == 'seconds': |
---|
| 974 | times = 1. |
---|
| 975 | elif dtu == 'miliseconds': |
---|
| 976 | times = 1./1000. |
---|
| 977 | else: |
---|
| 978 | print errormsg |
---|
| 979 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
| 980 | quit(-1) |
---|
| 981 | |
---|
| 982 | return times |
---|
| 983 | |
---|
[1687] | 984 | def compute_WRFua(u, v, sina, cosa, dimns, dimvns): |
---|
| 985 | """ Function to compute geographical rotated WRF 3D winds |
---|
| 986 | u= orginal WRF x-wind |
---|
| 987 | v= orginal WRF y-wind |
---|
| 988 | sina= original WRF local sinus of map rotation |
---|
| 989 | cosa= original WRF local cosinus of map rotation |
---|
| 990 | formula: |
---|
| 991 | ua = u*cosa-va*sina |
---|
| 992 | va = u*sina+va*cosa |
---|
| 993 | """ |
---|
| 994 | fname = 'compute_WRFua' |
---|
| 995 | |
---|
| 996 | var0 = u |
---|
| 997 | var1 = v |
---|
| 998 | var2 = sina |
---|
| 999 | var3 = cosa |
---|
| 1000 | |
---|
| 1001 | # un-staggering variables |
---|
| 1002 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1003 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1004 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1005 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1006 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1007 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1008 | |
---|
| 1009 | for iz in range(var0.shape[1]): |
---|
| 1010 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1011 | |
---|
| 1012 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1013 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1014 | |
---|
| 1015 | return ua, dnamesvar, dvnamesvar |
---|
| 1016 | |
---|
| 1017 | def compute_WRFva(u, v, sina, cosa, dimns, dimvns): |
---|
| 1018 | """ Function to compute geographical rotated WRF 3D winds |
---|
| 1019 | u= orginal WRF x-wind |
---|
| 1020 | v= orginal WRF y-wind |
---|
| 1021 | sina= original WRF local sinus of map rotation |
---|
| 1022 | cosa= original WRF local cosinus of map rotation |
---|
| 1023 | formula: |
---|
| 1024 | ua = u*cosa-va*sina |
---|
| 1025 | va = u*sina+va*cosa |
---|
| 1026 | """ |
---|
| 1027 | fname = 'compute_WRFva' |
---|
| 1028 | |
---|
| 1029 | var0 = u |
---|
| 1030 | var1 = v |
---|
| 1031 | var2 = sina |
---|
| 1032 | var3 = cosa |
---|
| 1033 | |
---|
| 1034 | # un-staggering variables |
---|
| 1035 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1036 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1037 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1038 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1039 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1040 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1041 | |
---|
| 1042 | for iz in range(var0.shape[1]): |
---|
| 1043 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1044 | |
---|
| 1045 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1046 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1047 | |
---|
| 1048 | return va, dnamesvar, dvnamesvar |
---|
| 1049 | |
---|
[1675] | 1050 | def compute_WRFuava(u, v, sina, cosa, dimns, dimvns): |
---|
| 1051 | """ Function to compute geographical rotated WRF 3D winds |
---|
| 1052 | u= orginal WRF x-wind |
---|
| 1053 | v= orginal WRF y-wind |
---|
| 1054 | sina= original WRF local sinus of map rotation |
---|
| 1055 | cosa= original WRF local cosinus of map rotation |
---|
| 1056 | formula: |
---|
| 1057 | ua = u*cosa-va*sina |
---|
| 1058 | va = u*sina+va*cosa |
---|
| 1059 | """ |
---|
