[1] | 1 | #if ( RWORDSIZE == 4 ) |
---|
| 2 | # define VREC vsrec |
---|
| 3 | # define VSQRT vssqrt |
---|
| 4 | #else |
---|
| 5 | # define VREC vrec |
---|
| 6 | # define VSQRT vsqrt |
---|
| 7 | #endif |
---|
| 8 | |
---|
| 9 | MODULE module_mp_wdm6 |
---|
| 10 | ! |
---|
| 11 | ! |
---|
| 12 | ! |
---|
| 13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
---|
| 14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
---|
| 15 | REAL, PARAMETER, PRIVATE :: n0g = 4.e6 ! intercept parameter graupel |
---|
| 16 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
---|
| 17 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
---|
| 18 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
| 19 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
| 20 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
| 21 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
| 22 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
---|
| 23 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
---|
| 24 | REAL, PARAMETER, PRIVATE :: avtg = 330. ! a constant for terminal velocity of graupel |
---|
| 25 | REAL, PARAMETER, PRIVATE :: bvtg = 0.8 ! a constant for terminal velocity of graupel |
---|
| 26 | REAL, PARAMETER, PRIVATE :: deng = 500. ! density of graupel |
---|
| 27 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
---|
| 28 | REAL, PARAMETER, PRIVATE :: lamdacmax = 1.e10 ! limited maximum value for slope parameter of cloud water |
---|
| 29 | REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e8 ! limited maximum value for slope parameter of rain |
---|
| 30 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
---|
| 31 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
---|
| 32 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
---|
| 33 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
---|
| 34 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
---|
| 35 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
| 36 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing |
---|
| 37 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing |
---|
| 38 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
---|
| 39 | REAL, PARAMETER, PRIVATE :: ncmin = 1.e1 ! minimum value for Nc |
---|
| 40 | REAL, PARAMETER, PRIVATE :: nrmin = 1.e-2 ! minimum value for Nr |
---|
| 41 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency |
---|
| 42 | REAL, PARAMETER, PRIVATE :: dens = 100.0 ! Density of snow |
---|
| 43 | REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! threshold amount for aggretion to occur |
---|
| 44 | ! |
---|
| 45 | REAL, PARAMETER, PRIVATE :: satmax = 1.0048 ! maximum saturation value for CCN activation |
---|
| 46 | ! 1.008 for maritime /1.0048 for conti |
---|
| 47 | REAL, PARAMETER, PRIVATE :: actk = 0.6 ! parameter for the CCN activation |
---|
| 48 | REAL, PARAMETER, PRIVATE :: actr = 1.5 ! radius of activated CCN drops |
---|
| 49 | REAL, PARAMETER, PRIVATE :: ncrk1 = 3.03e3 ! Long's collection kernel coefficient |
---|
| 50 | REAL, PARAMETER, PRIVATE :: ncrk2 = 2.59e15 ! Long's collection kernel coefficient |
---|
| 51 | REAL, PARAMETER, PRIVATE :: di100 = 1.e-4 ! parameter related with accretion and collection of cloud drops |
---|
| 52 | REAL, PARAMETER, PRIVATE :: di600 = 6.e-4 ! parameter related with accretion and collection of cloud drops |
---|
| 53 | REAL, PARAMETER, PRIVATE :: di2000 = 2000.e-6 ! parameter related with accretion and collection of cloud drops |
---|
| 54 | REAL, PARAMETER, PRIVATE :: di82 = 82.e-6 ! dimater related with raindrops evaporation |
---|
| 55 | REAL, PARAMETER, PRIVATE :: di15 = 15.e-6 ! auto conversion takes place beyond this diameter |
---|
| 56 | ! |
---|
| 57 | REAL, SAVE :: & |
---|
| 58 | qc0,qck1,pidnc,bvtr1,bvtr2,bvtr3,bvtr4,bvtr5, & |
---|
| 59 | bvtr6,bvtr7, bvtr2o5,bvtr3o5, & |
---|
| 60 | g1pbr,g2pbr,g3pbr,g4pbr,g5pbr,g6pbr,g7pbr, & |
---|
| 61 | g5pbro2,g7pbro2,pi, & |
---|
| 62 | pvtr,pvtrn,eacrr,pacrr,pidn0r,pidnr, & |
---|
| 63 | precr1,precr2,xmmax,roqimax,bvts1,bvts2, & |
---|
| 64 | bvts3,bvts4,g1pbs,g3pbs,g4pbs,g5pbso2, & |
---|
| 65 | pvts,pacrs,precs1,precs2,pidn0s,xlv1,pacrc, & |
---|
| 66 | bvtg1,bvtg2,bvtg3,bvtg4,g1pbg,g3pbg,g4pbg, & |
---|
| 67 | g5pbgo2,pvtg,pacrg,precg1,precg2,pidn0g, & |
---|
| 68 | rslopecmax,rslopec2max,rslopec3max, & |
---|
| 69 | rslopermax,rslopesmax,rslopegmax, & |
---|
| 70 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
| 71 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
| 72 | rsloper3max,rslopes3max,rslopeg3max |
---|
| 73 | CONTAINS |
---|
| 74 | !=================================================================== |
---|
| 75 | ! |
---|
| 76 | SUBROUTINE wdm6(th, q, qc, qr, qi, qs, qg, & |
---|
| 77 | nn, nc, nr, & |
---|
| 78 | den, pii, p, delz, & |
---|
| 79 | delt,g, cpd, cpv, ccn0, rd, rv, t0c, & |
---|
| 80 | ep1, ep2, qmin, & |
---|
| 81 | XLS, XLV0, XLF0, den0, denr, & |
---|
| 82 | cliq,cice,psat, & |
---|
| 83 | rain, rainncv, & |
---|
| 84 | snow, snowncv, & |
---|
| 85 | sr, & |
---|
| 86 | graupel, graupelncv, & |
---|
| 87 | itimestep, & |
---|
| 88 | ids,ide, jds,jde, kds,kde, & |
---|
| 89 | ims,ime, jms,jme, kms,kme, & |
---|
| 90 | its,ite, jts,jte, kts,kte & |
---|
| 91 | ) |
---|
| 92 | !------------------------------------------------------------------- |
---|
| 93 | IMPLICIT NONE |
---|
| 94 | !------------------------------------------------------------------- |
---|
| 95 | ! |
---|
| 96 | ! This code is a WRF double-moment 6-class GRAUPEL phase |
---|
| 97 | ! microphyiscs scheme (WDM6). The WDM microphysics scheme predicts |
---|
| 98 | ! number concentrations for warm rain species including clouds and |
---|
| 99 | ! rain. cloud condensation nuclei (CCN) is also predicted. |
---|
| 100 | ! The cold rain species including ice, snow, graupel follow the |
---|
| 101 | ! WRF single-moment 6-class microphysics (WSM6, Hong and Lim 2006) |
---|
| 102 | ! in which theoretical background for WSM ice phase microphysics is |
---|
| 103 | ! based on Hong et al. (2004). A new mixed-phase terminal velocity |
---|
| 104 | ! for precipitating ice is introduced in WSM6 (Dudhia et al. 2008). |
---|
| 105 | ! The WDM scheme is described in Lim and Hong (2010). |
---|
| 106 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
| 107 | ! |
---|
| 108 | ! WDM6 cloud scheme |
---|
| 109 | ! |
---|
| 110 | ! Coded by Kyo-Sun Lim and Song-You Hong (Yonsei Univ.) Fall 2008 |
---|
| 111 | ! |
---|
| 112 | ! Implemented by Kyo-Sun Lim and Jimy Dudhia (NCAR) Winter 2008 |
---|
| 113 | ! |
---|
| 114 | ! Reference) Lim and Hong (LH, 2010) Mon. Wea. Rev. |
---|
| 115 | ! Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
| 116 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
| 117 | ! Cohard and Pinty (CP, 2000) Quart. J. Roy. Meteor. Soc. |
---|
| 118 | ! Khairoutdinov and Kogan (KK, 2000) Mon. Wea. Rev. |
---|
| 119 | ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan |
---|
| 120 | ! |
---|
| 121 | ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor. |
---|
| 122 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
---|
| 123 | ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci. |
---|
| 124 | ! |
---|
| 125 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
| 126 | ims,ime, jms,jme, kms,kme , & |
---|
| 127 | its,ite, jts,jte, kts,kte |
---|
| 128 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
| 129 | INTENT(INOUT) :: & |
---|
| 130 | th, & |
---|
| 131 | q, & |
---|
| 132 | qc, & |
---|
| 133 | qi, & |
---|
| 134 | qr, & |
---|
| 135 | qs, & |
---|
| 136 | qg, & |
---|
| 137 | nn, & |
---|
| 138 | nc, & |
---|
| 139 | nr |
---|
| 140 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
| 141 | INTENT(IN ) :: & |
---|
| 142 | den, & |
---|
| 143 | pii, & |
---|
| 144 | p, & |
---|
| 145 | delz |
---|
| 146 | REAL, INTENT(IN ) :: delt, & |
---|
| 147 | g, & |
---|
| 148 | rd, & |
---|
| 149 | rv, & |
---|
| 150 | t0c, & |
---|
| 151 | den0, & |
---|
| 152 | cpd, & |
---|
| 153 | cpv, & |
---|
| 154 | ccn0, & |
---|
| 155 | ep1, & |
---|
| 156 | ep2, & |
---|
| 157 | qmin, & |
---|
| 158 | XLS, & |
---|
| 159 | XLV0, & |
---|
| 160 | XLF0, & |
---|
| 161 | cliq, & |
---|
| 162 | cice, & |
---|
| 163 | psat, & |
---|
| 164 | denr |
---|
| 165 | INTEGER, INTENT(IN ) :: itimestep |
---|
| 166 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
| 167 | INTENT(INOUT) :: rain, & |
---|
| 168 | rainncv, & |
---|
| 169 | sr |
---|
| 170 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
| 171 | INTENT(INOUT) :: snow, & |
---|
| 172 | snowncv |
---|
| 173 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
| 174 | INTENT(INOUT) :: graupel, & |
---|
| 175 | graupelncv |
---|
| 176 | ! LOCAL VAR |
---|
| 177 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
| 178 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci |
---|
