1 | # Tools for the compute of diagnostics |
---|
2 | # L. Fita, CIMA. CONICET-UBA, CNRS UMI-IFAECI, Buenos Aires, Argentina |
---|
3 | |
---|
4 | # Available general pupose diagnostics (model independent) providing (varv1, varv2, ..., dimns, dimvns) |
---|
5 | # compute_accum: Function to compute the accumulation of a variable |
---|
6 | # compute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following |
---|
7 | # newmicro.F90 from LMDZ compute_clt(cldfra, pres, dimns, dimvns) |
---|
8 | # compute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ |
---|
9 | # compute_clivi: Function to compute cloud-ice water path (clivi) |
---|
10 | # compute_clwvl: Function to compute condensed water path (clwvl) |
---|
11 | # compute_deaccum: Function to compute the deaccumulation of a variable |
---|
12 | # compute_mslp: Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
13 | # compute_OMEGAw: Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
14 | # compute_prw: Function to compute water vapour path (prw) |
---|
15 | # compute_rh: Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
16 | # compute_td: Function to compute the dew point temperature |
---|
17 | # compute_turbulence: Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
18 | # C_diagnostic: Class to compute generic variables |
---|
19 | # compute_wds: Function to compute the wind direction |
---|
20 | # compute_wss: Function to compute the wind speed |
---|
21 | # compute_WRFta: Function to compute WRF air temperature |
---|
22 | # compute_WRFtd: Function to compute WRF dew-point air temperature |
---|
23 | # compute_WRFua: Function to compute geographical rotated WRF x-wind |
---|
24 | # compute_WRFva: Function to compute geographical rotated WRF y-wind |
---|
25 | # compute_WRFuava: Function to compute geographical rotated WRF 3D winds |
---|
26 | # compute_WRFuas: Function to compute geographical rotated WRF 2-meter x-wind |
---|
27 | # compute_WRFvas: Function to compute geographical rotated WRF 2-meter y-wind |
---|
28 | # compute_WRFuasvas: Fucntion to compute geographical rotated WRF 2-meter winds |
---|
29 | # derivate_centered: Function to compute the centered derivate of a given field |
---|
30 | # def Forcompute_cllmh: Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
31 | # Forcompute_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ via a Fortran module |
---|
32 | # W_diagnostic: Class to compute WRF diagnostics variables |
---|
33 | |
---|
34 | # Others just providing variable values |
---|
35 | # var_cllmh: Fcuntion to compute cllmh on a 1D column |
---|
36 | # var_clt: Function to compute the total cloud fraction following 'newmicro.F90' from LMDZ using 1D vertical column values |
---|
37 | # var_mslp: Fcuntion to compute mean sea-level pressure |
---|
38 | # var_td: Function to compute dew-point air temperature from temperature and pressure values |
---|
39 | # var_virtualTemp: This function returns virtual temperature in K, |
---|
40 | # var_WRFtime: Function to copmute CFtimes from WRFtime variable |
---|
41 | # var_wd: Function to compute the wind direction |
---|
42 | # var_wd: Function to compute the wind speed |
---|
43 | # rotational_z: z-component of the rotatinoal of horizontal vectorial field |
---|
44 | # turbulence_var: Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
45 | |
---|
46 | import numpy as np |
---|
47 | from netCDF4 import Dataset as NetCDFFile |
---|
48 | import os |
---|
49 | import re |
---|
50 | import nc_var_tools as ncvar |
---|
51 | import generic_tools as gen |
---|
52 | import datetime as dtime |
---|
53 | import module_ForDiag as fdin |
---|
54 | import module_ForDef as fdef |
---|
55 | |
---|
56 | main = 'diag_tools.py' |
---|
57 | errormsg = 'ERROR -- error -- ERROR -- error' |
---|
58 | warnmsg = 'WARNING -- warning -- WARNING -- warning' |
---|
59 | |
---|
60 | # Constants |
---|
61 | grav = fdef.module_definitions.grav |
---|
62 | |
---|
63 | # Available WRFiag |
---|
64 | Wavailablediags = ['p', 'ta', 'td', 'ua', 'va', 'uas', 'vas', 'wd', 'ws', 'zg'] |
---|
65 | |
---|
66 | # Available General diagnostics |
---|
67 | Cavailablediags = ['td', 'wd', 'ws'] |
---|
68 | |
---|
69 | # Gneral information |
---|
70 | ## |
---|
71 | def reduce_spaces(string): |
---|
72 | """ Function to give words of a line of text removing any extra space |
---|
73 | """ |
---|
74 | values = string.replace('\n','').split(' ') |
---|
75 | vals = [] |
---|
76 | for val in values: |
---|
77 | if len(val) > 0: |
---|
78 | vals.append(val) |
---|
79 | |
---|
80 | return vals |
---|
81 | |
---|
82 | def variable_combo(varn,combofile): |
---|
83 | """ Function to provide variables combination from a given variable name |
---|
84 | varn= name of the variable |
---|
85 | combofile= ASCII file with the combination of variables |
---|
86 | [varn] [combo] |
---|
87 | [combo]: '@' separated list of variables to use to generate [varn] |
---|
88 | [WRFdt] to get WRF time-step (from general attributes) |
---|
89 | >>> variable_combo('WRFprls','/home/lluis/PY/diagnostics.inf') |
---|
90 | deaccum@RAINNC@XTIME@prnc |
---|
91 | """ |
---|
92 | fname = 'variable_combo' |
---|
93 | |
---|
94 | if varn == 'h': |
---|
95 | print fname + '_____________________________________________________________' |
---|
96 | print variable_combo.__doc__ |
---|
97 | quit() |
---|
98 | |
---|
99 | if not os.path.isfile(combofile): |
---|
100 | print errormsg |
---|
101 | print ' ' + fname + ": file with combinations '" + combofile + \ |
---|
102 | "' does not exist!!" |
---|
103 | quit(-1) |
---|
104 | |
---|
105 | objf = open(combofile, 'r') |
---|
106 | |
---|
107 | found = False |
---|
108 | for line in objf: |
---|
109 | linevals = reduce_spaces(line) |
---|
110 | varnf = linevals[0] |
---|
111 | combo = linevals[1].replace('\n','') |
---|
112 | if varn == varnf: |
---|
113 | found = True |
---|
114 | break |
---|
115 | |
---|
116 | if not found: |
---|
117 | print errormsg |
---|
118 | print ' ' + fname + ": variable '" + varn + "' not found in '" + combofile +\ |
---|
119 | "' !!" |
---|
120 | combo='ERROR' |
---|
121 | |
---|
122 | objf.close() |
---|
123 | |
---|
124 | return combo |
---|
125 | |
---|
126 | # Mathematical operators |
---|
127 | ## |
---|
128 | def compute_accum(varv, dimns, dimvns): |
---|
129 | """ Function to compute the accumulation of a variable |
---|
130 | compute_accum(varv, dimnames, dimvns) |
---|
131 | [varv]= values to accum (assuming [t,]) |
---|
132 | [dimns]= list of the name of the dimensions of the [varv] |
---|
133 | [dimvns]= list of the name of the variables with the values of the |
---|
134 | dimensions of [varv] |
---|
135 | """ |
---|
136 | fname = 'compute_accum' |
---|
137 | |
---|
138 | deacdims = dimns[:] |
---|
139 | deacvdims = dimvns[:] |
---|
140 | |
---|
141 | slicei = [] |
---|
142 | slicee = [] |
---|
143 | |
---|
144 | Ndims = len(varv.shape) |
---|
145 | for iid in range(0,Ndims): |
---|
146 | slicei.append(slice(0,varv.shape[iid])) |
---|
147 | slicee.append(slice(0,varv.shape[iid])) |
---|
148 | |
---|
149 | slicee[0] = np.arange(varv.shape[0]) |
---|
150 | slicei[0] = np.arange(varv.shape[0]) |
---|
151 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
152 | |
---|
153 | vari = varv[tuple(slicei)] |
---|
154 | vare = varv[tuple(slicee)] |
---|
155 | |
---|
156 | ac = vari*0. |
---|
157 | for it in range(1,varv.shape[0]): |
---|
158 | ac[it,] = ac[it-1,] + vare[it,] |
---|
159 | |
---|
160 | return ac, deacdims, deacvdims |
---|
161 | |
---|
162 | def compute_deaccum(varv, dimns, dimvns): |
---|
163 | """ Function to compute the deaccumulation of a variable |
---|
164 | compute_deaccum(varv, dimnames, dimvns) |
---|
165 | [varv]= values to deaccum (assuming [t,]) |
---|
166 | [dimns]= list of the name of the dimensions of the [varv] |
---|
167 | [dimvns]= list of the name of the variables with the values of the |
---|
168 | dimensions of [varv] |
---|
169 | """ |
---|
170 | fname = 'compute_deaccum' |
---|
171 | |
---|
172 | deacdims = dimns[:] |
---|
173 | deacvdims = dimvns[:] |
---|
174 | |
---|
175 | slicei = [] |
---|
176 | slicee = [] |
---|
177 | |
---|
178 | Ndims = len(varv.shape) |