| 1060 | fname = 'compute_WRFuava' |
---|
| 1061 | |
---|
| 1062 | var0 = u |
---|
| 1063 | var1 = v |
---|
| 1064 | var2 = sina |
---|
| 1065 | var3 = cosa |
---|
| 1066 | |
---|
| 1067 | # un-staggering variables |
---|
| 1068 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1069 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1070 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1071 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1072 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1073 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1074 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1075 | |
---|
| 1076 | for iz in range(var0.shape[1]): |
---|
| 1077 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1078 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1079 | |
---|
| 1080 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1081 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1082 | |
---|
| 1083 | return ua, va, dnamesvar, dvnamesvar |
---|
| 1084 | |
---|
[1687] | 1085 | def compute_WRFuas(u10, v10, sina, cosa, dimns, dimvns): |
---|
| 1086 | """ Function to compute geographical rotated WRF 2-meter x-wind |
---|
| 1087 | u10= orginal WRF 10m x-wind |
---|
| 1088 | v10= orginal WRF 10m y-wind |
---|
| 1089 | sina= original WRF local sinus of map rotation |
---|
| 1090 | cosa= original WRF local cosinus of map rotation |
---|
| 1091 | formula: |
---|
| 1092 | uas = u10*cosa-va10*sina |
---|
| 1093 | vas = u10*sina+va10*cosa |
---|
| 1094 | """ |
---|
| 1095 | fname = 'compute_WRFuas' |
---|
| 1096 | |
---|
| 1097 | var0 = u10 |
---|
| 1098 | var1 = v10 |
---|
| 1099 | var2 = sina |
---|
| 1100 | var3 = cosa |
---|
| 1101 | |
---|
| 1102 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
| 1103 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
| 1104 | |
---|
| 1105 | uas = var0*var3 - var1*var2 |
---|
| 1106 | |
---|
| 1107 | dnamesvar = ['Time','south_north','west_east'] |
---|
| 1108 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1109 | |
---|
| 1110 | return uas, dnamesvar, dvnamesvar |
---|
| 1111 | |
---|
| 1112 | def compute_WRFvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
| 1113 | """ Function to compute geographical rotated WRF 2-meter y-wind |
---|
| 1114 | u10= orginal WRF 10m x-wind |
---|
| 1115 | v10= orginal WRF 10m y-wind |
---|
| 1116 | sina= original WRF local sinus of map rotation |
---|
| 1117 | cosa= original WRF local cosinus of map rotation |
---|
| 1118 | formula: |
---|
| 1119 | uas = u10*cosa-va10*sina |
---|
| 1120 | vas = u10*sina+va10*cosa |
---|
| 1121 | """ |
---|
| 1122 | fname = 'compute_WRFvas' |
---|
| 1123 | |
---|
| 1124 | var0 = u10 |
---|
| 1125 | var1 = v10 |
---|
| 1126 | var2 = sina |
---|
| 1127 | var3 = cosa |
---|
| 1128 | |
---|
| 1129 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
| 1130 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
| 1131 | |
---|
| 1132 | vas = var0*var2 + var1*var3 |
---|
| 1133 | |
---|
| 1134 | dnamesvar = ['Time','south_north','west_east'] |
---|
| 1135 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1136 | |
---|
| 1137 | return vas, dnamesvar, dvnamesvar |
---|
| 1138 | |
---|
[1675] | 1139 | def compute_WRFuasvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
| 1140 | """ Function to compute geographical rotated WRF 2-meter winds |
---|
| 1141 | u10= orginal WRF 10m x-wind |
---|
| 1142 | v10= orginal WRF 10m y-wind |
---|
| 1143 | sina= original WRF local sinus of map rotation |
---|