| 179 | REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs, ncr |
---|
| 180 | INTEGER :: i,j,k |
---|
| 181 | !------------------------------------------------------------------- |
---|
| 182 | IF (itimestep .eq. 1) THEN |
---|
| 183 | DO j=jms,jme |
---|
| 184 | DO k=kms,kme |
---|
| 185 | DO i=ims,ime |
---|
| 186 | nn(i,k,j) = ccn0 |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | ENDDO |
---|
| 190 | ENDIF |
---|
| 191 | ! |
---|
| 192 | DO j=jts,jte |
---|
| 193 | DO k=kts,kte |
---|
| 194 | DO i=its,ite |
---|
| 195 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
| 196 | qci(i,k,1) = qc(i,k,j) |
---|
| 197 | qci(i,k,2) = qi(i,k,j) |
---|
| 198 | qrs(i,k,1) = qr(i,k,j) |
---|
| 199 | qrs(i,k,2) = qs(i,k,j) |
---|
| 200 | qrs(i,k,3) = qg(i,k,j) |
---|
| 201 | ncr(i,k,1) = nn(i,k,j) |
---|
| 202 | ncr(i,k,2) = nc(i,k,j) |
---|
| 203 | ncr(i,k,3) = nr(i,k,j) |
---|
| 204 | ENDDO |
---|
| 205 | ENDDO |
---|
| 206 | ! Sending array starting locations of optional variables may cause |
---|
| 207 | ! troubles, so we explicitly change the call. |
---|
| 208 | CALL wdm62D(t, q(ims,kms,j), qci, qrs, ncr & |
---|
| 209 | ,den(ims,kms,j) & |
---|
| 210 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
| 211 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
---|
| 212 | ,ep1, ep2, qmin & |
---|
| 213 | ,XLS, XLV0, XLF0, den0, denr & |
---|
| 214 | ,cliq,cice,psat & |
---|
| 215 | ,j & |
---|
| 216 | ,rain(ims,j),rainncv(ims,j) & |
---|
| 217 | ,sr(ims,j) & |
---|
| 218 | ,ids,ide, jds,jde, kds,kde & |
---|
| 219 | ,ims,ime, jms,jme, kms,kme & |
---|
| 220 | ,its,ite, jts,jte, kts,kte & |
---|
| 221 | ,snow(ims,j),snowncv(ims,j) & |
---|
| 222 | ,graupel(ims,j),graupelncv(ims,j) & |
---|
| 223 | ) |
---|
| 224 | DO K=kts,kte |
---|
| 225 | DO I=its,ite |
---|
| 226 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
| 227 | qc(i,k,j) = qci(i,k,1) |
---|
| 228 | qi(i,k,j) = qci(i,k,2) |
---|
| 229 | qr(i,k,j) = qrs(i,k,1) |
---|
| 230 | qs(i,k,j) = qrs(i,k,2) |
---|
| 231 | qg(i,k,j) = qrs(i,k,3) |
---|
| 232 | nn(i,k,j) = ncr(i,k,1) |
---|
| 233 | nc(i,k,j) = ncr(i,k,2) |
---|
| 234 | nr(i,k,j) = ncr(i,k,3) |
---|
| 235 | ENDDO |
---|
| 236 | ENDDO |
---|
| 237 | ENDDO |
---|
| 238 | END SUBROUTINE wdm6 |
---|
| 239 | !=================================================================== |
---|
| 240 | ! |
---|
| 241 | SUBROUTINE wdm62D(t, q, qci, qrs, ncr, den, p, delz & |
---|
| 242 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
---|
| 243 | ,ep1, ep2, qmin & |
---|
| 244 | ,XLS, XLV0, XLF0, den0, denr & |
---|
| 245 | ,cliq,cice,psat & |
---|
| 246 | ,lat & |
---|
| 247 | ,rain,rainncv & |
---|
| 248 | ,sr & |
---|
| 249 | ,ids,ide, jds,jde, kds,kde & |
---|
| 250 | ,ims,ime, jms,jme, kms,kme & |
---|
| 251 | ,its,ite, jts,jte, kts,kte & |
---|
| 252 | ,snow,snowncv & |
---|
| 253 | ,graupel,graupelncv & |
---|
| 254 | ) |
---|
| 255 | !------------------------------------------------------------------- |
---|
| 256 | IMPLICIT NONE |
---|
| 257 | !------------------------------------------------------------------- |
---|
| 258 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
| 259 | ims,ime, jms,jme, kms,kme , & |
---|
| 260 | its,ite, jts,jte, kts,kte , & |
---|
| 261 | lat |
---|
| 262 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
| 263 | INTENT(INOUT) :: & |
---|
| 264 | t |
---|
| 265 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
---|
| 266 | INTENT(INOUT) :: & |
---|
| 267 | qci |
---|
| 268 | REAL, DIMENSION( its:ite , kts:kte, 3 ), & |
---|
| 269 | INTENT(INOUT) :: & |
---|
| 270 | qrs, & |
---|
| 271 | ncr |
---|
| 272 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
| 273 | INTENT(INOUT) :: & |
---|
| 274 | q |
---|
| 275 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
| 276 | INTENT(IN ) :: & |
---|
| 277 | den, & |
---|
| 278 | p, & |
---|
| 279 | delz |
---|
| 280 | REAL, INTENT(IN ) :: delt, & |
---|
| 281 | g, & |
---|
| 282 | cpd, & |
---|
| 283 | cpv, & |
---|
| 284 | ccn0, & |
---|
| 285 | t0c, & |
---|
| 286 | den0, & |
---|
| 287 | rd, & |
---|
| 288 | rv, & |
---|
| 289 | ep1, & |
---|
| 290 | ep2, & |
---|
| 291 | qmin, & |
---|
| 292 | XLS, & |
---|
| 293 | XLV0, & |
---|
| 294 | XLF0, & |
---|
| 295 | cliq, & |
---|
| 296 | cice, & |
---|
| 297 | psat, & |
---|
| 298 | denr |
---|
| 299 | REAL, DIMENSION( ims:ime ), & |
---|
| 300 | INTENT(INOUT) :: rain, & |
---|
| 301 | rainncv, & |
---|
| 302 | sr |
---|
| 303 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
| 304 | INTENT(INOUT) :: snow, & |
---|
| 305 | snowncv |
---|
| 306 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
| 307 | INTENT(INOUT) :: graupel, & |
---|
| 308 | graupelncv |
---|
| 309 | ! LOCAL VAR |
---|
| 310 | REAL, DIMENSION( its:ite , kts:kte , 3) :: & |
---|
| 311 | rh, qs, rslope, rslope2, rslope3, rslopeb, & |
---|
| 312 | falk, fall, work1, qrs_tmp |
---|
| 313 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 314 | rslopec, rslopec2,rslopec3 |
---|
| 315 | REAL, DIMENSION( its:ite , kts:kte, 2) :: & |
---|
| 316 | avedia |
---|
| 317 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 318 | workn,falln,falkn |
---|
| 319 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 320 | worka,workr |
---|
| 321 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 322 | den_tmp, delz_tmp, ncr_tmp |
---|
| 323 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 324 | falkc, work1c, work2c, fallc |
---|
| 325 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 326 | pcact, prevp, psdep, pgdep, praut, psaut, pgaut, & |
---|
| 327 | pracw, psacw, pgacw, pgacr, pgacs, psaci, pgmlt, praci, & |
---|
| 328 | piacr, pracs, psacr, pgaci, pseml, pgeml |
---|
| 329 | REAL, DIMENSION( its:ite , kts:kte ) :: paacw |
---|
| 330 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 331 | nraut, nracw, ncevp, nccol, nrcol, & |
---|
| 332 | nsacw, ngacw, niacr, nsacr, ngacr, naacw, & |
---|
| 333 | nseml, ngeml, ncact |
---|
| 334 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 335 | pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, & |
---|
| 336 | denfac, xni, pgevp,n0sfac, qsum, & |
---|
| 337 | denqrs1, denqr1, denqrs2, denqrs3, denncr3, denqci |
---|
| 338 | REAL, DIMENSION( its:ite ) :: & |
---|
| 339 | delqrs1, delqrs2, delqrs3, delncr3, delqi |
---|
| 340 | REAL, DIMENSION( its:ite ) :: tstepsnow, tstepgraup |
---|
| 341 | REAL :: gfac, sfac |
---|
| 342 | ! variables for optimization |
---|
| 343 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
| 344 | REAL :: temp |
---|
| 345 | INTEGER, DIMENSION( its:ite ) :: mnstep, numndt |
---|
| 346 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
---|
| 347 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
| 348 | REAL :: & |
---|
| 349 | cpmcal, xlcal, lamdac, & |
---|
| 350 | diffus, & |
---|
| 351 | viscos, xka, venfac, conden, diffac, & |
---|
| 352 | x, y, z, a, b, c, d, e, & |
---|
| 353 | ndt, qdt, holdrr, holdrs, holdrg, supcol, supcolt, & |
---|
| 354 | pvt, coeres, supsat, dtcld, xmi, eacrs, satdt, & |
---|
| 355 | qimax, diameter, xni0, roqi0, & |
---|
| 356 | fallsum, fallsum_qsi, fallsum_qg, & |
---|
| 357 | vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, & |
---|
| 358 | xlwork2, factor, source, value, coecol, & |
---|
| 359 | nfrzdtr, nfrzdtc, & |
---|
| 360 | taucon, lencon, lenconcr, & |
---|
| 361 | xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3 |
---|
| 362 | REAL :: vt2ave |
---|
| 363 | REAL :: holdc, holdci |
---|
| 364 | ! |
---|
| 365 | INTEGER :: i, j, k, mstepmax, & |
---|
| 366 | iprt, latd, lond, loop, loops, ifsat, n, idim, kdim |
---|
| 367 | ! Temporaries used for inlining fpvs function |
---|
| 368 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
| 369 | ! |
---|
| 370 | !================================================================= |
---|
| 371 | ! compute internal functions |
---|
| 372 | ! |
---|
| 373 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
| 374 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
| 375 | !---------------------------------------------------------------- |
---|
| 376 | ! size distributions: (x=mixing ratio, y=air density): |
---|
| 377 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
| 378 | ! |
---|
| 379 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
| 380 | lamdac(x,y,z)= exp(log(((pidnc*z)/(x*y)))*((.33333333))) |
---|
| 381 | !---------------------------------------------------------------- |
---|
| 382 | ! diffus: diffusion coefficient of the water vapor |
---|
| 383 | ! viscos: kinematic viscosity(m2s-1) |
---|
| 384 | ! |
---|
| 385 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
| 386 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
| 387 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
| 388 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
| 389 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