---|
179 | for iid in range(0,Ndims): |
---|
180 | slicei.append(slice(0,varv.shape[iid])) |
---|
181 | slicee.append(slice(0,varv.shape[iid])) |
---|
182 | |
---|
183 | slicee[0] = np.arange(varv.shape[0]) |
---|
184 | slicei[0] = np.arange(varv.shape[0]) |
---|
185 | slicei[0][1:varv.shape[0]] = np.arange(varv.shape[0]-1) |
---|
186 | |
---|
187 | vari = varv[tuple(slicei)] |
---|
188 | vare = varv[tuple(slicee)] |
---|
189 | |
---|
190 | deac = vare - vari |
---|
191 | |
---|
192 | return deac, deacdims, deacvdims |
---|
193 | |
---|
194 | def derivate_centered(var,dim,dimv): |
---|
195 | """ Function to compute the centered derivate of a given field |
---|
196 | centered derivate(n) = (var(n-1) + var(n+1))/(2*dn). |
---|
197 | [var]= variable |
---|
198 | [dim]= which dimension to compute the derivate |
---|
199 | [dimv]= dimension values (can be of different dimension of [var]) |
---|
200 | >>> derivate_centered(np.arange(16).reshape(4,4)*1.,1,1.) |
---|
201 | [[ 0. 1. 2. 0.] |
---|
202 | [ 0. 5. 6. 0.] |
---|
203 | [ 0. 9. 10. 0.] |
---|
204 | [ 0. 13. 14. 0.]] |
---|
205 | """ |
---|
206 | |
---|
207 | fname = 'derivate_centered' |
---|
208 | |
---|
209 | vark = var.dtype |
---|
210 | |
---|
211 | if hasattr(dimv, "__len__"): |
---|
212 | # Assuming that the last dimensions of var [..., N, M] are the same of dimv [N, M] |
---|
213 | if len(var.shape) != len(dimv.shape): |
---|
214 | dimvals = np.zeros((var.shape), dtype=vark) |
---|
215 | if len(var.shape) - len(dimv.shape) == 1: |
---|
216 | for iz in range(var.shape[0]): |
---|
217 | dimvals[iz,] = dimv |
---|
218 | elif len(var.shape) - len(dimv.shape) == 2: |
---|
219 | for it in range(var.shape[0]): |
---|
220 | for iz in range(var.shape[1]): |
---|
221 | dimvals[it,iz,] = dimv |
---|
222 | else: |
---|
223 | print errormsg |
---|
224 | print ' ' + fname + ': dimension difference between variable', \ |
---|
225 | var.shape,'and variable with dimension values',dimv.shape, \ |
---|
226 | ' not ready !!!' |
---|
227 | quit(-1) |
---|
228 | else: |
---|
229 | dimvals = dimv |
---|
230 | else: |
---|
231 | # dimension values are identical everywhere! |
---|
232 | # from: http://stackoverflow.com/questions/16807011/python-how-to-identify-if-a-variable-is-an-array-or-a-scalar |
---|
233 | dimvals = np.ones((var.shape), dtype=vark)*dimv |
---|
234 | |
---|
235 | derivate = np.zeros((var.shape), dtype=vark) |
---|
236 | if dim > len(var.shape) - 1: |
---|
237 | print errormsg |
---|
238 | print ' ' + fname + ': dimension',dim,' too big for given variable of ' + \ |
---|
239 | 'shape:', var.shape,'!!!' |
---|
240 | quit(-1) |
---|
241 | |
---|
242 | slicebef = [] |
---|
243 | sliceaft = [] |
---|
244 | sliceder = [] |
---|
245 | |
---|
246 | for id in range(len(var.shape)): |
---|
247 | if id == dim: |
---|
248 | slicebef.append(slice(0,var.shape[id]-2)) |
---|
249 | sliceaft.append(slice(2,var.shape[id])) |
---|
250 | sliceder.append(slice(1,var.shape[id]-1)) |
---|
251 | else: |
---|
252 | slicebef.append(slice(0,var.shape[id])) |
---|
253 | sliceaft.append(slice(0,var.shape[id])) |
---|
254 | sliceder.append(slice(0,var.shape[id])) |
---|
255 | |
---|
256 | if hasattr(dimv, "__len__"): |
---|
257 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
258 | ((dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)])) |
---|
259 | print (dimvals[tuple(sliceaft)] - dimvals[tuple(slicebef)]) |
---|
260 | else: |
---|
261 | derivate[tuple(sliceder)] = (var[tuple(slicebef)] + var[tuple(sliceaft)])/ \ |
---|
262 | (2.*dimv) |
---|
263 | |
---|
264 | # print 'before________' |
---|
265 | # print var[tuple(slicebef)] |
---|
266 | |
---|
267 | # print 'after________' |
---|
268 | # print var[tuple(sliceaft)] |
---|
269 | |
---|
270 | return derivate |
---|
271 | |
---|
272 | def rotational_z(Vx,Vy,pos): |
---|
273 | """ z-component of the rotatinoal of horizontal vectorial field |
---|
274 | \/ x (Vx,Vy,Vz) = \/xVy - \/yVx |
---|
275 | [Vx]= Variable component x |
---|
276 | [Vy]= Variable component y |
---|
277 | [pos]= poisition of the grid points |
---|
278 | >>> rotational_z(np.arange(16).reshape(4,4)*1., np.arange(16).reshape(4,4)*1., 1.) |
---|
279 | [[ 0. 1. 2. 0.] |
---|
280 | [ -4. 0. 0. -7.] |
---|
281 | [ -8. 0. 0. -11.] |
---|
282 | [ 0. 13. 14. 0.]] |
---|
283 | """ |
---|
284 | |
---|
285 | fname = 'rotational_z' |
---|
286 | |
---|
287 | ndims = len(Vx.shape) |
---|
288 | rot1 = derivate_centered(Vy,ndims-1,pos) |
---|
289 | rot2 = derivate_centered(Vx,ndims-2,pos) |
---|
290 | |
---|
291 | rot = rot1 - rot2 |
---|
292 | |
---|
293 | return rot |
---|
294 | |
---|
295 | # Diagnostics |
---|
296 | ## |
---|
297 | |
---|
298 | def var_clt(cfra): |
---|
299 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
300 | LMDZ using 1D vertical column values |
---|
301 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
302 | """ |
---|
303 | ZEPSEC=1.0E-12 |
---|
304 | |
---|
305 | fname = 'var_clt' |
---|
306 | |
---|
307 | zclear = 1. |
---|
308 | zcloud = 0. |
---|
309 | |
---|
310 | dz = cfra.shape[0] |
---|
311 | for iz in range(dz): |
---|
312 | zclear =zclear*(1.-np.max([cfra[iz],zcloud]))/(1.-np.min([zcloud,1.-ZEPSEC])) |
---|
313 | clt = 1. - zclear |
---|
314 | zcloud = cfra[iz] |
---|
315 | |
---|
316 | return clt |
---|
317 | |
---|
318 | def compute_clt(cldfra, dimns, dimvns): |
---|
319 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
320 | LMDZ |
---|
321 | compute_clt(cldfra, dimnames) |
---|
322 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
323 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
324 | [dimvns]= list of the name of the variables with the values of the |
---|
325 | dimensions of [cldfra] |
---|
326 | """ |
---|
327 | fname = 'compute_clt' |
---|
328 | |
---|
329 | cltdims = dimns[:] |
---|
330 | cltvdims = dimvns[:] |
---|
331 | |
---|
332 | if len(cldfra.shape) == 4: |
---|
333 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
334 | dtype=np.float) |
---|
335 | dx = cldfra.shape[3] |
---|
336 | dy = cldfra.shape[2] |
---|
337 | dz = cldfra.shape[1] |
---|
338 | dt = cldfra.shape[0] |
---|
339 | cltdims.pop(1) |
---|
340 | cltvdims.pop(1) |
---|
341 | |
---|
342 | for it in range(dt): |
---|
343 | for ix in range(dx): |
---|
344 | for iy in range(dy): |
---|
345 | zclear = 1. |
---|
346 | zcloud = 0. |
---|
347 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
348 | clt[it,iy,ix] = var_clt(cldfra[it,:,iy,ix]) |
---|
349 | |
---|
350 | else: |
---|
351 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
352 | dx = cldfra.shape[2] |
---|
353 | dy = cldfra.shape[1] |
---|
354 | dy = cldfra.shape[0] |
---|
355 | cltdims.pop(0) |
---|
356 | cltvdims.pop(0) |
---|
357 | for ix in range(dx): |
---|
358 | for iy in range(dy): |
---|
359 | zclear = 1. |
---|
360 | zcloud = 0. |
---|
361 | gen.percendone(ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
362 | clt[iy,ix] = var_clt(cldfra[:,iy,ix]) |
---|
363 | |
---|
364 | return clt, cltdims, cltvdims |
---|
365 | |
---|
366 | def Forcompute_clt(cldfra, dimns, dimvns): |
---|
367 | """ Function to compute the total cloud fraction following 'newmicro.F90' from |
---|
368 | LMDZ via a Fortran module |
---|
369 | compute_clt(cldfra, dimnames) |
---|
370 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
371 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
372 | [dimvns]= list of the name of the variables with the values of the |
---|
373 | dimensions of [cldfra] |
---|
374 | """ |
---|
375 | fname = 'Forcompute_clt' |
---|
376 | |
---|
377 | cltdims = dimns[:] |
---|
378 | cltvdims = dimvns[:] |
---|
379 | |
---|
380 | |
---|
381 | if len(cldfra.shape) == 4: |
---|
382 | clt = np.zeros((cldfra.shape[0],cldfra.shape[2],cldfra.shape[3]), \ |
---|
383 | dtype=np.float) |
---|
384 | dx = cldfra.shape[3] |
---|
385 | dy = cldfra.shape[2] |
---|
386 | dz = cldfra.shape[1] |
---|
387 | dt = cldfra.shape[0] |
---|
388 | cltdims.pop(1) |
---|
389 | cltvdims.pop(1) |
---|
390 | |
---|
391 | clt = fdin.module_fordiagnostics.compute_clt4d2(cldfra[:]) |
---|
392 | |
---|
393 | else: |
---|
394 | clt = np.zeros((cldfra.shape[1],cldfra.shape[2]), dtype=np.float) |