| 1144 | cosa= original WRF local cosinus of map rotation |
---|
| 1145 | formula: |
---|
| 1146 | uas = u10*cosa-va10*sina |
---|
| 1147 | vas = u10*sina+va10*cosa |
---|
| 1148 | """ |
---|
| 1149 | fname = 'compute_WRFuasvas' |
---|
| 1150 | |
---|
| 1151 | var0 = u10 |
---|
| 1152 | var1 = v10 |
---|
| 1153 | var2 = sina |
---|
| 1154 | var3 = cosa |
---|
| 1155 | |
---|
| 1156 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
| 1157 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
| 1158 | |
---|
| 1159 | uas = var0*var3 - var1*var2 |
---|
| 1160 | vas = var0*var2 + var1*var3 |
---|
| 1161 | |
---|
| 1162 | dnamesvar = ['Time','south_north','west_east'] |
---|
| 1163 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1164 | |
---|
| 1165 | return uas, vas, dnamesvar, dvnamesvar |
---|
| 1166 | |
---|
| 1167 | def compute_WRFta(t, p, dimns, dimvns): |
---|
| 1168 | """ Function to compute WRF air temperature |
---|
| 1169 | t= orginal WRF temperature |
---|
| 1170 | p= original WRF pressure (P + PB) |
---|
| 1171 | formula: |
---|
| 1172 | temp = theta*(p/p0)**(R/Cp) |
---|
| 1173 | |
---|
| 1174 | """ |
---|
| 1175 | fname = 'compute_WRFta' |
---|
| 1176 | |
---|
| 1177 | ta = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 1178 | |
---|
| 1179 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1180 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1181 | |
---|
| 1182 | return ta, dnamesvar, dvnamesvar |
---|
| 1183 | |
---|
| 1184 | def compute_WRFtd(t, p, qv, dimns, dimvns): |
---|
| 1185 | """ Function to compute WRF dew-point air temperature |
---|
| 1186 | t= orginal WRF temperature |
---|
| 1187 | p= original WRF pressure (P + PB) |
---|
| 1188 | formula: |
---|
| 1189 | temp = theta*(p/p0)**(R/Cp) |
---|
| 1190 | |
---|
| 1191 | """ |
---|
[1680] | 1192 | fname = 'compute_WRFtd' |
---|
[1675] | 1193 | |
---|
| 1194 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 1195 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 1196 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 1197 | |
---|
| 1198 | rh = qv/data2 |
---|
| 1199 | |
---|
| 1200 | pa = rh * data1 |
---|
| 1201 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 1202 | |
---|
| 1203 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1204 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1205 | |
---|
| 1206 | return td, dnamesvar, dvnamesvar |
---|
[1685] | 1207 | |
---|
[1687] | 1208 | def compute_WRFwd(u, v, sina, cosa, dimns, dimvns): |
---|
| 1209 | """ Function to compute the wind direction |
---|
| 1210 | u= W-E wind direction [ms-1] |
---|
| 1211 | v= N-S wind direction [ms-1] |
---|
| 1212 | sina= original WRF local sinus of map rotation |
---|
| 1213 | cosa= original WRF local cosinus of map rotation |
---|
| 1214 | """ |
---|
| 1215 | fname = 'compute_WRFwd' |
---|
| 1216 | var0 = u |
---|
| 1217 | var1 = v |
---|
| 1218 | var2 = sina |
---|
| 1219 | var3 = cosa |
---|
| 1220 | |
---|
| 1221 | # un-staggering variables |
---|
| 1222 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
| 1223 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1224 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1225 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1226 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
| 1227 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
| 1228 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
| 1229 | |
---|
| 1230 | for iz in range(var0.shape[1]): |
---|
| 1231 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