| 390 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
| 391 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
| 392 | ! |
---|
| 393 | idim = ite-its+1 |
---|
| 394 | kdim = kte-kts+1 |
---|
| 395 | ! |
---|
| 396 | !---------------------------------------------------------------- |
---|
| 397 | ! paddint 0 for negative values generated by dynamics |
---|
| 398 | ! |
---|
| 399 | do k = kts, kte |
---|
| 400 | do i = its, ite |
---|
| 401 | qci(i,k,1) = max(qci(i,k,1),0.0) |
---|
| 402 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
---|
| 403 | qci(i,k,2) = max(qci(i,k,2),0.0) |
---|
| 404 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
---|
| 405 | qrs(i,k,3) = max(qrs(i,k,3),0.0) |
---|
| 406 | ncr(i,k,1) = max(ncr(i,k,1),0.0) |
---|
| 407 | ncr(i,k,2) = max(ncr(i,k,2),0.0) |
---|
| 408 | ncr(i,k,3) = max(ncr(i,k,3),0.0) |
---|
| 409 | enddo |
---|
| 410 | enddo |
---|
| 411 | ! |
---|
| 412 | !---------------------------------------------------------------- |
---|
| 413 | ! latent heat for phase changes and heat capacity. neglect the |
---|
| 414 | ! changes during microphysical process calculation |
---|
| 415 | ! emanuel(1994) |
---|
| 416 | ! |
---|
| 417 | do k = kts, kte |
---|
| 418 | do i = its, ite |
---|
| 419 | cpm(i,k) = cpmcal(q(i,k)) |
---|
| 420 | xl(i,k) = xlcal(t(i,k)) |
---|
| 421 | enddo |
---|
| 422 | enddo |
---|
| 423 | do k = kts, kte |
---|
| 424 | do i = its, ite |
---|
| 425 | delz_tmp(i,k) = delz(i,k) |
---|
| 426 | den_tmp(i,k) = den(i,k) |
---|
| 427 | enddo |
---|
| 428 | enddo |
---|
| 429 | ! |
---|
| 430 | !---------------------------------------------------------------- |
---|
| 431 | ! initialize the surface rain, snow, graupel |
---|
| 432 | ! |
---|
| 433 | do i = its, ite |
---|
| 434 | rainncv(i) = 0. |
---|
| 435 | if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0. |
---|
| 436 | if(PRESENT (graupelncv) .AND. PRESENT (graupel)) graupelncv(i) = 0. |
---|
| 437 | sr(i) = 0. |
---|
| 438 | ! new local array to catch step snow and graupel |
---|
| 439 | tstepsnow(i) = 0. |
---|
| 440 | tstepgraup(i) = 0. |
---|
| 441 | enddo |
---|
| 442 | ! |
---|
| 443 | !---------------------------------------------------------------- |
---|
| 444 | ! compute the minor time steps. |
---|
| 445 | ! |
---|
| 446 | loops = max(nint(delt/dtcldcr),1) |
---|
| 447 | dtcld = delt/loops |
---|
| 448 | if(delt.le.dtcldcr) dtcld = delt |
---|
| 449 | ! |
---|
| 450 | do loop = 1,loops |
---|
| 451 | ! |
---|
| 452 | !---------------------------------------------------------------- |
---|
| 453 | ! initialize the large scale variables |
---|
| 454 | ! |
---|
| 455 | do i = its, ite |
---|
| 456 | mstep(i) = 1 |
---|
| 457 | mnstep(i) = 1 |
---|
| 458 | flgcld(i) = .true. |
---|
| 459 | enddo |
---|
| 460 | ! |
---|
| 461 | do k = kts, kte |
---|
| 462 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
| 463 | do i = its, ite |
---|
| 464 | tvec1(i) = tvec1(i)*den0 |
---|
| 465 | enddo |
---|
| 466 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
| 467 | enddo |
---|
| 468 | ! |
---|
| 469 | ! Inline expansion for fpvs |
---|
| 470 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
| 471 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
| 472 | hsub = xls |
---|
| 473 | hvap = xlv0 |
---|
| 474 | cvap = cpv |
---|
| 475 | ttp=t0c+0.01 |
---|
| 476 | dldt=cvap-cliq |
---|
| 477 | xa=-dldt/rv |
---|
| 478 | xb=xa+hvap/(rv*ttp) |
---|
| 479 | dldti=cvap-cice |
---|
| 480 | xai=-dldti/rv |
---|
| 481 | xbi=xai+hsub/(rv*ttp) |
---|
| 482 | do k = kts, kte |
---|
| 483 | do i = its, ite |
---|
| 484 | tr=ttp/t(i,k) |
---|
| 485 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
| 486 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
---|
| 487 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
| 488 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
| 489 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
| 490 | tr=ttp/t(i,k) |
---|
| 491 | if(t(i,k).lt.ttp) then |
---|
| 492 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
| 493 | else |
---|
| 494 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
| 495 | endif |
---|
| 496 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
---|
| 497 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
| 498 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
| 499 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
---|
| 500 | enddo |
---|
| 501 | enddo |
---|
| 502 | ! |
---|
| 503 | !---------------------------------------------------------------- |
---|
| 504 | ! initialize the variables for microphysical physics |
---|
| 505 | ! |
---|
| 506 | ! |
---|
| 507 | do k = kts, kte |
---|
| 508 | do i = its, ite |
---|
| 509 | prevp(i,k) = 0. |
---|
| 510 | psdep(i,k) = 0. |
---|
| 511 | pgdep(i,k) = 0. |
---|
| 512 | praut(i,k) = 0. |
---|
| 513 | psaut(i,k) = 0. |
---|
| 514 | pgaut(i,k) = 0. |
---|
| 515 | pracw(i,k) = 0. |
---|
| 516 | praci(i,k) = 0. |
---|
| 517 | piacr(i,k) = 0. |
---|
| 518 | psaci(i,k) = 0. |
---|
| 519 | psacw(i,k) = 0. |
---|
| 520 | pracs(i,k) = 0. |
---|
| 521 | psacr(i,k) = 0. |
---|
| 522 | pgacw(i,k) = 0. |
---|
| 523 | paacw(i,k) = 0. |
---|
| 524 | pgaci(i,k) = 0. |
---|
| 525 | pgacr(i,k) = 0. |
---|
| 526 | pgacs(i,k) = 0. |
---|
| 527 | pigen(i,k) = 0. |
---|
| 528 | pidep(i,k) = 0. |
---|
| 529 | pcond(i,k) = 0. |
---|
| 530 | psmlt(i,k) = 0. |
---|
| 531 | pgmlt(i,k) = 0. |
---|
| 532 | pseml(i,k) = 0. |
---|
| 533 | pgeml(i,k) = 0. |
---|
| 534 | psevp(i,k) = 0. |
---|
| 535 | pgevp(i,k) = 0. |
---|
| 536 | pcact(i,k) = 0. |
---|
| 537 | falk(i,k,1) = 0. |
---|
| 538 | falk(i,k,2) = 0. |
---|
| 539 | falk(i,k,3) = 0. |
---|
| 540 | fall(i,k,1) = 0. |
---|
| 541 | fall(i,k,2) = 0. |
---|
| 542 | fall(i,k,3) = 0. |
---|
| 543 | fallc(i,k) = 0. |
---|
| 544 | falkc(i,k) = 0. |
---|
| 545 | falln(i,k) =0. |
---|
| 546 | falkn(i,k) =0. |
---|
| 547 | xni(i,k) = 1.e3 |
---|
| 548 | nsacw(i,k) = 0. |
---|
| 549 | ngacw(i,k) = 0. |
---|
| 550 | naacw(i,k) = 0. |
---|
| 551 | niacr(i,k) = 0. |
---|
| 552 | nsacr(i,k) = 0. |
---|
| 553 | ngacr(i,k) = 0. |
---|
| 554 | nseml(i,k) = 0. |
---|
| 555 | ngeml(i,k) = 0. |
---|
| 556 | nracw(i,k) = 0. |
---|
| 557 | nccol(i,k) = 0. |
---|
| 558 | nrcol(i,k) = 0. |
---|
| 559 | ncact(i,k) = 0. |
---|
| 560 | nraut(i,k) = 0. |
---|
| 561 | ncevp(i,k) = 0. |
---|
| 562 | enddo |
---|
| 563 | enddo |
---|
| 564 | do k = kts, kte |
---|
| 565 | do i = its, ite |
---|
| 566 | if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin ) then |
---|
| 567 | rslopec(i,k) = rslopecmax |
---|
| 568 | rslopec2(i,k) = rslopec2max |
---|
| 569 | rslopec3(i,k) = rslopec3max |
---|
| 570 | else |
---|
| 571 | rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) |
---|
| 572 | rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) |
---|
| 573 | rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) |
---|
| 574 | endif |
---|
| 575 | !------------------------------------------------------------- |
---|
| 576 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
| 577 | !------------------------------------------------------------- |
---|
| 578 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
| 579 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
| 580 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
| 581 | enddo |
---|
| 582 | enddo |
---|
| 583 | !---------------------------------------------------------------- |
---|
| 584 | ! compute the fallout term: |
---|
| 585 | ! first, vertical terminal velosity for minor loops |
---|
| 586 | !---------------------------------------------------------------- |
---|
| 587 | do k = kts, kte |
---|
| 588 | do i = its, ite |
---|
| 589 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
| 590 | qrs_tmp(i,k,2) = qrs(i,k,2) |
---|
| 591 | qrs_tmp(i,k,3) = qrs(i,k,3) |
---|
| 592 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
| 593 | enddo |
---|
| 594 | enddo |
---|
| 595 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
| 596 | rslope3,work1,workn,its,ite,kts,kte) |
---|
| 597 | ! |
---|
| 598 | ! vt update for qr and nr |
---|
| 599 | mstepmax = 1 |
---|
| 600 | numdt = 1 |
---|
| 601 | do k = kte, kts, -1 |
---|
| 602 | do i = its, ite |
---|
| 603 | work1(i,k,1) = work1(i,k,1)/delz(i,k) |
---|
| 604 | workn(i,k) = workn(i,k)/delz(i,k) |
---|
| 605 | numdt(i) = max(nint(max(work1(i,k,1),workn(i,k))*dtcld+.5),1) |
---|
| 606 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
| 607 | enddo |
---|
| 608 | enddo |
---|
| 609 | do i = its, ite |
---|
| 610 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
| 611 | enddo |
---|
| 612 | ! |
---|
| 613 | do n = 1, mstepmax |
---|
| 614 | k = kte |
---|
| 615 | do i = its, ite |
---|
| 616 | if(n.le.mstep(i)) then |
---|
| 617 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
| 618 | falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) |