---|
395 | dx = cldfra.shape[2] |
---|
396 | dy = cldfra.shape[1] |
---|
397 | dy = cldfra.shape[0] |
---|
398 | cltdims.pop(0) |
---|
399 | cltvdims.pop(0) |
---|
400 | |
---|
401 | clt = fdin.module_fordiagnostics.compute_clt3d1(cldfra[:]) |
---|
402 | |
---|
403 | return clt, cltdims, cltvdims |
---|
404 | |
---|
405 | def var_cllmh(cfra, p): |
---|
406 | """ Fcuntion to compute cllmh on a 1D column |
---|
407 | """ |
---|
408 | |
---|
409 | fname = 'var_cllmh' |
---|
410 | |
---|
411 | ZEPSEC =1.0E-12 |
---|
412 | prmhc = 440.*100. |
---|
413 | prmlc = 680.*100. |
---|
414 | |
---|
415 | zclearl = 1. |
---|
416 | zcloudl = 0. |
---|
417 | zclearm = 1. |
---|
418 | zcloudm = 0. |
---|
419 | zclearh = 1. |
---|
420 | zcloudh = 0. |
---|
421 | |
---|
422 | dvz = cfra.shape[0] |
---|
423 | |
---|
424 | cllmh = np.ones((3), dtype=np.float) |
---|
425 | |
---|
426 | for iz in range(dvz): |
---|
427 | if p[iz] < prmhc: |
---|
428 | cllmh[2] = cllmh[2]*(1.-np.max([cfra[iz], zcloudh]))/(1.- \ |
---|
429 | np.min([zcloudh,1.-ZEPSEC])) |
---|
430 | zcloudh = cfra[iz] |
---|
431 | elif p[iz] >= prmhc and p[iz] < prmlc: |
---|
432 | cllmh[1] = cllmh[1]*(1.-np.max([cfra[iz], zcloudm]))/(1.- \ |
---|
433 | np.min([zcloudm,1.-ZEPSEC])) |
---|
434 | zcloudm = cfra[iz] |
---|
435 | elif p[iz] >= prmlc: |
---|
436 | cllmh[0] = cllmh[0]*(1.-np.max([cfra[iz], zcloudl]))/(1.- \ |
---|
437 | np.min([zcloudl,1.-ZEPSEC])) |
---|
438 | zcloudl = cfra[iz] |
---|
439 | |
---|
440 | cllmh = 1.- cllmh |
---|
441 | |
---|
442 | return cllmh |
---|
443 | |
---|
444 | def Forcompute_cllmh(cldfra, pres, dimns, dimvns): |
---|
445 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ via Fortran subroutine |
---|
446 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
447 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
448 | [pres] = pressure field |
---|
449 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
450 | [dimvns]= list of the name of the variables with the values of the |
---|
451 | dimensions of [cldfra] |
---|
452 | """ |
---|
453 | fname = 'Forcompute_cllmh' |
---|
454 | |
---|
455 | cllmhdims = dimns[:] |
---|
456 | cllmhvdims = dimvns[:] |
---|
457 | |
---|
458 | if len(cldfra.shape) == 4: |
---|
459 | dx = cldfra.shape[3] |
---|
460 | dy = cldfra.shape[2] |
---|
461 | dz = cldfra.shape[1] |
---|
462 | dt = cldfra.shape[0] |
---|
463 | cllmhdims.pop(1) |
---|
464 | cllmhvdims.pop(1) |
---|
465 | |
---|
466 | cllmh = fdin.module_fordiagnostics.compute_cllmh4d2(cldfra[:], pres[:]) |
---|
467 | |
---|
468 | else: |
---|
469 | dx = cldfra.shape[2] |
---|
470 | dy = cldfra.shape[1] |
---|
471 | dz = cldfra.shape[0] |
---|
472 | cllmhdims.pop(0) |
---|
473 | cllmhvdims.pop(0) |
---|
474 | |
---|
475 | cllmh = fdin.module_fordiagnostics.compute_cllmh3d1(cldfra[:], pres[:]) |
---|
476 | |
---|
477 | return cllmh, cllmhdims, cllmhvdims |
---|
478 | |
---|
479 | def compute_cllmh(cldfra, pres, dimns, dimvns): |
---|
480 | """ Function to compute cllmh: low/medium/hight cloud fraction following newmicro.F90 from LMDZ |
---|
481 | compute_clt(cldfra, pres, dimns, dimvns) |
---|
482 | [cldfra]= cloud fraction values (assuming [[t],z,y,x]) |
---|
483 | [pres] = pressure field |
---|
484 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
485 | [dimvns]= list of the name of the variables with the values of the |
---|
486 | dimensions of [cldfra] |
---|
487 | """ |
---|
488 | fname = 'compute_cllmh' |
---|
489 | |
---|
490 | cllmhdims = dimns[:] |
---|
491 | cllmhvdims = dimvns[:] |
---|
492 | |
---|
493 | if len(cldfra.shape) == 4: |
---|
494 | dx = cldfra.shape[3] |
---|
495 | dy = cldfra.shape[2] |
---|
496 | dz = cldfra.shape[1] |
---|
497 | dt = cldfra.shape[0] |
---|
498 | cllmhdims.pop(1) |
---|
499 | cllmhvdims.pop(1) |
---|
500 | |
---|
501 | cllmh = np.ones(tuple([3, dt, dy, dx]), dtype=np.float) |
---|
502 | |
---|
503 | for it in range(dt): |
---|
504 | for ix in range(dx): |
---|
505 | for iy in range(dy): |
---|
506 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
507 | cllmh[:,it,iy,ix] = var_cllmh(cldfra[it,:,iy,ix], pres[it,:,iy,ix]) |
---|
508 | |
---|
509 | else: |
---|
510 | dx = cldfra.shape[2] |
---|
511 | dy = cldfra.shape[1] |
---|
512 | dz = cldfra.shape[0] |
---|
513 | cllmhdims.pop(0) |
---|
514 | cllmhvdims.pop(0) |
---|
515 | |
---|
516 | cllmh = np.ones(tuple([3, dy, dx]), dtype=np.float) |
---|
517 | |
---|
518 | for ix in range(dx): |
---|
519 | for iy in range(dy): |
---|
520 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
521 | cllmh[:,iy,ix] = var_cllmh(cldfra[:,iy,ix], pres[:,iy,ix]) |
---|
522 | |
---|
523 | return cllmh, cllmhdims, cllmhvdims |
---|
524 | |
---|
525 | def compute_clivi(dens, qtot, dimns, dimvns): |
---|
526 | """ Function to compute cloud-ice water path (clivi) |
---|
527 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
528 | [qtot] = added mixing ratio of all cloud-ice species in [kgkg-1] (assuming [t],z,y,x) |
---|
529 | [dimns]= list of the name of the dimensions of [q] |
---|
530 | [dimvns]= list of the name of the variables with the values of the |
---|
531 | dimensions of [q] |
---|
532 | """ |
---|
533 | fname = 'compute_clivi' |
---|
534 | |
---|
535 | clividims = dimns[:] |
---|
536 | clivivdims = dimvns[:] |
---|
537 | |
---|
538 | if len(qtot.shape) == 4: |
---|
539 | clividims.pop(1) |
---|
540 | clivivdims.pop(1) |
---|
541 | else: |
---|
542 | clividims.pop(0) |
---|
543 | clivivdims.pop(0) |
---|
544 | |
---|
545 | data1 = dens*qtot |
---|
546 | clivi = np.sum(data1, axis=1) |
---|
547 | |
---|
548 | return clivi, clividims, clivivdims |
---|
549 | |
---|
550 | |
---|
551 | def compute_clwvl(dens, qtot, dimns, dimvns): |
---|
552 | """ Function to compute condensed water path (clwvl) |
---|
553 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
554 | [qtot] = added mixing ratio of all cloud-water species in [kgkg-1] (assuming [t],z,y,x) |
---|
555 | [dimns]= list of the name of the dimensions of [q] |
---|
556 | [dimvns]= list of the name of the variables with the values of the |
---|
557 | dimensions of [q] |
---|
558 | """ |
---|
559 | fname = 'compute_clwvl' |
---|
560 | |
---|
561 | clwvldims = dimns[:] |
---|
562 | clwvlvdims = dimvns[:] |
---|
563 | |
---|
564 | if len(qtot.shape) == 4: |
---|
565 | clwvldims.pop(1) |
---|
566 | clwvlvdims.pop(1) |
---|
567 | else: |
---|
568 | clwvldims.pop(0) |
---|
569 | clwvlvdims.pop(0) |
---|
570 | |
---|
571 | data1 = dens*qtot |
---|
572 | clwvl = np.sum(data1, axis=1) |
---|
573 | |
---|
574 | return clwvl, clwvldims, clwvlvdims |
---|
575 | |
---|
576 | def var_virtualTemp (temp,rmix): |
---|
577 | """ This function returns virtual temperature in K, |
---|
578 | temp: temperature [K] |
---|
579 | rmix: mixing ratio in [kgkg-1] |
---|
580 | """ |
---|
581 | |
---|
582 | fname = 'var_virtualTemp' |
---|
583 | |
---|
584 | virtual=temp*(0.622+rmix)/(0.622*(1.+rmix)) |
---|
585 | |
---|
586 | return virtual |
---|
587 | |
---|
588 | |
---|
589 | def var_mslp(pres, psfc, ter, tk, qv): |
---|
590 | """ Function to compute mslp on a 1D column |
---|
591 | """ |
---|
592 | |
---|
593 | fname = 'var_mslp' |
---|
594 | |
---|
595 | N = 1.0 |
---|
596 | expon=287.04*.0065/9.81 |
---|
597 | pref = 40000. |
---|
598 | |
---|
599 | # First find where about 400 hPa is located |
---|
600 | dz=len(pres) |
---|
601 | |
---|
602 | kref = -1 |
---|
603 | pinc = pres[0] - pres[dz-1] |
---|
604 | |
---|
605 | if pinc < 0.: |
---|
606 | for iz in range(1,dz): |
---|
607 | if pres[iz-1] >= pref and pres[iz] < pref: |
---|
608 | kref = iz |
---|
609 | break |
---|
610 | else: |
---|
611 | for iz in range(dz-1): |
---|
612 | if pres[iz] >= pref and pres[iz+1] < pref: |
---|
613 | kref = iz |
---|
614 | break |
---|
615 | |
---|
616 | if kref == -1: |
---|
617 | print errormsg |
---|
618 | print ' ' + fname + ': no reference pressure:',pref,'found!!' |
---|
619 | print ' values:',pres[:] |
---|
620 | quit(-1) |
---|
621 | |
---|
622 | mslp = 0. |
---|
623 | |
---|
624 | # We are below both the ground and the lowest data level. |
---|
625 | |
---|
626 | # First, find the model level that is closest to a "target" pressure |