| 1232 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
| 1233 | |
---|
| 1234 | theta = np.arctan2(va,ua) |
---|
| 1235 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 1236 | |
---|
| 1237 | wd = 360.*theta/(2.*np.pi) |
---|
| 1238 | |
---|
| 1239 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
| 1240 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
| 1241 | |
---|
| 1242 | return wd |
---|
| 1243 | |
---|
[1685] | 1244 | def var_td(t, p, qv): |
---|
| 1245 | """ Function to compute dew-point air temperature from temperature and pressure values |
---|
| 1246 | t= temperature [K] |
---|
| 1247 | p= pressure (Pa) |
---|
| 1248 | formula: |
---|
| 1249 | temp = theta*(p/p0)**(R/Cp) |
---|
| 1250 | |
---|
| 1251 | """ |
---|
| 1252 | fname = 'compute_td' |
---|
| 1253 | |
---|
| 1254 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
| 1255 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
| 1256 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
| 1257 | |
---|
| 1258 | rh = qv/data2 |
---|
| 1259 | |
---|
| 1260 | pa = rh * data1 |
---|
| 1261 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
| 1262 | |
---|
| 1263 | return td |
---|
[1687] | 1264 | |
---|
| 1265 | def var_wd(u, v): |
---|
| 1266 | """ Function to compute the wind direction |
---|
| 1267 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 1268 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 1269 | """ |
---|
| 1270 | fname = 'var_wd' |
---|
| 1271 | |
---|
| 1272 | theta = np.arctan2(v,u) |
---|
| 1273 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
| 1274 | |
---|
| 1275 | wd = 360.*theta/(2.*np.pi) |
---|
| 1276 | |
---|
| 1277 | return wd |
---|
| 1278 | |
---|
| 1279 | def var_ws(u, v): |
---|
| 1280 | """ Function to compute the wind speed |
---|
| 1281 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
| 1282 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
| 1283 | """ |
---|
| 1284 | fname = 'var_ws' |
---|
| 1285 | |
---|
| 1286 | ws = np.sqrt(u*u + v*v) |
---|
| 1287 | |
---|
| 1288 | return ws |
---|
| 1289 | |
---|
| 1290 | class C_diagnostic(object): |
---|
| 1291 | """ Class to compute generic variables |
---|
| 1292 | Cdiag: name of the diagnostic to compute |
---|
| 1293 | ncobj: netcdf object with data |
---|
| 1294 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
| 1295 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
| 1296 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
| 1297 | self.values = Values of the diagnostic |
---|
| 1298 | self.dims = Dimensions of the diagnostic |
---|
| 1299 | self.units = units of the diagnostic |
---|
| 1300 | self.incvars = list of variables from the input netCDF object |
---|
| 1301 | """ |
---|
| 1302 | def __init__(self, Cdiag, ncobj, sfcvars, vars3D, dictdims): |
---|
| 1303 | fname = 'C_diagnostic' |
---|
| 1304 | self.values = None |
---|
| 1305 | self.dims = None |
---|
| 1306 | self.incvars = ncobj.variables |
---|
| 1307 | self.units = None |
---|
| 1308 | |
---|
| 1309 | if Cdiag == 'td': |
---|
| 1310 | """ Computing dew-point temperature |
---|
| 1311 | """ |
---|
| 1312 | vn = 'td' |
---|
[1696] | 1313 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
[1687] | 1314 | for v3D in CF3Dvars: |
---|
| 1315 | if not vars3D.has_key(v3D): |
---|
| 1316 | print gen.errormsg |
---|
| 1317 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1318 | "' attribution to compute '" + vn + "' !!" |
---|
| 1319 | print ' Equivalence of 3D variables provided _______' |