---|
| 619 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
| 620 | falln(i,k) = falln(i,k)+falkn(i,k) |
---|
| 621 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
---|
| 622 | ncr(i,k,3) = max(ncr(i,k,3)-falkn(i,k)*dtcld,0.) |
---|
| 623 | endif |
---|
| 624 | enddo |
---|
| 625 | do k = kte-1, kts, -1 |
---|
| 626 | do i = its, ite |
---|
| 627 | if(n.le.mstep(i)) then |
---|
| 628 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
| 629 | falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) |
---|
| 630 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
| 631 | falln(i,k) = falln(i,k)+falkn(i,k) |
---|
| 632 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
| 633 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
| 634 | ncr(i,k,3) = max(ncr(i,k,3)-(falkn(i,k)-falkn(i,k+1)*delz(i,k+1) & |
---|
| 635 | /delz(i,k))*dtcld,0.) |
---|
| 636 | endif |
---|
| 637 | enddo |
---|
| 638 | enddo |
---|
| 639 | do k = kts, kte |
---|
| 640 | do i = its, ite |
---|
| 641 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
| 642 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
| 643 | enddo |
---|
| 644 | enddo |
---|
| 645 | call slope_rain(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
| 646 | rslope3,work1,workn,its,ite,kts,kte) |
---|
| 647 | do k = kte, kts, -1 |
---|
| 648 | do i = its, ite |
---|
| 649 | work1(i,k,1) = work1(i,k,1)/delz(i,k) |
---|
| 650 | workn(i,k) = workn(i,k)/delz(i,k) |
---|
| 651 | enddo |
---|
| 652 | enddo |
---|
| 653 | enddo |
---|
| 654 | ! for semi |
---|
| 655 | do k = kte, kts, -1 |
---|
| 656 | do i = its, ite |
---|
| 657 | qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) |
---|
| 658 | if(qsum(i,k) .gt. 1.e-15 ) then |
---|
| 659 | worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3)) & |
---|
| 660 | /qsum(i,k) |
---|
| 661 | else |
---|
| 662 | worka(i,k) = 0. |
---|
| 663 | endif |
---|
| 664 | denqrs2(i,k) = den(i,k)*qrs(i,k,2) |
---|
| 665 | denqrs3(i,k) = den(i,k)*qrs(i,k,3) |
---|
| 666 | enddo |
---|
| 667 | enddo |
---|
| 668 | call nislfv_rain_plm6(idim,kdim,den_tmp,denfac,t,delz_tmp,worka, & |
---|
| 669 | denqrs2,denqrs3,delqrs2,delqrs3,dtcld,1,1) |
---|
| 670 | do k = kts, kte |
---|
| 671 | do i = its, ite |
---|
| 672 | qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.) |
---|
| 673 | qrs(i,k,3) = max(denqrs3(i,k)/den(i,k),0.) |
---|
| 674 | fall(i,k,2) = denqrs2(i,k)*worka(i,k)/delz(i,k) |
---|
| 675 | fall(i,k,3) = denqrs3(i,k)*worka(i,k)/delz(i,k) |
---|
| 676 | enddo |
---|
| 677 | enddo |
---|
| 678 | do i = its, ite |
---|
| 679 | fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld |
---|
| 680 | fall(i,1,3) = delqrs3(i)/delz(i,1)/dtcld |
---|
| 681 | enddo |
---|
| 682 | do k = kts, kte |
---|
| 683 | do i = its, ite |
---|
| 684 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
| 685 | qrs_tmp(i,k,2) = qrs(i,k,2) |
---|
| 686 | qrs_tmp(i,k,3) = qrs(i,k,3) |
---|
| 687 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
| 688 | enddo |
---|
| 689 | enddo |
---|
| 690 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
| 691 | rslope3,work1,workn,its,ite,kts,kte) |
---|
| 692 | ! |
---|
| 693 | do k = kte, kts, -1 |
---|
| 694 | do i = its, ite |
---|
| 695 | supcol = t0c-t(i,k) |
---|
| 696 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
| 697 | if(t(i,k).gt.t0c) then |
---|
| 698 | !--------------------------------------------------------------- |
---|
| 699 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
| 700 | ! (T>T0: QS->QR) |
---|
| 701 | !--------------------------------------------------------------- |
---|
| 702 | xlf = xlf0 |
---|
| 703 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
| 704 | if(qrs(i,k,2).gt.0.) then |
---|
| 705 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
| 706 | psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
---|
| 707 | *n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
| 708 | +precs2*work2(i,k)*coeres) |
---|
| 709 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),-qrs(i,k,2) & |
---|
| 710 | /mstep(i)),0.) |
---|
| 711 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
| 712 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
| 713 | !------------------------------------------------------------------- |
---|
| 714 | ! nsmlt: melting of snow [LH A27] |
---|
| 715 | ! (T>T0: ->NR) |
---|
| 716 | !------------------------------------------------------------------- |
---|
| 717 | if(qrs(i,k,2).gt.qcrmin) then |
---|
| 718 | sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) |
---|
| 719 | ncr(i,k,3) = ncr(i,k,3) - sfac*psmlt(i,k) |
---|
| 720 | endif |
---|
| 721 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
---|
| 722 | endif |
---|
| 723 | !--------------------------------------------------------------- |
---|
| 724 | ! pgmlt: melting of graupel [HL A23] [LFO 47] |
---|
| 725 | ! (T>T0: QG->QR) |
---|
| 726 | !--------------------------------------------------------------- |
---|
| 727 | if(qrs(i,k,3).gt.0.) then |
---|
| 728 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
| 729 | pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*(precg1 & |
---|
| 730 | *rslope2(i,k,3) + precg2*work2(i,k)*coeres) |
---|
| 731 | pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i), & |
---|
| 732 | -qrs(i,k,3)/mstep(i)),0.) |
---|
| 733 | qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k) |
---|
| 734 | qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k) |
---|
| 735 | !------------------------------------------------------------------- |
---|
| 736 | ! ngmlt: melting of graupel [LH A28] |
---|
| 737 | ! (T>T0: ->NR) |
---|
| 738 | !------------------------------------------------------------------- |
---|
| 739 | if(qrs(i,k,3).gt.qcrmin) then |
---|
| 740 | gfac = rslope(i,k,3)*n0g/qrs(i,k,3) |
---|
| 741 | ncr(i,k,3) = ncr(i,k,3) - gfac*pgmlt(i,k) |
---|
| 742 | endif |
---|
| 743 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k) |
---|
| 744 | endif |
---|
| 745 | endif |
---|
| 746 | enddo |
---|
| 747 | enddo |
---|
| 748 | !--------------------------------------------------------------- |
---|
| 749 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
| 750 | !--------------------------------------------------------------- |
---|
| 751 | do k = kte, kts, -1 |
---|
| 752 | do i = its, ite |
---|
| 753 | if(qci(i,k,2).le.0.) then |
---|
| 754 | work1c(i,k) = 0. |
---|
| 755 | else |
---|
| 756 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
| 757 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
| 758 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
| 759 | endif |
---|
| 760 | enddo |
---|
| 761 | enddo |
---|
| 762 | ! |
---|
| 763 | ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) |
---|
| 764 | ! |
---|
| 765 | do k = kte, kts, -1 |
---|
| 766 | do i = its, ite |
---|
| 767 | denqci(i,k) = den(i,k)*qci(i,k,2) |
---|
| 768 | enddo |
---|
| 769 | enddo |
---|
| 770 | call nislfv_rain_plmr(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci,denqci, & |
---|
| 771 | delqi,dtcld,1,0,0) |
---|
| 772 | do k = kts, kte |
---|
| 773 | do i = its, ite |
---|
| 774 | qci(i,k,2) = max(denqci(i,k)/den(i,k),0.) |
---|
| 775 | enddo |
---|
| 776 | enddo |
---|
| 777 | do i = its, ite |
---|
| 778 | fallc(i,1) = delqi(i)/delz(i,1)/dtcld |
---|
| 779 | enddo |
---|
| 780 | ! |
---|
| 781 | !---------------------------------------------------------------- |
---|
| 782 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
| 783 | ! |
---|
| 784 | do i = its, ite |
---|
| 785 | fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts) |
---|
| 786 | fallsum_qsi = fall(i,kts,2)+fallc(i,kts) |
---|
| 787 | fallsum_qg = fall(i,kts,3) |
---|
| 788 | if(fallsum.gt.0.) then |
---|
| 789 | rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rainncv(i) |
---|
| 790 | rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i) |
---|
| 791 | endif |
---|
| 792 | if(fallsum_qsi.gt.0.) then |
---|
| 793 | tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + tstepsnow(i) |
---|
| 794 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
| 795 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i) |
---|
| 796 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
| 797 | ENDIF |
---|
| 798 | endif |
---|
| 799 | if(fallsum_qg.gt.0.) then |
---|
| 800 | tstepgraup(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & |
---|
| 801 | + tstepgraup(i) |
---|
| 802 | IF ( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN |
---|
| 803 | graupelncv(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & |
---|
| 804 | + graupelncv(i) |
---|
| 805 | graupel(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i) |
---|
| 806 | ENDIF |
---|
| 807 | endif |
---|
| 808 | ! if(fallsum.gt.0.) sr(i) = (snowncv(i) + graupelncv(i)) & |
---|
| 809 | if(fallsum.gt.0.) sr(i) = (tstepsnow(i) + tstepgraup(i)) & |