---|
627 | # level, where the "target" pressure is delta-p less that the local |
---|
628 | # value of a horizontally smoothed surface pressure field. We use |
---|
629 | # delta-p = 150 hPa here. A standard lapse rate temperature profile |
---|
630 | # passing through the temperature at this model level will be used |
---|
631 | # to define the temperature profile below ground. This is similar |
---|
632 | # to the Benjamin and Miller (1990) method, using |
---|
633 | # 700 hPa everywhere for the "target" pressure. |
---|
634 | |
---|
635 | # ptarget = psfc - 15000. |
---|
636 | ptarget = 70000. |
---|
637 | dpmin=1.e4 |
---|
638 | kupper = 0 |
---|
639 | if pinc > 0.: |
---|
640 | for iz in range(dz-1,0,-1): |
---|
641 | kupper = iz |
---|
642 | dp=np.abs( pres[iz] - ptarget ) |
---|
643 | if dp < dpmin: exit |
---|
644 | dpmin = np.min([dpmin, dp]) |
---|
645 | else: |
---|
646 | for iz in range(dz): |
---|
647 | kupper = iz |
---|
648 | dp=np.abs( pres[iz] - ptarget ) |
---|
649 | if dp < dpmin: exit |
---|
650 | dpmin = np.min([dpmin, dp]) |
---|
651 | |
---|
652 | pbot=np.max([pres[0], psfc]) |
---|
653 | # zbot=0. |
---|
654 | |
---|
655 | # tbotextrap=tk(i,j,kupper,itt)*(pbot/pres_field(i,j,kupper,itt))**expon |
---|
656 | # tvbotextrap=virtual(tbotextrap,qv(i,j,1,itt)) |
---|
657 | |
---|
658 | # data_out(i,j,itt,1) = (zbot+tvbotextrap/.0065*(1.-(interp_levels(1)/pbot)**expon)) |
---|
659 | tbotextrap = tk[kupper]*(psfc/ptarget)**expon |
---|
660 | tvbotextrap = var_virtualTemp(tbotextrap, qv[kupper]) |
---|
661 | mslp = psfc*( (tvbotextrap+0.0065*ter)/tvbotextrap)**(1./expon) |
---|
662 | |
---|
663 | return mslp |
---|
664 | |
---|
665 | def compute_mslp(pressure, psurface, terrain, temperature, qvapor, dimns, dimvns): |
---|
666 | """ Function to compute mslp: mean sea level pressure following p_interp.F90 from WRF |
---|
667 | var_mslp(pres, ter, tk, qv, dimns, dimvns) |
---|
668 | [pressure]= pressure field [Pa] (assuming [[t],z,y,x]) |
---|
669 | [psurface]= surface pressure field [Pa] |
---|
670 | [terrain]= topography [m] |
---|
671 | [temperature]= temperature [K] |
---|
672 | [qvapor]= water vapour mixing ratio [kgkg-1] |
---|
673 | [dimns]= list of the name of the dimensions of [cldfra] |
---|
674 | [dimvns]= list of the name of the variables with the values of the |
---|
675 | dimensions of [pres] |
---|
676 | """ |
---|
677 | |
---|
678 | fname = 'compute_mslp' |
---|
679 | |
---|
680 | mslpdims = list(dimns[:]) |
---|
681 | mslpvdims = list(dimvns[:]) |
---|
682 | |
---|
683 | if len(pressure.shape) == 4: |
---|
684 | mslpdims.pop(1) |
---|
685 | mslpvdims.pop(1) |
---|
686 | else: |
---|
687 | mslpdims.pop(0) |
---|
688 | mslpvdims.pop(0) |
---|
689 | |
---|
690 | if len(pressure.shape) == 4: |
---|
691 | dx = pressure.shape[3] |
---|
692 | dy = pressure.shape[2] |
---|
693 | dz = pressure.shape[1] |
---|
694 | dt = pressure.shape[0] |
---|
695 | |
---|
696 | mslpv = np.zeros(tuple([dt, dy, dx]), dtype=np.float) |
---|
697 | |
---|
698 | # Terrain... to 2D ! |
---|
699 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
700 | if len(terrain.shape) == 3: |
---|
701 | terval = terrain[0,:,:] |
---|
702 | else: |
---|
703 | terval = terrain |
---|
704 | |
---|
705 | for ix in range(dx): |
---|
706 | for iy in range(dy): |
---|
707 | if terval[iy,ix] > 0.: |
---|
708 | for it in range(dt): |
---|
709 | mslpv[it,iy,ix] = var_mslp(pressure[it,:,iy,ix], \ |
---|
710 | psurface[it,iy,ix], terval[iy,ix], temperature[it,:,iy,ix],\ |
---|
711 | qvapor[it,:,iy,ix]) |
---|
712 | |
---|
713 | gen.percendone(it*dx*dy + ix*dy + iy, dx*dy*dt, 5, 'diagnosted') |
---|
714 | else: |
---|
715 | mslpv[:,iy,ix] = psurface[:,iy,ix] |
---|
716 | |
---|
717 | else: |
---|
718 | dx = pressure.shape[2] |
---|
719 | dy = pressure.shape[1] |
---|
720 | dz = pressure.shape[0] |
---|
721 | |
---|
722 | mslpv = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
723 | |
---|
724 | # Terrain... to 2D ! |
---|
725 | terval = np.zeros(tuple([dy, dx]), dtype=np.float) |
---|
726 | if len(terrain.shape) == 3: |
---|
727 | terval = terrain[0,:,:] |
---|
728 | else: |
---|
729 | terval = terrain |
---|
730 | |
---|
731 | for ix in range(dx): |
---|
732 | for iy in range(dy): |
---|
733 | gen.percendone(ix*dy + iy,dx*dy, 5, 'diagnosted') |
---|
734 | if terval[iy,ix] > 0.: |
---|
735 | mslpv[iy,ix] = var_mslp(pressure[:,iy,ix], psurface[iy,ix], \ |
---|
736 | terval[iy,ix], temperature[:,iy,ix], qvapor[:,iy,ix]) |
---|
737 | else: |
---|
738 | mslpv[iy,ix] = psfc[iy,ix] |
---|
739 | |
---|
740 | return mslpv, mslpdims, mslpvdims |
---|
741 | |
---|
742 | def compute_OMEGAw(omega, p, t, dimns, dimvns): |
---|
743 | """ Function to transform OMEGA [Pas-1] to velocities [ms-1] |
---|
744 | tacking: https://www.ncl.ucar.edu/Document/Functions/Contributed/omega_to_w.shtml |
---|
745 | [omega] = vertical velocity [in ms-1] (assuming [t],z,y,x) |
---|
746 | [p] = pressure in [Pa] (assuming [t],z,y,x) |
---|
747 | [t] = temperature in [K] (assuming [t],z,y,x) |
---|
748 | [dimns]= list of the name of the dimensions of [q] |
---|
749 | [dimvns]= list of the name of the variables with the values of the |
---|
750 | dimensions of [q] |
---|
751 | """ |
---|
752 | fname = 'compute_OMEGAw' |
---|
753 | |
---|
754 | rgas = 287.058 # J/(kg-K) => m2/(s2 K) |
---|
755 | g = 9.80665 # m/s2 |
---|
756 | |
---|
757 | wdims = dimns[:] |
---|
758 | wvdims = dimvns[:] |
---|
759 | |
---|
760 | rho = p/(rgas*t) # density => kg/m3 |
---|
761 | w = -omega/(rho*g) |
---|
762 | |
---|
763 | return w, wdims, wvdims |
---|
764 | |
---|
765 | def compute_prw(dens, q, dimns, dimvns): |
---|
766 | """ Function to compute water vapour path (prw) |
---|
767 | [dens] = density [in kgkg-1] (assuming [t],z,y,x) |
---|
768 | [q] = mixing ratio in [kgkg-1] (assuming [t],z,y,x) |
---|
769 | [dimns]= list of the name of the dimensions of [q] |
---|
770 | [dimvns]= list of the name of the variables with the values of the |
---|
771 | dimensions of [q] |
---|
772 | """ |
---|
773 | fname = 'compute_prw' |
---|
774 | |
---|
775 | prwdims = dimns[:] |
---|
776 | prwvdims = dimvns[:] |
---|
777 | |
---|
778 | if len(q.shape) == 4: |
---|
779 | prwdims.pop(1) |
---|
780 | prwvdims.pop(1) |
---|
781 | else: |
---|
782 | prwdims.pop(0) |
---|
783 | prwvdims.pop(0) |
---|
784 | |
---|
785 | data1 = dens*q |
---|
786 | prw = np.sum(data1, axis=1) |
---|
787 | |
---|
788 | return prw, prwdims, prwvdims |
---|
789 | |
---|
790 | def compute_rh(p, t, q, dimns, dimvns): |
---|
791 | """ Function to compute relative humidity following 'Tetens' equation (T,P) ...' |
---|
792 | [t]= temperature (assuming [[t],z,y,x] in [K]) |
---|
793 | [p] = pressure field (assuming in [hPa]) |
---|
794 | [q] = mixing ratio in [kgkg-1] |
---|
795 | [dimns]= list of the name of the dimensions of [t] |
---|
796 | [dimvns]= list of the name of the variables with the values of the |
---|
797 | dimensions of [t] |
---|
798 | """ |
---|
799 | fname = 'compute_rh' |
---|
800 | |
---|
801 | rhdims = dimns[:] |
---|
802 | rhvdims = dimvns[:] |
---|
803 | |
---|
804 | data1 = 10.*0.6112*np.exp(17.67*(t-273.16)/(t-29.65)) |
---|
805 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
806 | |
---|
807 | rh = q/data2 |
---|
808 | |
---|
809 | return rh, rhdims, rhvdims |
---|
810 | |
---|
811 | def compute_td(p, temp, qv, dimns, dimvns): |
---|
812 | """ Function to compute the dew point temperature |
---|
813 | [p]= pressure [Pa] |
---|
814 | [temp]= temperature [C] |
---|
815 | [qv]= mixing ratio [kgkg-1] |
---|
816 | [dimns]= list of the name of the dimensions of [p] |
---|
817 | [dimvns]= list of the name of the variables with the values of the |
---|
818 | dimensions of [p] |
---|
819 | """ |
---|
820 | fname = 'compute_td' |
---|
821 | |
---|
822 | # print ' ' + fname + ': computing dew-point temperature from TS as t and Tetens...' |
---|
823 | # tacking from: http://en.wikipedia.org/wiki/Dew_point |
---|
824 | tk = temp |
---|
825 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
826 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
827 | |
---|
828 | rh = qv/data2 |
---|
829 | |
---|
830 | pa = rh * data1 |