---|
| 1320 | gen.printing_dictionary(vars3D) |
---|
| 1321 | quit(-1) |
---|
| 1322 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 1323 | print gen.errormsg |
---|
| 1324 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 1325 | "' in input file to compute '" + vn + "' !!" |
---|
| 1326 | print ' available variables:', self.incvars.keys() |
---|
| 1327 | print ' looking for variables _______' |
---|
| 1328 | gen.printing_dictionary(vars3D) |
---|
| 1329 | quit(-1) |
---|
| 1330 | |
---|
| 1331 | ta = ncobj.variables[vars3D['ta']][:] |
---|
| 1332 | p = ncobj.variables[vars3D['plev']][:] |
---|
[1696] | 1333 | hur = ncobj.variables[vars3D['hus']][:] |
---|
[1687] | 1334 | |
---|
[1700] | 1335 | if len(ta.shape) != len(p.shape): |
---|
[1702] | 1336 | p = gen.fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
[1700] | 1337 | |
---|
[1687] | 1338 | self.values = var_td(ta, p, hur) |
---|
| 1339 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1340 | dictdims['lon']] |
---|
| 1341 | self.units = 'K' |
---|
| 1342 | |
---|
| 1343 | elif Cdiag == 'wd': |
---|
| 1344 | """ Computing wind direction |
---|
| 1345 | """ |
---|
| 1346 | vn = 'wd' |
---|
| 1347 | CF3Dvars = ['ua', 'va'] |
---|
| 1348 | for v3D in CF3Dvars: |
---|
| 1349 | if not vars3D.has_key(v3D): |
---|
| 1350 | print gen.errormsg |
---|
| 1351 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1352 | "self.' attribution to compute '" + vn + "' !!" |
---|
| 1353 | print ' Equivalence of 3D variables provided _______' |
---|
| 1354 | gen.printing_dictionary(vars3D) |
---|
| 1355 | quit(-1) |
---|
| 1356 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 1357 | print gen.errormsg |
---|
| 1358 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 1359 | "' in input file to compute '" + vn + "' !!" |
---|
| 1360 | print ' available variables:', self.incvars.keys() |
---|
| 1361 | print ' looking for variables _______' |
---|
| 1362 | gen.printing_dictionary(vars3D) |
---|
| 1363 | quit(-1) |
---|
| 1364 | |
---|
| 1365 | ua = ncobj.variables[vars3D['ua']][:] |
---|
| 1366 | va = ncobj.variables[vars3D['va']][:] |
---|
| 1367 | |
---|
| 1368 | self.values = var_wd(ua, va) |
---|
| 1369 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1370 | dictdims['lon']] |
---|
| 1371 | self.units = 'degree' |
---|
| 1372 | |
---|
| 1373 | elif Cdiag == 'ws': |
---|
| 1374 | """ Computing wind speed |
---|
| 1375 | """ |
---|
| 1376 | vn = 'ws' |
---|
| 1377 | CF3Dvars = ['ua', 'va'] |
---|
| 1378 | for v3D in CF3Dvars: |
---|
| 1379 | if not vars3D.has_key(v3D): |
---|
| 1380 | print gen.errormsg |
---|
| 1381 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1382 | "' attribution to compute '" + vn + "' !!" |
---|
| 1383 | print ' Equivalence of 3D variables provided _______' |
---|
| 1384 | gen.printing_dictionary(vars3D) |
---|
| 1385 | quit(-1) |
---|
| 1386 | if not self.incvars.has_key(vars3D[v3D]): |
---|
| 1387 | print gen.errormsg |
---|
| 1388 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
| 1389 | "' in input file to compute '" + vn + "' !!" |
---|
| 1390 | print ' available variables:', self.incvars.keys() |
---|
| 1391 | print ' looking for variables _______' |
---|
| 1392 | gen.printing_dictionary(vars3D) |
---|
| 1393 | quit(-1) |
---|
| 1394 | |
---|
| 1395 | ua = ncobj.variables[vars3D['ua']][:] |
---|
| 1396 | va = ncobj.variables[vars3D['va']][:] |
---|
| 1397 | |
---|
| 1398 | self.values = var_ws(ua, va) |
---|