---|
| 810 | /(rainncv(i)+1.e-12) |
---|
| 811 | enddo |
---|
| 812 | ! |
---|
| 813 | !--------------------------------------------------------------- |
---|
| 814 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
| 815 | ! (T>T0: QI->QC) |
---|
| 816 | !--------------------------------------------------------------- |
---|
| 817 | do k = kts, kte |
---|
| 818 | do i = its, ite |
---|
| 819 | supcol = t0c-t(i,k) |
---|
| 820 | xlf = xls-xl(i,k) |
---|
| 821 | if(supcol.lt.0.) xlf = xlf0 |
---|
| 822 | if(supcol.lt.0 .and. qci(i,k,2).gt.0.) then |
---|
| 823 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
| 824 | !--------------------------------------------------------------- |
---|
| 825 | ! nimlt: instantaneous melting of cloud ice [LH A18] |
---|
| 826 | ! (T>T0: ->NC) |
---|
| 827 | !-------------------------------------------------------------- |
---|
| 828 | ncr(i,k,2) = ncr(i,k,2) + xni(i,k) |
---|
| 829 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
---|
| 830 | qci(i,k,2) = 0. |
---|
| 831 | endif |
---|
| 832 | !--------------------------------------------------------------- |
---|
| 833 | ! pihmf: homogeneous of cloud water below -40c [HL A45] |
---|
| 834 | ! (T<-40C: QC->QI) |
---|
| 835 | !--------------------------------------------------------------- |
---|
| 836 | if(supcol.gt.40. .and. qci(i,k,1).gt.0.) then |
---|
| 837 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
| 838 | !--------------------------------------------------------------- |
---|
| 839 | ! nihmf: homogeneous of cloud water below -40c [LH A17] |
---|
| 840 | ! (T<-40C: NC->) |
---|
| 841 | !--------------------------------------------------------------- |
---|
| 842 | if(ncr(i,k,2).gt.0.) ncr(i,k,2) = 0. |
---|
| 843 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
---|
| 844 | qci(i,k,1) = 0. |
---|
| 845 | endif |
---|
| 846 | !--------------------------------------------------------------- |
---|
| 847 | ! pihtf: heterogeneous of cloud water [HL A44] |
---|
| 848 | ! (T0>T>-40C: QC->QI) |
---|
| 849 | !--------------------------------------------------------------- |
---|
| 850 | if(supcol.gt.0. .and. qci(i,k,1).gt.qmin) then |
---|
| 851 | supcolt=min(supcol,70.) |
---|
| 852 | pfrzdtc = min(pi*pi*pfrz1*(exp(pfrz2*supcolt)-1.)*denr/den(i,k) & |
---|
| 853 | *ncr(i,k,2)*rslopec3(i,k)*rslopec3(i,k)/18.*dtcld & |
---|
| 854 | ,qci(i,k,1)) |
---|
| 855 | !--------------------------------------------------------------- |
---|
| 856 | ! nihtf: heterogeneous of cloud water [LH A16] |
---|
| 857 | ! (T0>T>-40C: NC->) |
---|
| 858 | !--------------------------------------------------------------- |
---|
| 859 | if(ncr(i,k,2).gt.ncmin) then |
---|
| 860 | nfrzdtc = min(pi*pfrz1*(exp(pfrz2*supcolt)-1.)*ncr(i,k,2) & |
---|
| 861 | *rslopec3(i,k)/6.*dtcld,ncr(i,k,2)) |
---|
| 862 | ncr(i,k,2) = ncr(i,k,2) - nfrzdtc |
---|
| 863 | endif |
---|
| 864 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
| 865 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
---|
| 866 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
| 867 | endif |
---|
| 868 | !--------------------------------------------------------------- |
---|
| 869 | ! pgfrz: freezing of rain water [HL A20] [LFO 45] |
---|
| 870 | ! (T<T0, QR->QG) |
---|
| 871 | !--------------------------------------------------------------- |
---|
| 872 | if(supcol.gt.0. .and. qrs(i,k,1).gt.0.) then |
---|
| 873 | supcolt=min(supcol,70.) |
---|
| 874 | pfrzdtr = min(140.*(pi*pi)*pfrz1*ncr(i,k,3)*denr/den(i,k) & |
---|
| 875 | *(exp(pfrz2*supcolt)-1.)*rslope3(i,k,1)*rslope3(i,k,1) & |
---|
| 876 | *dtcld,qrs(i,k,1)) |
---|
| 877 | !--------------------------------------------------------------- |
---|
| 878 | ! ngfrz: freezing of rain water [LH A26] |
---|
| 879 | ! (T<T0, NR-> ) |
---|
| 880 | !--------------------------------------------------------------- |
---|
| 881 | if(ncr(i,k,3).gt.nrmin) then |
---|
| 882 | nfrzdtr = min(4.*pi*pfrz1*ncr(i,k,3)*(exp(pfrz2*supcolt)-1.) & |
---|
| 883 | *rslope3(i,k,1)*dtcld, ncr(i,k,3)) |
---|
| 884 | ncr(i,k,3) = ncr(i,k,3) - nfrzdtr |
---|
| 885 | endif |
---|
| 886 | qrs(i,k,3) = qrs(i,k,3) + pfrzdtr |
---|
| 887 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
---|
| 888 | qrs(i,k,1) = qrs(i,k,1) - pfrzdtr |
---|
| 889 | endif |
---|
| 890 | enddo |
---|
| 891 | enddo |
---|
| 892 | ! |
---|
| 893 | do k = kts, kte |
---|
| 894 | do i = its, ite |
---|
| 895 | ncr(i,k,2) = max(ncr(i,k,2),0.0) |
---|
| 896 | ncr(i,k,3) = max(ncr(i,k,3),0.0) |
---|
| 897 | enddo |
---|
| 898 | enddo |
---|
| 899 | ! |
---|
| 900 | !---------------------------------------------------------------- |
---|
| 901 | ! update the slope parameters for microphysics computation |
---|
| 902 | ! |
---|
| 903 | do k = kts, kte |
---|
| 904 | do i = its, ite |
---|
| 905 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
| 906 | qrs_tmp(i,k,2) = qrs(i,k,2) |
---|
| 907 | qrs_tmp(i,k,3) = qrs(i,k,3) |
---|
| 908 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
| 909 | enddo |
---|
| 910 | enddo |
---|
| 911 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
| 912 | rslope3,work1,workn,its,ite,kts,kte) |
---|
| 913 | do k = kts, kte |
---|
| 914 | do i = its, ite |
---|
| 915 | !----------------------------------------------------------------- |
---|
| 916 | ! compute the mean-volume drop diameter [LH A10] |
---|
| 917 | ! for raindrop distribution |
---|
| 918 | !----------------------------------------------------------------- |
---|
| 919 | avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) |
---|
| 920 | ! |
---|
| 921 | if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin) then |
---|
| 922 | rslopec(i,k) = rslopecmax |
---|
| 923 | rslopec2(i,k) = rslopec2max |
---|
| 924 | rslopec3(i,k) = rslopec3max |
---|
| 925 | else |
---|
| 926 | rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) |
---|
| 927 | rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) |
---|
| 928 | rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) |
---|
| 929 | endif |
---|
| 930 | !-------------------------------------------------------------------- |
---|
| 931 | ! compute the mean-volume drop diameter [LH A7] |
---|
| 932 | ! for cloud-droplet distribution |
---|
| 933 | !-------------------------------------------------------------------- |
---|
| 934 | avedia(i,k,1) = rslopec(i,k) |
---|
| 935 | enddo |
---|
| 936 | enddo |
---|
| 937 | ! |
---|
| 938 | do k = kts, kte |
---|
| 939 | do i = its, ite |
---|
| 940 | work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
---|
| 941 | work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
---|
| 942 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
| 943 | enddo |
---|
| 944 | enddo |
---|
| 945 | ! |
---|
| 946 | !=============================================================== |
---|
| 947 | ! |
---|
| 948 | ! warm rain processes |
---|
| 949 | ! |
---|
| 950 | ! - follows the double-moment processes in Lim and Hong |
---|
| 951 | ! |
---|
| 952 | !=============================================================== |
---|
| 953 | ! |
---|
| 954 | do k = kts, kte |
---|
| 955 | do i = its, ite |
---|
| 956 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
---|
| 957 | satdt = supsat/dtcld |
---|
| 958 | !--------------------------------------------------------------- |
---|
| 959 | ! praut: auto conversion rate from cloud to rain [LH 9] [CP 17] |
---|
| 960 | ! (QC->QR) |
---|
| 961 | !-------------------------------------------------------------- |
---|
| 962 | lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) & |
---|
| 963 | *rslopec2(i,k)-0.4) |
---|
| 964 | lenconcr = max(1.2*lencon, qcrmin) |
---|
| 965 | if(avedia(i,k,1).gt.di15) then |
---|
| 966 | taucon = 3.7/den(i,k)/qci(i,k,1)/(0.5e6*rslopec(i,k)-7.5) |
---|
| 967 | praut(i,k) = lencon/taucon |
---|
| 968 | praut(i,k) = min(max(praut(i,k),0.),qci(i,k,1)/dtcld) |
---|
| 969 | !--------------------------------------------------------------- |
---|
| 970 | ! nraut: auto conversion rate from cloud to rain [LH A6] [CP 18 & 19] |
---|
| 971 | ! (NC->NR) |
---|
| 972 | !--------------------------------------------------------------- |
---|
| 973 | nraut(i,k) = 3.5e9*den(i,k)*praut(i,k) |
---|
| 974 | if(qrs(i,k,1).gt.lenconcr) & |
---|
| 975 | nraut(i,k) = ncr(i,k,3)/qrs(i,k,1)*praut(i,k) |
---|
| 976 | nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld) |
---|
| 977 | endif |
---|
| 978 | !--------------------------------------------------------------- |
---|
| 979 | ! pracw: accretion of cloud water by rain [LH 10] [CP 22 & 23] |
---|
| 980 | ! (QC->QR) |
---|
| 981 | ! nracw: accretion of cloud water by rain [LH A9] |
---|
| 982 | ! (NC->) |
---|
| 983 | !--------------------------------------------------------------- |
---|
| 984 | if(qrs(i,k,1).ge.lenconcr) then |
---|
| 985 | if(avedia(i,k,2).ge.di100) then |