---|
831 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
832 | |
---|
833 | tddims = dimns[:] |
---|
834 | tdvdims = dimvns[:] |
---|
835 | |
---|
836 | return td, tddims, tdvdims |
---|
837 | |
---|
838 | def var_WRFtime(timewrfv, refdate='19491201000000', tunitsval='minutes'): |
---|
839 | """ Function to copmute CFtimes from WRFtime variable |
---|
840 | refdate= [YYYYMMDDMIHHSS] format of reference date |
---|
841 | tunitsval= CF time units |
---|
842 | timewrfv= matrix string values of WRF 'Times' variable |
---|
843 | """ |
---|
844 | fname = 'var_WRFtime' |
---|
845 | |
---|
846 | yrref=refdate[0:4] |
---|
847 | monref=refdate[4:6] |
---|
848 | dayref=refdate[6:8] |
---|
849 | horref=refdate[8:10] |
---|
850 | minref=refdate[10:12] |
---|
851 | secref=refdate[12:14] |
---|
852 | |
---|
853 | refdateS = yrref + '-' + monref + '-' + dayref + ' ' + horref + ':' + minref + \ |
---|
854 | ':' + secref |
---|
855 | |
---|
856 | dt = timewrfv.shape[0] |
---|
857 | WRFtime = np.zeros((dt), dtype=np.float) |
---|
858 | |
---|
859 | for it in range(dt): |
---|
860 | wrfdates = gen.datetimeStr_conversion(timewrfv[it,:],'WRFdatetime', 'matYmdHMS') |
---|
861 | WRFtime[it] = gen.realdatetime1_CFcompilant(wrfdates, refdate, tunitsval) |
---|
862 | |
---|
863 | tunits = tunitsval + ' since ' + refdateS |
---|
864 | |
---|
865 | return WRFtime, tunits |
---|
866 | |
---|
867 | def turbulence_var(varv, dimvn, dimn): |
---|
868 | """ Function to compute the Taylor's decomposition turbulence term from a a given variable |
---|
869 | x*=<x^2>_t-(<X>_t)^2 |
---|
870 | turbulence_var(varv,dimn) |
---|
871 | varv= values of the variable |
---|
872 | dimvn= names of the dimension of the variable |
---|
873 | dimn= names of the dimensions (as a dictionary with 'X', 'Y', 'Z', 'T') |
---|
874 | >>> turbulence_var(np.arange((27)).reshape(3,3,3),['time','y','x'],{'T':'time', 'Y':'y', 'X':'x'}) |
---|
875 | [[ 54. 54. 54.] |
---|
876 | [ 54. 54. 54.] |
---|
877 | [ 54. 54. 54.]] |
---|
878 | """ |
---|
879 | fname = 'turbulence_varv' |
---|
880 | |
---|
881 | timedimid = dimvn.index(dimn['T']) |
---|
882 | |
---|
883 | varv2 = varv*varv |
---|
884 | |
---|
885 | vartmean = np.mean(varv, axis=timedimid) |
---|
886 | var2tmean = np.mean(varv2, axis=timedimid) |
---|
887 | |
---|
888 | varvturb = var2tmean - (vartmean*vartmean) |
---|
889 | |
---|
890 | return varvturb |
---|
891 | |
---|
892 | def compute_turbulence(v, dimns, dimvns): |
---|
893 | """ Function to compute the rubulence term of the Taylor's decomposition ...' |
---|
894 | x*=<x^2>_t-(<X>_t)^2 |
---|
895 | [v]= variable (assuming [[t],z,y,x]) |
---|
896 | [dimns]= list of the name of the dimensions of [v] |
---|
897 | [dimvns]= list of the name of the variables with the values of the |
---|
898 | dimensions of [v] |
---|
899 | """ |
---|
900 | fname = 'compute_turbulence' |
---|
901 | |
---|
902 | turbdims = dimns[:] |
---|
903 | turbvdims = dimvns[:] |
---|
904 | |
---|
905 | turbdims.pop(0) |
---|
906 | turbvdims.pop(0) |
---|
907 | |
---|
908 | v2 = v*v |
---|
909 | |
---|
910 | vartmean = np.mean(v, axis=0) |
---|
911 | var2tmean = np.mean(v2, axis=0) |
---|
912 | |
---|
913 | turb = var2tmean - (vartmean*vartmean) |
---|
914 | |
---|
915 | return turb, turbdims, turbvdims |
---|
916 | |
---|
917 | def compute_wds(u, v, dimns, dimvns): |
---|
918 | """ Function to compute the wind direction |
---|
919 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
920 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
921 | [dimns]= list of the name of the dimensions of [u] |
---|
922 | [dimvns]= list of the name of the variables with the values of the |
---|
923 | dimensions of [u] |
---|
924 | """ |
---|
925 | fname = 'compute_wds' |
---|
926 | |
---|
927 | # print ' ' + fname + ': computing wind direction as ATAN2(v,u) ...' |
---|
928 | theta = np.arctan2(v,u) |
---|
929 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
930 | |
---|
931 | wds = 360.*theta/(2.*np.pi) |
---|
932 | |
---|
933 | wdsdims = dimns[:] |
---|
934 | wdsvdims = dimvns[:] |
---|
935 | |
---|
936 | return wds, wdsdims, wdsvdims |
---|
937 | |
---|
938 | def compute_wss(u, v, dimns, dimvns): |
---|
939 | """ Function to compute the wind speed |
---|
940 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
941 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
942 | [dimns]= list of the name of the dimensions of [u] |
---|
943 | [dimvns]= list of the name of the variables with the values of the |
---|
944 | dimensions of [u] |
---|
945 | """ |
---|
946 | fname = 'compute_wss' |
---|
947 | |
---|
948 | # print ' ' + fname + ': computing wind speed as SQRT(v**2 + u**2) ...' |
---|
949 | wss = np.sqrt(u*u + v*v) |
---|
950 | |
---|
951 | wssdims = dimns[:] |
---|
952 | wssvdims = dimvns[:] |
---|
953 | |
---|
954 | return wss, wssdims, wssvdims |
---|
955 | |
---|
956 | def timeunits_seconds(dtu): |
---|
957 | """ Function to transform a time units to seconds |
---|
958 | timeunits_seconds(timeuv) |
---|
959 | [dtu]= time units value to transform in seconds |
---|
960 | """ |
---|
961 | fname='timunits_seconds' |
---|
962 | |
---|
963 | if dtu == 'years': |
---|
964 | times = 365.*24.*3600. |
---|
965 | elif dtu == 'weeks': |
---|
966 | times = 7.*24.*3600. |
---|
967 | elif dtu == 'days': |
---|
968 | times = 24.*3600. |
---|
969 | elif dtu == 'hours': |
---|
970 | times = 3600. |
---|
971 | elif dtu == 'minutes': |
---|
972 | times = 60. |
---|
973 | elif dtu == 'seconds': |
---|
974 | times = 1. |
---|
975 | elif dtu == 'miliseconds': |
---|
976 | times = 1./1000. |
---|
977 | else: |
---|
978 | print errormsg |
---|
979 | print ' ' + fname + ": time units '" + dtu + "' not ready !!" |
---|
980 | quit(-1) |
---|
981 | |
---|
982 | return times |
---|
983 | |
---|
984 | def compute_WRFua(u, v, sina, cosa, dimns, dimvns): |
---|
985 | """ Function to compute geographical rotated WRF 3D winds |
---|
986 | u= orginal WRF x-wind |
---|
987 | v= orginal WRF y-wind |
---|
988 | sina= original WRF local sinus of map rotation |
---|
989 | cosa= original WRF local cosinus of map rotation |
---|
990 | formula: |
---|
991 | ua = u*cosa-va*sina |
---|
992 | va = u*sina+va*cosa |
---|
993 | """ |
---|
994 | fname = 'compute_WRFua' |
---|
995 | |
---|
996 | var0 = u |
---|
997 | var1 = v |
---|
998 | var2 = sina |
---|
999 | var3 = cosa |
---|
1000 | |
---|
1001 | # un-staggering variables |
---|
1002 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1003 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1004 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1005 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1006 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1007 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1008 | |
---|
1009 | for iz in range(var0.shape[1]): |
---|
1010 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1011 | |
---|
1012 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1013 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1014 | |
---|
1015 | return ua, dnamesvar, dvnamesvar |
---|
1016 | |
---|
1017 | def compute_WRFva(u, v, sina, cosa, dimns, dimvns): |
---|
1018 | """ Function to compute geographical rotated WRF 3D winds |
---|
1019 | u= orginal WRF x-wind |
---|
1020 | v= orginal WRF y-wind |
---|
1021 | sina= original WRF local sinus of map rotation |
---|
1022 | cosa= original WRF local cosinus of map rotation |
---|
1023 | formula: |
---|
1024 | ua = u*cosa-va*sina |
---|
1025 | va = u*sina+va*cosa |
---|
1026 | """ |
---|
1027 | fname = 'compute_WRFva' |
---|
1028 | |
---|
1029 | var0 = u |
---|
1030 | var1 = v |
---|
1031 | var2 = sina |
---|
1032 | var3 = cosa |
---|
1033 | |
---|
1034 | # un-staggering variables |
---|
1035 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1036 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1037 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1038 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1039 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1040 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1041 | |
---|
1042 | for iz in range(var0.shape[1]): |
---|