| 1399 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1400 | dictdims['lon']] |
---|
| 1401 | self.units = ncobj.variables[vars3D['ua']].units |
---|
| 1402 | |
---|
| 1403 | else: |
---|
| 1404 | print gen.errormsg |
---|
| 1405 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
| 1406 | print ' available ones:', Cavailablediags |
---|
| 1407 | quit(-1) |
---|
| 1408 | |
---|
| 1409 | class W_diagnostic(object): |
---|
| 1410 | """ Class to compute WRF diagnostics variables |
---|
| 1411 | Wdiag: name of the diagnostic to compute |
---|
| 1412 | ncobj: netcdf object with data |
---|
| 1413 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
| 1414 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
| 1415 | indims: list of dimensions inside file |
---|
| 1416 | invardims: list of dimension-variables inside file |
---|
| 1417 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
| 1418 | self.values = Values of the diagnostic |
---|
| 1419 | self.dims = Dimensions of the diagnostic |
---|
| 1420 | self.units = units of the diagnostic |
---|
| 1421 | self.incvars = list of variables from the input netCDF object |
---|
| 1422 | """ |
---|
| 1423 | def __init__(self, Wdiag, ncobj, sfcvars, vars3D, indims, invardims, dictdims): |
---|
| 1424 | fname = 'W_diagnostic' |
---|
| 1425 | |
---|
| 1426 | self.values = None |
---|
| 1427 | self.dims = None |
---|
| 1428 | self.incvars = ncobj.variables |
---|
| 1429 | self.units = None |
---|
| 1430 | |
---|
| 1431 | if Wdiag == 'p': |
---|
| 1432 | """ Computing air pressure |
---|
| 1433 | """ |
---|
| 1434 | vn = 'p' |
---|
| 1435 | |
---|
| 1436 | self.values = ncobj.variables['PB'][:] + ncobj.variables['P'][:] |
---|
| 1437 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1438 | dictdims['lon']] |
---|
| 1439 | self.units = ncobj.variables['PB'].units |
---|
| 1440 | |
---|
| 1441 | elif Wdiag == 'ta': |
---|
| 1442 | """ Computing air temperature |
---|
| 1443 | """ |
---|
| 1444 | vn = 'ta' |
---|
| 1445 | CF3Dvars = ['ta'] |
---|
| 1446 | for v3D in CF3Dvars: |
---|
| 1447 | if not vars3D.has_key(v3D): |
---|
| 1448 | print gen.errormsg |
---|
| 1449 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1450 | "' attribution to compute '" + vn + "' !!" |
---|
| 1451 | print ' Equivalence of 3D variables provided _______' |
---|
| 1452 | gen.printing_dictionary(vars3D) |
---|
| 1453 | quit(-1) |
---|
| 1454 | |
---|
| 1455 | ta = ncobj.variables['T'][:] |
---|
| 1456 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 1457 | |
---|
| 1458 | vals, dims, vdims = compute_WRFta(ta, p, indims, invardims) |
---|
| 1459 | self.values = vals |
---|
| 1460 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1461 | dictdims['lon']] |
---|
| 1462 | self.units = 'K' |
---|
| 1463 | |
---|
| 1464 | elif Wdiag == 'td': |
---|
| 1465 | """ Computing dew-point temperature |
---|
| 1466 | """ |
---|
| 1467 | vn = 'td' |
---|
| 1468 | CF3Dvars = ['ta', 'hus'] |
---|
| 1469 | for v3D in CF3Dvars: |
---|
| 1470 | if not vars3D.has_key(v3D): |
---|
| 1471 | print gen.errormsg |
---|
| 1472 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1473 | "' attribution to compute '" + vn + "' !!" |
---|
| 1474 | print ' Equivalence of 3D variables provided _______' |
---|
| 1475 | gen.printing_dictionary(vars3D) |
---|
| 1476 | quit(-1) |
---|
| 1477 | |
---|
| 1478 | ta = ncobj.variables['T'][:] |
---|
| 1479 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
| 1480 | hur = ncobj.variables['QVAPOR'][:] |
---|
| 1481 | |
---|