---|
| 986 | nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) & |
---|
| 987 | + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld) |
---|
| 988 | pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) & |
---|
| 989 | *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k) & |
---|
| 990 | + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld) |
---|
| 991 | else |
---|
| 992 | nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) & |
---|
| 993 | *rslopec3(i,k)+5040.*rslope3(i,k,1) & |
---|
| 994 | *rslope3(i,k,1)),ncr(i,k,2)/dtcld) |
---|
| 995 | pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) & |
---|
| 996 | *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k) & |
---|
| 997 | *rslopec3(i,k)+5040.*rslope3(i,k,1)*rslope3(i,k,1)) & |
---|
| 998 | ,qci(i,k,1)/dtcld) |
---|
| 999 | endif |
---|
| 1000 | endif |
---|
| 1001 | !---------------------------------------------------------------- |
---|
| 1002 | ! nccol: self collection of cloud water [LH A8] [CP 24 & 25] |
---|
| 1003 | ! (NC->) |
---|
| 1004 | !---------------------------------------------------------------- |
---|
| 1005 | if(avedia(i,k,1).ge.di100) then |
---|
| 1006 | nccol(i,k) = ncrk1*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) |
---|
| 1007 | else |
---|
| 1008 | nccol(i,k) = 2.*ncrk2*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) & |
---|
| 1009 | *rslopec3(i,k) |
---|
| 1010 | endif |
---|
| 1011 | !---------------------------------------------------------------- |
---|
| 1012 | ! nrcol: self collection of rain-drops and break-up [LH A21] [CP 24 & 25] |
---|
| 1013 | ! (NR->) |
---|
| 1014 | !---------------------------------------------------------------- |
---|
| 1015 | if(qrs(i,k,1).ge.lenconcr) then |
---|
| 1016 | if(avedia(i,k,2).lt.di100) then |
---|
| 1017 | nrcol(i,k) = 5040.*ncrk2*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) & |
---|
| 1018 | *rslope3(i,k,1) |
---|
| 1019 | elseif(avedia(i,k,2).ge.di100 .and. avedia(i,k,2).lt.di600) then |
---|
| 1020 | nrcol(i,k) = 24.*ncrk1*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) |
---|
| 1021 | elseif(avedia(i,k,2).ge.di600 .and. avedia(i,k,2).lt.di2000) then |
---|
| 1022 | coecol = -2.5e3*(avedia(i,k,2)-di600) |
---|
| 1023 | nrcol(i,k) = 24.*exp(coecol)*ncrk1*ncr(i,k,3)*ncr(i,k,3) & |
---|
| 1024 | *rslope3(i,k,1) |
---|
| 1025 | else |
---|
| 1026 | nrcol(i,k) = 0. |
---|
| 1027 | endif |
---|
| 1028 | endif |
---|
| 1029 | !--------------------------------------------------------------- |
---|
| 1030 | ! prevp: evaporation/condensation rate of rain [HL A41] |
---|
| 1031 | ! (QV->QR or QR->QV) |
---|
| 1032 | !--------------------------------------------------------------- |
---|
| 1033 | if(qrs(i,k,1).gt.0.) then |
---|
| 1034 | coeres = rslope(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
| 1035 | prevp(i,k) = (rh(i,k,1)-1.)*ncr(i,k,3)*(precr1*rslope(i,k,1) & |
---|
| 1036 | + precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
| 1037 | if(prevp(i,k).lt.0.) then |
---|
| 1038 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
| 1039 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
| 1040 | !---------------------------------------------------------------- |
---|
| 1041 | ! Nrevp: evaporation/condensation rate of rain [LH A14] |
---|
| 1042 | ! (NR->NCCN) |
---|
| 1043 | !---------------------------------------------------------------- |
---|
| 1044 | if(prevp(i,k).eq.-qrs(i,k,1)/dtcld) then |
---|
| 1045 | ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,3) |
---|
| 1046 | ncr(i,k,3) = 0. |
---|
| 1047 | endif |
---|
| 1048 | else |
---|
| 1049 | ! |
---|
| 1050 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
| 1051 | endif |
---|
| 1052 | endif |
---|
| 1053 | enddo |
---|
| 1054 | enddo |
---|
| 1055 | ! |
---|
| 1056 | !=============================================================== |
---|
| 1057 | ! |
---|
| 1058 | ! cold rain processes |
---|
| 1059 | ! |
---|
| 1060 | ! - follows the revised ice microphysics processes in HDC |
---|
| 1061 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
| 1062 | ! following ice crystal hapits defined in HDC, inclduing |
---|
| 1063 | ! intercept parameter for snow (n0s), ice crystal number |
---|
| 1064 | ! concentration (ni), ice nuclei number concentration |
---|
| 1065 | ! (n0i), ice diameter (d) |
---|
| 1066 | ! |
---|
| 1067 | !=============================================================== |
---|
| 1068 | ! |
---|
| 1069 | do k = kts, kte |
---|
| 1070 | do i = its, ite |
---|
| 1071 | supcol = t0c-t(i,k) |
---|
| 1072 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
| 1073 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
---|
| 1074 | satdt = supsat/dtcld |
---|
| 1075 | ifsat = 0 |
---|
| 1076 | !------------------------------------------------------------- |
---|
| 1077 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
| 1078 | !------------------------------------------------------------- |
---|
| 1079 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
| 1080 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
| 1081 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
| 1082 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
| 1083 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
| 1084 | eacrs = exp(0.07*(-supcol)) |
---|
| 1085 | ! |
---|
| 1086 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
| 1087 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
| 1088 | vt2i = 1.49e4*diameter**1.31 |
---|
| 1089 | vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k) |
---|
| 1090 | vt2s=pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
| 1091 | vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k) |
---|
| 1092 | qsum(i,k) = max((qrs(i,k,2)+qrs(i,k,3)),1.e-15) |
---|
| 1093 | if(qsum(i,k) .gt. 1.e-15) then |
---|
| 1094 | vt2ave=(vt2s*qrs(i,k,2)+vt2g*qrs(i,k,3))/(qsum(i,k)) |
---|
| 1095 | else |
---|
| 1096 | vt2ave=0. |
---|
| 1097 | endif |
---|
| 1098 | if(supcol.gt.0. .and. qci(i,k,2).gt.qmin) then |
---|
| 1099 | if(qrs(i,k,1).gt.qcrmin) then |
---|
| 1100 | !------------------------------------------------------------- |
---|
| 1101 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
| 1102 | ! (T<T0: QI->QR) |
---|
| 1103 | !------------------------------------------------------------- |
---|
| 1104 | acrfac = 6.*rslope2(i,k,1)+4.*diameter*rslope(i,k,1) + diameter**2 |
---|
| 1105 | praci(i,k) = pi*qci(i,k,2)*ncr(i,k,3)*abs(vt2r-vt2i)*acrfac/4. |
---|
| 1106 | praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld) |
---|
| 1107 | !------------------------------------------------------------- |
---|
| 1108 | ! piacr: Accretion of rain by cloud ice [HL A19] [LFO 26] |
---|
| 1109 | ! (T<T0: QR->QS or QR->QG) |
---|
| 1110 | !------------------------------------------------------------- |
---|
| 1111 | piacr(i,k) = pi*pi*avtr*ncr(i,k,3)*denr*xni(i,k)*denfac(i,k) & |
---|
| 1112 | *g7pbr*rslope3(i,k,1)*rslope2(i,k,1)*rslopeb(i,k,1) & |
---|
| 1113 | /24./den(i,k) |
---|
| 1114 | piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld) |
---|
| 1115 | endif |
---|
| 1116 | !------------------------------------------------------------- |
---|
| 1117 | ! niacr: Accretion of rain by cloud ice [LH A25] |
---|
| 1118 | ! (T<T0: NR->) |
---|
| 1119 | !------------------------------------------------------------- |
---|
| 1120 | if(ncr(i,k,3).gt.nrmin) then |
---|
| 1121 | niacr(i,k) = pi*avtr*ncr(i,k,3)*xni(i,k)*denfac(i,k)*g4pbr & |
---|
| 1122 | *rslope2(i,k,1)*rslopeb(i,k,1)/4. |
---|
| 1123 | niacr(i,k) = min(niacr(i,k),ncr(i,k,3)/dtcld) |
---|
| 1124 | endif |
---|
| 1125 | !------------------------------------------------------------- |
---|
| 1126 | ! psaci: Accretion of cloud ice by snow [HDC 10] |
---|
| 1127 | ! (T<T0: QI->QS) |
---|
| 1128 | !------------------------------------------------------------- |
---|
| 1129 | if(qrs(i,k,2).gt.qcrmin) then |
---|
| 1130 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
| 1131 | + diameter**2*rslope(i,k,2) |
---|
| 1132 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
| 1133 | *abs(vt2ave-vt2i)*acrfac/4. |
---|
| 1134 | psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld) |
---|
| 1135 | endif |
---|
| 1136 | !------------------------------------------------------------- |
---|
| 1137 | ! pgaci: Accretion of cloud ice by graupel [HL A17] [LFO 41] |
---|
| 1138 | ! (T<T0: QI->QG) |
---|
| 1139 | !------------------------------------------------------------- |
---|
| 1140 | if(qrs(i,k,3).gt.qcrmin) then |
---|
| 1141 | egi = exp(0.07*(-supcol)) |
---|
| 1142 | acrfac = 2.*rslope3(i,k,3)+2.*diameter*rslope2(i,k,3) & |
---|
| 1143 | + diameter**2*rslope(i,k,3) |
---|
| 1144 | pgaci(i,k) = pi*egi*qci(i,k,2)*n0g*abs(vt2ave-vt2i)*acrfac/4. |
---|
| 1145 | pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld) |
---|
| 1146 | endif |