1043 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1044 | |
---|
1045 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1046 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1047 | |
---|
1048 | return va, dnamesvar, dvnamesvar |
---|
1049 | |
---|
1050 | def compute_WRFuava(u, v, sina, cosa, dimns, dimvns): |
---|
1051 | """ Function to compute geographical rotated WRF 3D winds |
---|
1052 | u= orginal WRF x-wind |
---|
1053 | v= orginal WRF y-wind |
---|
1054 | sina= original WRF local sinus of map rotation |
---|
1055 | cosa= original WRF local cosinus of map rotation |
---|
1056 | formula: |
---|
1057 | ua = u*cosa-va*sina |
---|
1058 | va = u*sina+va*cosa |
---|
1059 | """ |
---|
1060 | fname = 'compute_WRFuava' |
---|
1061 | |
---|
1062 | var0 = u |
---|
1063 | var1 = v |
---|
1064 | var2 = sina |
---|
1065 | var3 = cosa |
---|
1066 | |
---|
1067 | # un-staggering variables |
---|
1068 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1069 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1070 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1071 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1072 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1073 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1074 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1075 | |
---|
1076 | for iz in range(var0.shape[1]): |
---|
1077 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1078 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1079 | |
---|
1080 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1081 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1082 | |
---|
1083 | return ua, va, dnamesvar, dvnamesvar |
---|
1084 | |
---|
1085 | def compute_WRFuas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1086 | """ Function to compute geographical rotated WRF 2-meter x-wind |
---|
1087 | u10= orginal WRF 10m x-wind |
---|
1088 | v10= orginal WRF 10m y-wind |
---|
1089 | sina= original WRF local sinus of map rotation |
---|
1090 | cosa= original WRF local cosinus of map rotation |
---|
1091 | formula: |
---|
1092 | uas = u10*cosa-va10*sina |
---|
1093 | vas = u10*sina+va10*cosa |
---|
1094 | """ |
---|
1095 | fname = 'compute_WRFuas' |
---|
1096 | |
---|
1097 | var0 = u10 |
---|
1098 | var1 = v10 |
---|
1099 | var2 = sina |
---|
1100 | var3 = cosa |
---|
1101 | |
---|
1102 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1103 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1104 | |
---|
1105 | uas = var0*var3 - var1*var2 |
---|
1106 | |
---|
1107 | dnamesvar = ['Time','south_north','west_east'] |
---|
1108 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1109 | |
---|
1110 | return uas, dnamesvar, dvnamesvar |
---|
1111 | |
---|
1112 | def compute_WRFvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1113 | """ Function to compute geographical rotated WRF 2-meter y-wind |
---|
1114 | u10= orginal WRF 10m x-wind |
---|
1115 | v10= orginal WRF 10m y-wind |
---|
1116 | sina= original WRF local sinus of map rotation |
---|
1117 | cosa= original WRF local cosinus of map rotation |
---|
1118 | formula: |
---|
1119 | uas = u10*cosa-va10*sina |
---|
1120 | vas = u10*sina+va10*cosa |
---|
1121 | """ |
---|
1122 | fname = 'compute_WRFvas' |
---|
1123 | |
---|
1124 | var0 = u10 |
---|
1125 | var1 = v10 |
---|
1126 | var2 = sina |
---|
1127 | var3 = cosa |
---|
1128 | |
---|
1129 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1130 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1131 | |
---|
1132 | vas = var0*var2 + var1*var3 |
---|
1133 | |
---|
1134 | dnamesvar = ['Time','south_north','west_east'] |
---|
1135 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1136 | |
---|
1137 | return vas, dnamesvar, dvnamesvar |
---|
1138 | |
---|
1139 | def compute_WRFuasvas(u10, v10, sina, cosa, dimns, dimvns): |
---|
1140 | """ Function to compute geographical rotated WRF 2-meter winds |
---|
1141 | u10= orginal WRF 10m x-wind |
---|
1142 | v10= orginal WRF 10m y-wind |
---|
1143 | sina= original WRF local sinus of map rotation |
---|
1144 | cosa= original WRF local cosinus of map rotation |
---|
1145 | formula: |
---|
1146 | uas = u10*cosa-va10*sina |
---|
1147 | vas = u10*sina+va10*cosa |
---|
1148 | """ |
---|
1149 | fname = 'compute_WRFuasvas' |
---|
1150 | |
---|
1151 | var0 = u10 |
---|
1152 | var1 = v10 |
---|
1153 | var2 = sina |
---|
1154 | var3 = cosa |
---|
1155 | |
---|
1156 | uas = np.zeros(var0.shape, dtype=np.float) |
---|
1157 | vas = np.zeros(var0.shape, dtype=np.float) |
---|
1158 | |
---|
1159 | uas = var0*var3 - var1*var2 |
---|
1160 | vas = var0*var2 + var1*var3 |
---|
1161 | |
---|
1162 | dnamesvar = ['Time','south_north','west_east'] |
---|
1163 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1164 | |
---|
1165 | return uas, vas, dnamesvar, dvnamesvar |
---|
1166 | |
---|
1167 | def compute_WRFta(t, p, dimns, dimvns): |
---|
1168 | """ Function to compute WRF air temperature |
---|
1169 | t= orginal WRF temperature |
---|
1170 | p= original WRF pressure (P + PB) |
---|
1171 | formula: |
---|
1172 | temp = theta*(p/p0)**(R/Cp) |
---|
1173 | |
---|
1174 | """ |
---|
1175 | fname = 'compute_WRFta' |
---|
1176 | |
---|
1177 | ta = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1178 | |
---|
1179 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1180 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1181 | |
---|
1182 | return ta, dnamesvar, dvnamesvar |
---|
1183 | |
---|
1184 | def compute_WRFtd(t, p, qv, dimns, dimvns): |
---|
1185 | """ Function to compute WRF dew-point air temperature |
---|
1186 | t= orginal WRF temperature |
---|
1187 | p= original WRF pressure (P + PB) |
---|
1188 | formula: |
---|
1189 | temp = theta*(p/p0)**(R/Cp) |
---|
1190 | |
---|
1191 | """ |
---|
1192 | fname = 'compute_WRFtd' |
---|
1193 | |
---|
1194 | tk = (t+300.)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1195 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1196 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1197 | |
---|
1198 | rh = qv/data2 |
---|
1199 | |
---|
1200 | pa = rh * data1 |
---|
1201 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1202 | |
---|
1203 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1204 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1205 | |
---|
1206 | return td, dnamesvar, dvnamesvar |
---|
1207 | |
---|
1208 | def compute_WRFwd(u, v, sina, cosa, dimns, dimvns): |
---|
1209 | """ Function to compute the wind direction |
---|
1210 | u= W-E wind direction [ms-1] |
---|
1211 | v= N-S wind direction [ms-1] |
---|
1212 | sina= original WRF local sinus of map rotation |
---|
1213 | cosa= original WRF local cosinus of map rotation |
---|
1214 | """ |
---|
1215 | fname = 'compute_WRFwd' |
---|
1216 | var0 = u |
---|
1217 | var1 = v |
---|
1218 | var2 = sina |
---|
1219 | var3 = cosa |
---|
1220 | |
---|
1221 | # un-staggering variables |
---|
1222 | unstgdims = [var0.shape[0], var0.shape[1], var0.shape[2], var0.shape[3]-1] |
---|
1223 | ua = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1224 | va = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1225 | unstgvar0 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1226 | unstgvar1 = np.zeros(tuple(unstgdims), dtype=np.float) |
---|
1227 | unstgvar0 = 0.5*(var0[:,:,:,0:var0.shape[3]-1] + var0[:,:,:,1:var0.shape[3]]) |
---|
1228 | unstgvar1 = 0.5*(var1[:,:,0:var1.shape[2]-1,:] + var1[:,:,1:var1.shape[2],:]) |
---|
1229 | |
---|
1230 | for iz in range(var0.shape[1]): |
---|
1231 | ua[:,iz,:,:] = unstgvar0[:,iz,:,:]*var3 - unstgvar1[:,iz,:,:]*var2 |
---|
1232 | va[:,iz,:,:] = unstgvar0[:,iz,:,:]*var2 + unstgvar1[:,iz,:,:]*var3 |
---|
1233 | |
---|
1234 | theta = np.arctan2(va,ua) |
---|
1235 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1236 | |
---|
1237 | wd = 360.*theta/(2.*np.pi) |
---|
1238 | |
---|
1239 | dnamesvar = ['Time','bottom_top','south_north','west_east'] |
---|
1240 | dvnamesvar = ncvar.var_dim_dimv(dnamesvar,dimns,dimvns) |
---|
1241 | |
---|
1242 | return wd |
---|
1243 | |
---|
1244 | def var_td(t, p, qv): |
---|
1245 | """ Function to compute dew-point air temperature from temperature and pressure values |
---|