| 1482 | vals, dims, vdims = compute_WRFtd(ta, p, hur, indims, invardims) |
---|
| 1483 | self.values = vals |
---|
| 1484 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1485 | dictdims['lon']] |
---|
| 1486 | self.units = 'K' |
---|
| 1487 | |
---|
| 1488 | elif Wdiag == 'ua': |
---|
| 1489 | """ Computing x-wind |
---|
| 1490 | """ |
---|
| 1491 | vn = 'ua' |
---|
| 1492 | CF3Dvars = ['ua', 'va'] |
---|
| 1493 | for v3D in CF3Dvars: |
---|
| 1494 | if not vars3D.has_key(v3D): |
---|
| 1495 | print gen.errormsg |
---|
| 1496 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1497 | "' attribution to compute '" + vn + "' !!" |
---|
| 1498 | print ' Equivalence of 3D variables provided _______' |
---|
| 1499 | gen.printing_dictionary(vars3D) |
---|
| 1500 | quit(-1) |
---|
| 1501 | |
---|
| 1502 | ua = ncobj.variables['U'][:] |
---|
| 1503 | va = ncobj.variables['V'][:] |
---|
| 1504 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 1505 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 1506 | |
---|
| 1507 | vals, dims, vdims = compute_WRFua(ua, va, sina, cosa, indims, invardims) |
---|
| 1508 | self.values = vals |
---|
| 1509 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1510 | dictdims['lon']] |
---|
| 1511 | self.units = ncobj.variables['U'].units |
---|
| 1512 | |
---|
| 1513 | elif Wdiag == 'uas': |
---|
| 1514 | """ Computing 10m x-wind |
---|
| 1515 | """ |
---|
| 1516 | vn = 'uas' |
---|
| 1517 | CFsfcvars = ['uas', 'vas'] |
---|
| 1518 | for vsf in CFsfcvars: |
---|
| 1519 | if not sfcvars.has_key(vsf): |
---|
| 1520 | print gen.errormsg |
---|
| 1521 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
| 1522 | "' attribution to compute '" + vn + "' !!" |
---|
| 1523 | print ' Equivalence of sfc variables provided _______' |
---|
| 1524 | gen.printing_dictionary(sfcvars) |
---|
| 1525 | quit(-1) |
---|
| 1526 | |
---|
| 1527 | uas = ncobj.variables['U10'][:] |
---|
| 1528 | vas = ncobj.variables['V10'][:] |
---|
| 1529 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 1530 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 1531 | |
---|
| 1532 | vals,dims,vdims = compute_WRFuas(uas, vas, sina, cosa, indims, invardims) |
---|
| 1533 | self.values = vals |
---|
| 1534 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1535 | dictdims['lon']] |
---|
| 1536 | self.units = ncobj.variables['U10'].units |
---|
| 1537 | |
---|
| 1538 | elif Wdiag == 'va': |
---|
| 1539 | """ Computing y-wind |
---|
| 1540 | """ |
---|
| 1541 | vn = 'ua' |
---|
| 1542 | CF3Dvars = ['ua', 'va'] |
---|
| 1543 | for v3D in CF3Dvars: |
---|
| 1544 | if not vars3D.has_key(v3D): |
---|
| 1545 | print gen.errormsg |
---|
| 1546 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1547 | "' attribution to compute '" + vn + "' !!" |
---|
| 1548 | print ' Equivalence of 3D variables provided _______' |
---|
| 1549 | gen.printing_dictionary(vars3D) |
---|
| 1550 | quit(-1) |
---|
| 1551 | |
---|
| 1552 | ua = ncobj.variables['U'][:] |
---|
| 1553 | va = ncobj.variables['V'][:] |
---|
| 1554 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 1555 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 1556 | |
---|
| 1557 | vals, dims, vdims = compute_WRFva(ua, va, sina, cosa, indims, invardims) |
---|
| 1558 | self.values = vals |
---|
| 1559 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1560 | dictdims['lon']] |
---|
| 1561 | self.units = ncobj.variables['U'].units |
---|
| 1562 | |
---|
| 1563 | elif Wdiag == 'vas': |
---|
| 1564 | """ Computing 10m y-wind |
---|