---|
| 1147 | endif |
---|
| 1148 | !------------------------------------------------------------- |
---|
| 1149 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
| 1150 | ! (T<T0: QC->QS, and T>=T0: QC->QR) |
---|
| 1151 | !------------------------------------------------------------- |
---|
| 1152 | if(qrs(i,k,2).gt.qcrmin .and. qci(i,k,1).gt.qmin) then |
---|
| 1153 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
---|
| 1154 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
| 1155 | endif |
---|
| 1156 | !------------------------------------------------------------- |
---|
| 1157 | ! nsacw: Accretion of cloud water by snow [LH A12] |
---|
| 1158 | ! (NC ->) |
---|
| 1159 | !------------------------------------------------------------- |
---|
| 1160 | if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then |
---|
| 1161 | nsacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
---|
| 1162 | *ncr(i,k,2)*denfac(i,k),ncr(i,k,2)/dtcld) |
---|
| 1163 | endif |
---|
| 1164 | !------------------------------------------------------------- |
---|
| 1165 | ! pgacw: Accretion of cloud water by graupel [HL A6] [LFO 40] |
---|
| 1166 | ! (T<T0: QC->QG, and T>=T0: QC->QR) |
---|
| 1167 | !------------------------------------------------------------- |
---|
| 1168 | if(qrs(i,k,3).gt.qcrmin .and. qci(i,k,1).gt.qmin) then |
---|
| 1169 | pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)*qci(i,k,1) & |
---|
| 1170 | *denfac(i,k),qci(i,k,1)/dtcld) |
---|
| 1171 | endif |
---|
| 1172 | !------------------------------------------------------------- |
---|
| 1173 | ! ngacw: Accretion of cloud water by graupel [LH A13] |
---|
| 1174 | ! (NC-> |
---|
| 1175 | !------------------------------------------------------------- |
---|
| 1176 | if(qrs(i,k,3).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then |
---|
| 1177 | ngacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)*ncr(i,k,2) & |
---|
| 1178 | *denfac(i,k),ncr(i,k,2)/dtcld) |
---|
| 1179 | endif |
---|
| 1180 | !------------------------------------------------------------- |
---|
| 1181 | ! paacw: Accretion of cloud water by averaged snow/graupel |
---|
| 1182 | ! (T<T0: QC->QG or QS, and T>=T0: QC->QR) |
---|
| 1183 | !------------------------------------------------------------- |
---|
| 1184 | if(qrs(i,k,2).gt.qcrmin .and. qrs(i,k,3).gt.qcrmin) then |
---|
| 1185 | paacw(i,k) = (qrs(i,k,2)*psacw(i,k)+qrs(i,k,3)*pgacw(i,k))/(qsum(i,k)) |
---|
| 1186 | !------------------------------------------------------------- |
---|
| 1187 | ! naacw: Accretion of cloud water by averaged snow/graupel |
---|
| 1188 | ! (Nc->) |
---|
| 1189 | !------------------------------------------------------------- |
---|
| 1190 | naacw(i,k) = (qrs(i,k,2)*nsacw(i,k)+qrs(i,k,3)*ngacw(i,k))/(qsum(i,k)) |
---|
| 1191 | endif |
---|
| 1192 | !------------------------------------------------------------- |
---|
| 1193 | ! pracs: Accretion of snow by rain [HL A11] [LFO 27] |
---|
| 1194 | ! (T<T0: QS->QG) |
---|
| 1195 | !------------------------------------------------------------- |
---|
| 1196 | if(qrs(i,k,2).gt.qcrmin .and. qrs(i,k,1).gt.qcrmin) then |
---|
| 1197 | if(supcol.gt.0) then |
---|
| 1198 | acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2) & |
---|
| 1199 | + 4.*rslope3(i,k,2)*rslope2(i,k,2)*rslope(i,k,1) & |
---|
| 1200 | + 1.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1) |
---|
| 1201 | pracs(i,k) = pi*pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2r-vt2ave) & |
---|
| 1202 | *(dens/den(i,k))*acrfac |
---|
| 1203 | pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld) |
---|
| 1204 | endif |
---|
| 1205 | !------------------------------------------------------------- |
---|
| 1206 | ! psacr: Accretion of rain by snow [HL A10] [LFO 28] |
---|
| 1207 | ! (T<T0:QR->QS or QR->QG) (T>=T0: enhance melting of snow) |
---|
| 1208 | !------------------------------------------------------------- |
---|
| 1209 | acrfac = 30.*rslope3(i,k,1)*rslope2(i,k,1)*rslope(i,k,2) & |
---|
| 1210 | + 5.*rslope2(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2) & |
---|
| 1211 | + 2.*rslope3(i,k,1)*rslope3(i,k,2) |
---|
| 1212 | psacr(i,k) = pi*pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & |
---|
| 1213 | *(denr/den(i,k))*acrfac |
---|
| 1214 | psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld) |
---|
| 1215 | endif |
---|
| 1216 | if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,3).gt.nrmin) then |
---|
| 1217 | !------------------------------------------------------------- |
---|
| 1218 | ! nsacr: Accretion of rain by snow [LH A23] |
---|
| 1219 | ! (T<T0:NR->) |
---|
| 1220 | !------------------------------------------------------------- |
---|
| 1221 | acrfac = 1.5*rslope2(i,k,1)*rslope(i,k,2) & |
---|
| 1222 | + 1.0*rslope(i,k,1)*rslope2(i,k,2)+.5*rslope3(i,k,2) |
---|
| 1223 | nsacr(i,k) = pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & |
---|
| 1224 | *acrfac |
---|
| 1225 | nsacr(i,k) = min(nsacr(i,k),ncr(i,k,3)/dtcld) |
---|
| 1226 | endif |
---|
| 1227 | !------------------------------------------------------------- |
---|
| 1228 | ! pgacr: Accretion of rain by graupel [HL A12] [LFO 42] |
---|
| 1229 | ! (T<T0: QR->QG) (T>=T0: enhance melting of graupel) |
---|
| 1230 | !------------------------------------------------------------- |
---|
| 1231 | if(qrs(i,k,3).gt.qcrmin .and. qrs(i,k,1).gt.qcrmin) then |
---|
| 1232 | acrfac = 30.*rslope3(i,k,1)*rslope2(i,k,1)*rslope(i,k,3) & |
---|
| 1233 | + 5.*rslope2(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3) & |
---|
| 1234 | + 2.*rslope3(i,k,1)*rslope3(i,k,3) |
---|
| 1235 | pgacr(i,k) = pi*pi*ncr(i,k,3)*n0g*abs(vt2ave-vt2r)*(denr/den(i,k)) & |
---|
| 1236 | *acrfac |
---|
| 1237 | pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld) |
---|
| 1238 | endif |
---|
| 1239 | !------------------------------------------------------------- |
---|
| 1240 | ! ngacr: Accretion of rain by graupel [LH A24] |
---|
| 1241 | ! (T<T0: NR->) |
---|
| 1242 | !------------------------------------------------------------- |
---|
| 1243 | if(qrs(i,k,3).gt.qcrmin .and. ncr(i,k,3).gt.nrmin) then |
---|
| 1244 | acrfac = 1.5*rslope2(i,k,1)*rslope(i,k,3) & |
---|
| 1245 | + 1.0*rslope(i,k,1)*rslope2(i,k,3) + .5*rslope3(i,k,3) |
---|
| 1246 | ngacr(i,k) = pi*ncr(i,k,3)*n0g*abs(vt2ave-vt2r)*acrfac |
---|
| 1247 | ngacr(i,k) = min(ngacr(i,k),ncr(i,k,3)/dtcld) |
---|
| 1248 | endif |
---|
| 1249 | ! |
---|
| 1250 | !------------------------------------------------------------- |
---|
| 1251 | ! pgacs: Accretion of snow by graupel [HL A13] [LFO 29] |
---|
| 1252 | ! (QS->QG) : This process is eliminated in V3.0 with the |
---|
| 1253 | ! new combined snow/graupel fall speeds |
---|
| 1254 | !------------------------------------------------------------- |
---|
| 1255 | if(qrs(i,k,3).gt.qcrmin .and. qrs(i,k,2).gt.qcrmin) then |
---|
| 1256 | pgacs(i,k) = 0. |
---|
| 1257 | endif |
---|
| 1258 | if(supcol.le.0) then |
---|
| 1259 | xlf = xlf0 |
---|
| 1260 | !------------------------------------------------------------- |
---|
| 1261 | ! pseml: Enhanced melting of snow by accretion of water [HL A34] |
---|
| 1262 | ! (T>=T0: QS->QR) |
---|
| 1263 | !------------------------------------------------------------- |
---|
| 1264 | if(qrs(i,k,2).gt.0.) & |
---|
| 1265 | pseml(i,k) = min(max(cliq*supcol*(paacw(i,k)+psacr(i,k)) & |
---|
| 1266 | /xlf,-qrs(i,k,2)/dtcld),0.) |
---|
| 1267 | !-------------------------------------------------------------- |
---|
| 1268 | ! nseml: Enhanced melting of snow by accretion of water [LH A29] |
---|
| 1269 | ! (T>=T0: ->NR) |
---|
| 1270 | !-------------------------------------------------------------- |
---|
| 1271 | if (qrs(i,k,2).gt.qcrmin) then |
---|
| 1272 | sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) |
---|
| 1273 | nseml(i,k) = -sfac*pseml(i,k) |
---|
| 1274 | endif |
---|
| 1275 | !------------------------------------------------------------- |
---|
| 1276 | ! pgeml: Enhanced melting of graupel by accretion of water [HL A24] [RH84 A21-A22] |
---|
| 1277 | ! (T>=T0: QG->QR) |
---|
| 1278 | !------------------------------------------------------------- |
---|
| 1279 | if(qrs(i,k,3).gt.0.) & |
---|
| 1280 | pgeml(i,k) = min(max(cliq*supcol*(paacw(i,k)+pgacr(i,k))/xlf & |
---|
| 1281 | ,-qrs(i,k,3)/dtcld),0.) |
---|
| 1282 | !-------------------------------------------------------------- |
---|
| 1283 | ! ngeml: Enhanced melting of graupel by accretion of water [LH A30] |
---|
| 1284 | ! (T>=T0: -> NR) |
---|
| 1285 | !-------------------------------------------------------------- |
---|
| 1286 | if (qrs(i,k,3).gt.qcrmin) then |
---|
| 1287 | gfac = rslope(i,k,3)*n0g/qrs(i,k,3) |
---|
| 1288 | ngeml(i,k) = -gfac*pgeml(i,k) |
---|
| 1289 | endif |
---|
| 1290 | endif |
---|
| 1291 | if(supcol.gt.0) then |
---|
| 1292 | !------------------------------------------------------------- |