1246 | t= temperature [K] |
---|
1247 | p= pressure (Pa) |
---|
1248 | formula: |
---|
1249 | temp = theta*(p/p0)**(R/Cp) |
---|
1250 | |
---|
1251 | """ |
---|
1252 | fname = 'compute_td' |
---|
1253 | |
---|
1254 | tk = (t)*(p/fdef.module_definitions.p0ref)**(fdef.module_definitions.rcp) |
---|
1255 | data1 = 10.*0.6112*np.exp(17.67*(tk-273.16)/(tk-29.65)) |
---|
1256 | data2 = 0.622*data1/(0.01*p-(1.-0.622)*data1) |
---|
1257 | |
---|
1258 | rh = qv/data2 |
---|
1259 | |
---|
1260 | pa = rh * data1 |
---|
1261 | td = 257.44*np.log(pa/6.1121)/(18.678-np.log(pa/6.1121)) |
---|
1262 | |
---|
1263 | return td |
---|
1264 | |
---|
1265 | def var_wd(u, v): |
---|
1266 | """ Function to compute the wind direction |
---|
1267 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1268 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1269 | """ |
---|
1270 | fname = 'var_wd' |
---|
1271 | |
---|
1272 | theta = np.arctan2(v,u) |
---|
1273 | theta = np.where(theta < 0., theta + 2.*np.pi, theta) |
---|
1274 | |
---|
1275 | wd = 360.*theta/(2.*np.pi) |
---|
1276 | |
---|
1277 | return wd |
---|
1278 | |
---|
1279 | def var_ws(u, v): |
---|
1280 | """ Function to compute the wind speed |
---|
1281 | [u]= W-E wind direction [ms-1, knot, ...] |
---|
1282 | [v]= N-S wind direction [ms-1, knot, ...] |
---|
1283 | """ |
---|
1284 | fname = 'var_ws' |
---|
1285 | |
---|
1286 | ws = np.sqrt(u*u + v*v) |
---|
1287 | |
---|
1288 | return ws |
---|
1289 | |
---|
1290 | class C_diagnostic(object): |
---|
1291 | """ Class to compute generic variables |
---|
1292 | Cdiag: name of the diagnostic to compute |
---|
1293 | ncobj: netcdf object with data |
---|
1294 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
1295 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
1296 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
1297 | self.values = Values of the diagnostic |
---|
1298 | self.dims = Dimensions of the diagnostic |
---|
1299 | self.units = units of the diagnostic |
---|
1300 | self.incvars = list of variables from the input netCDF object |
---|
1301 | """ |
---|
1302 | def __init__(self, Cdiag, ncobj, sfcvars, vars3D, dictdims): |
---|
1303 | fname = 'C_diagnostic' |
---|
1304 | self.values = None |
---|
1305 | self.dims = None |
---|
1306 | self.incvars = ncobj.variables |
---|
1307 | self.units = None |
---|
1308 | |
---|
1309 | if Cdiag == 'td': |
---|
1310 | """ Computing dew-point temperature |
---|
1311 | """ |
---|
1312 | vn = 'td' |
---|
1313 | CF3Dvars = ['ta', 'plev', 'hus'] |
---|
1314 | for v3D in CF3Dvars: |
---|
1315 | if not vars3D.has_key(v3D): |
---|
1316 | print gen.errormsg |
---|
1317 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1318 | "' attribution to compute '" + vn + "' !!" |
---|
1319 | print ' Equivalence of 3D variables provided _______' |
---|
1320 | gen.printing_dictionary(vars3D) |
---|
1321 | quit(-1) |
---|
1322 | if not self.incvars.has_key(vars3D[v3D]): |
---|
1323 | print gen.errormsg |
---|
1324 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
1325 | "' in input file to compute '" + vn + "' !!" |
---|
1326 | print ' available variables:', self.incvars.keys() |
---|
1327 | print ' looking for variables _______' |
---|
1328 | gen.printing_dictionary(vars3D) |
---|
1329 | quit(-1) |
---|
1330 | |
---|
1331 | ta = ncobj.variables[vars3D['ta']][:] |
---|
1332 | p = ncobj.variables[vars3D['plev']][:] |
---|
1333 | hur = ncobj.variables[vars3D['hus']][:] |
---|
1334 | |
---|
1335 | if len(ta.shape) != len(p.shape): |
---|
1336 | p = fill_Narray(p, ta*0., filldim=[0,2,3]) |
---|
1337 | |
---|
1338 | self.values = var_td(ta, p, hur) |
---|
1339 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1340 | dictdims['lon']] |
---|
1341 | self.units = 'K' |
---|
1342 | |
---|
1343 | elif Cdiag == 'wd': |
---|
1344 | """ Computing wind direction |
---|
1345 | """ |
---|
1346 | vn = 'wd' |
---|
1347 | CF3Dvars = ['ua', 'va'] |
---|
1348 | for v3D in CF3Dvars: |
---|
1349 | if not vars3D.has_key(v3D): |
---|
1350 | print gen.errormsg |
---|
1351 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1352 | "self.' attribution to compute '" + vn + "' !!" |
---|
1353 | print ' Equivalence of 3D variables provided _______' |
---|
1354 | gen.printing_dictionary(vars3D) |
---|
1355 | quit(-1) |
---|
1356 | if not self.incvars.has_key(vars3D[v3D]): |
---|
1357 | print gen.errormsg |
---|
1358 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
1359 | "' in input file to compute '" + vn + "' !!" |
---|
1360 | print ' available variables:', self.incvars.keys() |
---|
1361 | print ' looking for variables _______' |
---|
1362 | gen.printing_dictionary(vars3D) |
---|
1363 | quit(-1) |
---|
1364 | |
---|
1365 | ua = ncobj.variables[vars3D['ua']][:] |
---|
1366 | va = ncobj.variables[vars3D['va']][:] |
---|
1367 | |
---|
1368 | self.values = var_wd(ua, va) |
---|
1369 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1370 | dictdims['lon']] |
---|
1371 | self.units = 'degree' |
---|
1372 | |
---|
1373 | elif Cdiag == 'ws': |
---|
1374 | """ Computing wind speed |
---|
1375 | """ |
---|
1376 | vn = 'ws' |
---|
1377 | CF3Dvars = ['ua', 'va'] |
---|
1378 | for v3D in CF3Dvars: |
---|
1379 | if not vars3D.has_key(v3D): |
---|
1380 | print gen.errormsg |
---|
1381 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1382 | "' attribution to compute '" + vn + "' !!" |
---|
1383 | print ' Equivalence of 3D variables provided _______' |
---|
1384 | gen.printing_dictionary(vars3D) |
---|
1385 | quit(-1) |
---|
1386 | if not self.incvars.has_key(vars3D[v3D]): |
---|
1387 | print gen.errormsg |
---|
1388 | print ' ' + fname + ": missing variable '" + vars3D[v3D] + \ |
---|
1389 | "' in input file to compute '" + vn + "' !!" |
---|
1390 | print ' available variables:', self.incvars.keys() |
---|
1391 | print ' looking for variables _______' |
---|
1392 | gen.printing_dictionary(vars3D) |
---|
1393 | quit(-1) |
---|
1394 | |
---|
1395 | ua = ncobj.variables[vars3D['ua']][:] |
---|
1396 | va = ncobj.variables[vars3D['va']][:] |
---|
1397 | |
---|
1398 | self.values = var_ws(ua, va) |
---|
1399 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1400 | dictdims['lon']] |
---|
1401 | self.units = ncobj.variables[vars3D['ua']].units |
---|
1402 | |
---|
1403 | else: |
---|
1404 | print gen.errormsg |
---|
1405 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
1406 | print ' available ones:', Cavailablediags |
---|
1407 | quit(-1) |
---|
1408 | |
---|
1409 | class W_diagnostic(object): |
---|
1410 | """ Class to compute WRF diagnostics variables |
---|
1411 | Wdiag: name of the diagnostic to compute |
---|
1412 | ncobj: netcdf object with data |
---|
1413 | sfcvars: dictionary with CF equivalencies of surface variables inside file |
---|
1414 | vars3D: dictionary with CF equivalencies of 3D variables inside file |
---|
1415 | indims: list of dimensions inside file |
---|
1416 | invardims: list of dimension-variables inside file |
---|
1417 | dictdims: dictionary with CF equivalencies of dimensions inside file |
---|
1418 | self.values = Values of the diagnostic |
---|
1419 | self.dims = Dimensions of the diagnostic |
---|
1420 | self.units = units of the diagnostic |
---|
1421 | self.incvars = list of variables from the input netCDF object |
---|
1422 | """ |
---|
1423 | def __init__(self, Wdiag, ncobj, sfcvars, vars3D, indims, invardims, dictdims): |
---|
1424 | fname = 'W_diagnostic' |
---|
1425 | |
---|
1426 | self.values = None |
---|
1427 | self.dims = None |
---|
1428 | self.incvars = ncobj.variables |
---|
1429 | self.units = None |
---|
1430 | |
---|
1431 | if Wdiag == 'p': |
---|
1432 | """ Computing air pressure |
---|
1433 | """ |
---|
1434 | vn = 'p' |
---|
1435 | |
---|
1436 | self.values = ncobj.variables['PB'][:] + ncobj.variables['P'][:] |
---|
1437 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1438 | dictdims['lon']] |
---|
1439 | self.units = ncobj.variables['PB'].units |
---|
1440 | |
---|
1441 | elif Wdiag == 'ta': |
---|
1442 | """ Computing air temperature |
---|
1443 | """ |
---|
1444 | vn = 'ta' |
---|
1445 | CF3Dvars = ['ta'] |
---|
1446 | for v3D in CF3Dvars: |
---|