| 1565 | """ |
---|
| 1566 | vn = 'uas' |
---|
| 1567 | CFsfcvars = ['uas', 'vas'] |
---|
| 1568 | for vsf in CFsfcvars: |
---|
| 1569 | if not sfcvars.has_key(vsf): |
---|
| 1570 | print gen.errormsg |
---|
| 1571 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
| 1572 | "' attribution to compute '" + vn + "' !!" |
---|
| 1573 | print ' Equivalence of sfc variables provided _______' |
---|
| 1574 | gen.printing_dictionary(sfcvars) |
---|
| 1575 | quit(-1) |
---|
| 1576 | |
---|
| 1577 | uas = ncobj.variables['U10'][:] |
---|
| 1578 | vas = ncobj.variables['V10'][:] |
---|
| 1579 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 1580 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 1581 | |
---|
| 1582 | vals,dims,vdims = compute_WRFvas(uas, vas, sina, cosa, indims, invardims) |
---|
| 1583 | self.values = vals |
---|
| 1584 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1585 | dictdims['lon']] |
---|
| 1586 | self.units = ncobj.variables['U10'].units |
---|
| 1587 | |
---|
| 1588 | elif Wdiag == 'wd': |
---|
| 1589 | """ Computing wind direction |
---|
| 1590 | """ |
---|
| 1591 | vn = 'wd' |
---|
| 1592 | CF3Dvars = ['ua', 'va'] |
---|
| 1593 | for v3D in CF3Dvars: |
---|
| 1594 | if not vars3D.has_key(v3D): |
---|
| 1595 | print gen.errormsg |
---|
| 1596 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1597 | "' attribution to compute '" + vn + "' !!" |
---|
| 1598 | print ' Equivalence of 3D variables provided _______' |
---|
| 1599 | gen.printing_dictionary(vars3D) |
---|
| 1600 | quit(-1) |
---|
| 1601 | |
---|
| 1602 | ua = ncobj.variables['U10'][:] |
---|
| 1603 | va = ncobj.variables['V10'][:] |
---|
| 1604 | sina = ncobj.variables['SINALPHA'][:] |
---|
| 1605 | cosa = ncobj.variables['COSALPHA'][:] |
---|
| 1606 | |
---|
| 1607 | vals, dims, vdims = compute_WRFwd(ua, va, sina, cosa, indims, invardims) |
---|
| 1608 | self.values = vals |
---|
| 1609 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1610 | dictdims['lon']] |
---|
| 1611 | self.units = 'degree' |
---|
| 1612 | |
---|
| 1613 | elif Wdiag == 'ws': |
---|
| 1614 | """ Computing wind speed |
---|
| 1615 | """ |
---|
| 1616 | vn = 'ws' |
---|
| 1617 | CF3Dvars = ['ua', 'va'] |
---|
| 1618 | for v3D in CF3Dvars: |
---|
| 1619 | if not vars3D.has_key(v3D): |
---|
| 1620 | print gen.errormsg |
---|
| 1621 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
| 1622 | "' attribution to compute '" + vn + "' !!" |
---|
| 1623 | print ' Equivalence of 3D variables provided _______' |
---|
| 1624 | gen.printing_dictionary(vars3D) |
---|
| 1625 | quit(-1) |
---|
| 1626 | |
---|
| 1627 | ua = ncobj.variables['U10'][:] |
---|
| 1628 | va = ncobj.variables['V10'][:] |
---|
| 1629 | |
---|
| 1630 | self.values = var_ws(ua, va) |
---|
| 1631 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1632 | dictdims['lon']] |
---|
| 1633 | self.units = ncobj.variables['U10'].units |
---|
| 1634 | |
---|
| 1635 | elif Wdiag == 'zg': |
---|
| 1636 | """ Computing geopotential |
---|
| 1637 | """ |
---|
| 1638 | vn = 'zg' |
---|
| 1639 | |
---|
| 1640 | self.values = ncobj.variables['PHB'][:] + ncobj.variables['PH'][:] |
---|
| 1641 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
| 1642 | dictdims['lon']] |
---|
| 1643 | self.units = ncobj.variables['PHB'].units |
---|
| 1644 | |
---|
| 1645 | else: |
---|
| 1646 | print gen.errormsg |
---|
| 1647 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
| 1648 | print ' available ones:', Wavailablediags |
---|
| 1649 | quit(-1) |
---|