1447 | if not vars3D.has_key(v3D): |
---|
1448 | print gen.errormsg |
---|
1449 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1450 | "' attribution to compute '" + vn + "' !!" |
---|
1451 | print ' Equivalence of 3D variables provided _______' |
---|
1452 | gen.printing_dictionary(vars3D) |
---|
1453 | quit(-1) |
---|
1454 | |
---|
1455 | ta = ncobj.variables['T'][:] |
---|
1456 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
1457 | |
---|
1458 | vals, dims, vdims = compute_WRFta(ta, p, indims, invardims) |
---|
1459 | self.values = vals |
---|
1460 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1461 | dictdims['lon']] |
---|
1462 | self.units = 'K' |
---|
1463 | |
---|
1464 | elif Wdiag == 'td': |
---|
1465 | """ Computing dew-point temperature |
---|
1466 | """ |
---|
1467 | vn = 'td' |
---|
1468 | CF3Dvars = ['ta', 'hus'] |
---|
1469 | for v3D in CF3Dvars: |
---|
1470 | if not vars3D.has_key(v3D): |
---|
1471 | print gen.errormsg |
---|
1472 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1473 | "' attribution to compute '" + vn + "' !!" |
---|
1474 | print ' Equivalence of 3D variables provided _______' |
---|
1475 | gen.printing_dictionary(vars3D) |
---|
1476 | quit(-1) |
---|
1477 | |
---|
1478 | ta = ncobj.variables['T'][:] |
---|
1479 | p = ncobj.variables['P'][:] + ncobj.variables['PB'][:] |
---|
1480 | hur = ncobj.variables['QVAPOR'][:] |
---|
1481 | |
---|
1482 | vals, dims, vdims = compute_WRFtd(ta, p, hur, indims, invardims) |
---|
1483 | self.values = vals |
---|
1484 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1485 | dictdims['lon']] |
---|
1486 | self.units = 'K' |
---|
1487 | |
---|
1488 | elif Wdiag == 'ua': |
---|
1489 | """ Computing x-wind |
---|
1490 | """ |
---|
1491 | vn = 'ua' |
---|
1492 | CF3Dvars = ['ua', 'va'] |
---|
1493 | for v3D in CF3Dvars: |
---|
1494 | if not vars3D.has_key(v3D): |
---|
1495 | print gen.errormsg |
---|
1496 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1497 | "' attribution to compute '" + vn + "' !!" |
---|
1498 | print ' Equivalence of 3D variables provided _______' |
---|
1499 | gen.printing_dictionary(vars3D) |
---|
1500 | quit(-1) |
---|
1501 | |
---|
1502 | ua = ncobj.variables['U'][:] |
---|
1503 | va = ncobj.variables['V'][:] |
---|
1504 | sina = ncobj.variables['SINALPHA'][:] |
---|
1505 | cosa = ncobj.variables['COSALPHA'][:] |
---|
1506 | |
---|
1507 | vals, dims, vdims = compute_WRFua(ua, va, sina, cosa, indims, invardims) |
---|
1508 | self.values = vals |
---|
1509 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1510 | dictdims['lon']] |
---|
1511 | self.units = ncobj.variables['U'].units |
---|
1512 | |
---|
1513 | elif Wdiag == 'uas': |
---|
1514 | """ Computing 10m x-wind |
---|
1515 | """ |
---|
1516 | vn = 'uas' |
---|
1517 | CFsfcvars = ['uas', 'vas'] |
---|
1518 | for vsf in CFsfcvars: |
---|
1519 | if not sfcvars.has_key(vsf): |
---|
1520 | print gen.errormsg |
---|
1521 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
1522 | "' attribution to compute '" + vn + "' !!" |
---|
1523 | print ' Equivalence of sfc variables provided _______' |
---|
1524 | gen.printing_dictionary(sfcvars) |
---|
1525 | quit(-1) |
---|
1526 | |
---|
1527 | uas = ncobj.variables['U10'][:] |
---|
1528 | vas = ncobj.variables['V10'][:] |
---|
1529 | sina = ncobj.variables['SINALPHA'][:] |
---|
1530 | cosa = ncobj.variables['COSALPHA'][:] |
---|
1531 | |
---|
1532 | vals,dims,vdims = compute_WRFuas(uas, vas, sina, cosa, indims, invardims) |
---|
1533 | self.values = vals |
---|
1534 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1535 | dictdims['lon']] |
---|
1536 | self.units = ncobj.variables['U10'].units |
---|
1537 | |
---|
1538 | elif Wdiag == 'va': |
---|
1539 | """ Computing y-wind |
---|
1540 | """ |
---|
1541 | vn = 'ua' |
---|
1542 | CF3Dvars = ['ua', 'va'] |
---|
1543 | for v3D in CF3Dvars: |
---|
1544 | if not vars3D.has_key(v3D): |
---|
1545 | print gen.errormsg |
---|
1546 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1547 | "' attribution to compute '" + vn + "' !!" |
---|
1548 | print ' Equivalence of 3D variables provided _______' |
---|
1549 | gen.printing_dictionary(vars3D) |
---|
1550 | quit(-1) |
---|
1551 | |
---|
1552 | ua = ncobj.variables['U'][:] |
---|
1553 | va = ncobj.variables['V'][:] |
---|
1554 | sina = ncobj.variables['SINALPHA'][:] |
---|
1555 | cosa = ncobj.variables['COSALPHA'][:] |
---|
1556 | |
---|
1557 | vals, dims, vdims = compute_WRFva(ua, va, sina, cosa, indims, invardims) |
---|
1558 | self.values = vals |
---|
1559 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1560 | dictdims['lon']] |
---|
1561 | self.units = ncobj.variables['U'].units |
---|
1562 | |
---|
1563 | elif Wdiag == 'vas': |
---|
1564 | """ Computing 10m y-wind |
---|
1565 | """ |
---|
1566 | vn = 'uas' |
---|
1567 | CFsfcvars = ['uas', 'vas'] |
---|
1568 | for vsf in CFsfcvars: |
---|
1569 | if not sfcvars.has_key(vsf): |
---|
1570 | print gen.errormsg |
---|
1571 | print ' ' + fname + ": missing variable '" + vsf + \ |
---|
1572 | "' attribution to compute '" + vn + "' !!" |
---|
1573 | print ' Equivalence of sfc variables provided _______' |
---|
1574 | gen.printing_dictionary(sfcvars) |
---|
1575 | quit(-1) |
---|
1576 | |
---|
1577 | uas = ncobj.variables['U10'][:] |
---|
1578 | vas = ncobj.variables['V10'][:] |
---|
1579 | sina = ncobj.variables['SINALPHA'][:] |
---|
1580 | cosa = ncobj.variables['COSALPHA'][:] |
---|
1581 | |
---|
1582 | vals,dims,vdims = compute_WRFvas(uas, vas, sina, cosa, indims, invardims) |
---|
1583 | self.values = vals |
---|
1584 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1585 | dictdims['lon']] |
---|
1586 | self.units = ncobj.variables['U10'].units |
---|
1587 | |
---|
1588 | elif Wdiag == 'wd': |
---|
1589 | """ Computing wind direction |
---|
1590 | """ |
---|
1591 | vn = 'wd' |
---|
1592 | CF3Dvars = ['ua', 'va'] |
---|
1593 | for v3D in CF3Dvars: |
---|
1594 | if not vars3D.has_key(v3D): |
---|
1595 | print gen.errormsg |
---|
1596 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1597 | "' attribution to compute '" + vn + "' !!" |
---|
1598 | print ' Equivalence of 3D variables provided _______' |
---|
1599 | gen.printing_dictionary(vars3D) |
---|
1600 | quit(-1) |
---|
1601 | |
---|
1602 | ua = ncobj.variables['U10'][:] |
---|
1603 | va = ncobj.variables['V10'][:] |
---|
1604 | sina = ncobj.variables['SINALPHA'][:] |
---|
1605 | cosa = ncobj.variables['COSALPHA'][:] |
---|
1606 | |
---|
1607 | vals, dims, vdims = compute_WRFwd(ua, va, sina, cosa, indims, invardims) |
---|
1608 | self.values = vals |
---|
1609 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1610 | dictdims['lon']] |
---|
1611 | self.units = 'degree' |
---|
1612 | |
---|
1613 | elif Wdiag == 'ws': |
---|
1614 | """ Computing wind speed |
---|
1615 | """ |
---|
1616 | vn = 'ws' |
---|
1617 | CF3Dvars = ['ua', 'va'] |
---|
1618 | for v3D in CF3Dvars: |
---|
1619 | if not vars3D.has_key(v3D): |
---|
1620 | print gen.errormsg |
---|
1621 | print ' ' + fname + ": missing variable '" + v3D + \ |
---|
1622 | "' attribution to compute '" + vn + "' !!" |
---|
1623 | print ' Equivalence of 3D variables provided _______' |
---|
1624 | gen.printing_dictionary(vars3D) |
---|
1625 | quit(-1) |
---|
1626 | |
---|
1627 | ua = ncobj.variables['U10'][:] |
---|
1628 | va = ncobj.variables['V10'][:] |
---|
1629 | |
---|
1630 | self.values = var_ws(ua, va) |
---|
1631 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1632 | dictdims['lon']] |
---|
1633 | self.units = ncobj.variables['U10'].units |
---|
1634 | |
---|
1635 | elif Wdiag == 'zg': |
---|
1636 | """ Computing geopotential |
---|
1637 | """ |
---|
1638 | vn = 'zg' |
---|
1639 | |
---|
1640 | self.values = ncobj.variables['PHB'][:] + ncobj.variables['PH'][:] |
---|
1641 | self.dims = [dictdims['time'], dictdims['plev'], dictdims['lat'], \ |
---|
1642 | dictdims['lon']] |
---|
1643 | self.units = ncobj.variables['PHB'].units |
---|
1644 | |
---|
1645 | else: |
---|
1646 | print gen.errormsg |
---|
1647 | print ' ' + fname + ": variable '" + Wdiag + "' not ready !!" |
---|
1648 | print ' available ones:', Wavailablediags |
---|
1649 | quit(-1) |
---|