---|
| 1293 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
| 1294 | ! (T<T0: QV->QI or QI->QV) |
---|
| 1295 | !------------------------------------------------------------- |
---|
| 1296 | if(qci(i,k,2).gt.0. .and. ifsat.ne.1) then |
---|
| 1297 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
| 1298 | supice = satdt-prevp(i,k) |
---|
| 1299 | if(pidep(i,k).lt.0.) then |
---|
| 1300 | pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
| 1301 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
| 1302 | else |
---|
| 1303 | pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
| 1304 | endif |
---|
| 1305 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
| 1306 | endif |
---|
| 1307 | !------------------------------------------------------------- |
---|
| 1308 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
| 1309 | ! (T<T0: QV->QS or QS->QV) |
---|
| 1310 | !------------------------------------------------------------- |
---|
| 1311 | if(qrs(i,k,2).gt.0. .and. ifsat.ne.1) then |
---|
| 1312 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
| 1313 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
| 1314 | + precs2*work2(i,k)*coeres)/work1(i,k,2) |
---|
| 1315 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
| 1316 | if(psdep(i,k).lt.0.) then |
---|
| 1317 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
| 1318 | psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
| 1319 | else |
---|
| 1320 | psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
| 1321 | endif |
---|
| 1322 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
| 1323 | endif |
---|
| 1324 | !------------------------------------------------------------- |
---|
| 1325 | ! pgdep: deposition/sublimation rate of graupel [HL A21] [LFO 46] |
---|
| 1326 | ! (T<T0: QV->QG or QG->QV) |
---|
| 1327 | !------------------------------------------------------------- |
---|
| 1328 | if(qrs(i,k,3).gt.0. .and. ifsat.ne.1) then |
---|
| 1329 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
| 1330 | pgdep(i,k) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3) & |
---|
| 1331 | + precg2*work2(i,k)*coeres)/work1(i,k,2) |
---|
| 1332 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
| 1333 | if(pgdep(i,k).lt.0.) then |
---|
| 1334 | pgdep(i,k) = max(pgdep(i,k),-qrs(i,k,3)/dtcld) |
---|
| 1335 | pgdep(i,k) = max(max(pgdep(i,k),satdt/2),supice) |
---|
| 1336 | else |
---|
| 1337 | pgdep(i,k) = min(min(pgdep(i,k),satdt/2),supice) |
---|
| 1338 | endif |
---|
| 1339 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)+pgdep(i,k)).ge. & |
---|
| 1340 | abs(satdt)) ifsat = 1 |
---|
| 1341 | endif |
---|
| 1342 | !------------------------------------------------------------- |
---|
| 1343 | ! pigen: generation(nucleation) of ice from vapor [HL 50] [HDC 7-8] |
---|
| 1344 | ! (T<T0: QV->QI) |
---|
| 1345 | !------------------------------------------------------------- |
---|
| 1346 | if(supsat.gt.0. .and. ifsat.ne.1) then |
---|
| 1347 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)-pgdep(i,k) |
---|
| 1348 | xni0 = 1.e3*exp(0.1*supcol) |
---|
| 1349 | roqi0 = 4.92e-11*xni0**1.33 |
---|
| 1350 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.))/dtcld) |
---|
| 1351 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
| 1352 | endif |
---|
| 1353 | ! |
---|
| 1354 | !------------------------------------------------------------- |
---|
| 1355 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
| 1356 | ! (T<T0: QI->QS) |
---|
| 1357 | !------------------------------------------------------------- |
---|
| 1358 | if(qci(i,k,2).gt.0.) then |
---|
| 1359 | qimax = roqimax/den(i,k) |
---|
| 1360 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
| 1361 | endif |
---|
| 1362 | ! |
---|
| 1363 | !------------------------------------------------------------- |
---|
| 1364 | ! pgaut: conversion(aggregation) of snow to graupel [HL A4] [LFO 37] |
---|
| 1365 | ! (T<T0: QS->QG) |
---|
| 1366 | !------------------------------------------------------------- |
---|
| 1367 | if(qrs(i,k,2).gt.0.) then |
---|
| 1368 | alpha2 = 1.e-3*exp(0.09*(-supcol)) |
---|
| 1369 | pgaut(i,k) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)),qrs(i,k,2)/dtcld) |
---|
| 1370 | endif |
---|
| 1371 | endif |
---|
| 1372 | ! |
---|
| 1373 | !------------------------------------------------------------- |
---|
| 1374 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
| 1375 | ! (T>=T0: QS->QV) |
---|
| 1376 | !------------------------------------------------------------- |
---|
| 1377 | if(supcol.lt.0.) then |
---|
| 1378 | if(qrs(i,k,2).gt.0. .and. rh(i,k,1).lt.1.) then |
---|
| 1379 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
| 1380 | psevp(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
| 1381 | +precs2*work2(i,k)*coeres)/work1(i,k,1) |
---|
| 1382 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
| 1383 | endif |
---|
| 1384 | !------------------------------------------------------------- |
---|
| 1385 | ! pgevp: Evaporation of melting graupel [HL A25] [RH84 A19] |
---|
| 1386 | ! (T>=T0: QG->QV) |
---|
| 1387 | !------------------------------------------------------------- |
---|
| 1388 | if(qrs(i,k,3).gt.0. .and. rh(i,k,1).lt.1.) then |
---|
| 1389 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
| 1390 | pgevp(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3) & |
---|
| 1391 | + precg2*work2(i,k)*coeres)/work1(i,k,1) |
---|
| 1392 | pgevp(i,k) = min(max(pgevp(i,k),-qrs(i,k,3)/dtcld),0.) |
---|
| 1393 | endif |
---|
| 1394 | endif |
---|
| 1395 | enddo |
---|
| 1396 | enddo |
---|
| 1397 | ! |
---|
| 1398 | ! |
---|
| 1399 | !---------------------------------------------------------------- |
---|
| 1400 | ! check mass conservation of generation terms and feedback to the |
---|
| 1401 | ! large scale |
---|
| 1402 | ! |
---|
| 1403 | do k = kts, kte |
---|
| 1404 | do i = its, ite |
---|
| 1405 | ! |
---|
| 1406 | delta2=0. |
---|
| 1407 | delta3=0. |
---|
| 1408 | if(qrs(i,k,1).lt.1.e-4 .and. qrs(i,k,2).lt.1.e-4) delta2=1. |
---|
| 1409 | if(qrs(i,k,1).lt.1.e-4) delta3=1. |
---|
| 1410 | if(t(i,k).le.t0c) then |
---|
| 1411 | ! |
---|
| 1412 | ! cloud water |
---|
| 1413 | ! |
---|
| 1414 | value = max(qmin,qci(i,k,1)) |
---|
| 1415 | source = (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))& |
---|
| 1416 | *dtcld |
---|
| 1417 | if (source.gt.value) then |
---|
| 1418 | factor = value/source |
---|
| 1419 | praut(i,k) = praut(i,k)*factor |
---|
| 1420 | pracw(i,k) = pracw(i,k)*factor |
---|
| 1421 | paacw(i,k) = paacw(i,k)*factor |
---|
| 1422 | endif |
---|
| 1423 | ! |
---|
| 1424 | ! cloud ice |
---|
| 1425 | ! |
---|
| 1426 | value = max(qmin,qci(i,k,2)) |
---|
| 1427 | source = (psaut(i,k)-pigen(i,k)-pidep(i,k)+praci(i,k)+psaci(i,k) & |
---|
| 1428 | +pgaci(i,k))*dtcld |
---|
| 1429 | if (source.gt.value) then |
---|
| 1430 | factor = value/source |
---|
| 1431 | psaut(i,k) = psaut(i,k)*factor |
---|
| 1432 | pigen(i,k) = pigen(i,k)*factor |
---|
| 1433 | pidep(i,k) = pidep(i,k)*factor |
---|
| 1434 | praci(i,k) = praci(i,k)*factor |
---|
| 1435 | psaci(i,k) = psaci(i,k)*factor |
---|
| 1436 | pgaci(i,k) = pgaci(i,k)*factor |
---|
| 1437 | endif |
---|
| 1438 | ! |
---|
| 1439 | ! rain |
---|
| 1440 | ! |
---|
| 1441 | value = max(qmin,qrs(i,k,1)) |
---|
| 1442 | source = (-praut(i,k)-prevp(i,k)-pracw(i,k)+piacr(i,k) & |
---|
| 1443 | +psacr(i,k)+pgacr(i,k))*dtcld |
---|
| 1444 | if (source.gt.value) then |
---|
| 1445 | factor = value/source |
---|
| 1446 | praut(i,k) = praut(i,k)*factor |
---|
| 1447 | prevp(i,k) = prevp(i,k)*factor |
---|
| 1448 | pracw(i,k) = pracw(i,k)*factor |
---|
| 1449 | piacr(i,k) = piacr(i,k)*factor |
---|
| 1450 | psacr(i,k) = psacr(i,k)*factor |
---|
| 1451 | pgacr(i,k) = pgacr(i,k)*factor |
---|
| 1452 | endif |
---|
| 1453 | ! |
---|
| 1454 | ! snow |
---|
| 1455 | ! |
---|
| 1456 | value = max(qmin,qrs(i,k,2)) |
---|
| 1457 | source = -(psdep(i,k)+psaut(i,k)-pgaut(i,k)+paacw(i,k) & |
---|
| 1458 | +piacr(i,k)*delta3+praci(i,k)*delta3 & |
---|
| 1459 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2 & |
---|
| 1460 | +psaci(i,k)-pgacs(i,k) )*dtcld |
---|
| 1461 | if (source.gt.value) then |
---|
| 1462 | factor = value/source |
---|
| 1463 | psdep(i,k) = psdep(i,k)*factor |
---|
| 1464 | psaut(i,k) = psaut(i,k)*factor |
---|
| 1465 | pgaut(i,k) = pgaut(i,k)*factor |
---|
| 1466 | paacw(i,k) = paacw(i,k)*factor |
---|
| 1467 | piacr(i,k) = piacr(i,k)*factor |
---|
| 1468 | praci(i,k) = praci(i,k)*factor |
---|
| 1469 | psaci(i,k) = psaci(i,k)*factor |
---|
| 1470 | pracs(i,k) = pracs(i,k)*factor |
---|
| 1471 | psacr(i,k) = psacr(i,k)*factor |
---|
| 1472 | pgacs(i,k) = pgacs(i,k)*factor |
---|
| 1473 | endif |
---|
| 1474 | ! |
---|
| 1475 | ! graupel |
---|
| 1476 | ! |
---|
| 1477 | value = max(qmin,qrs(i,k,3)) |
---|
| 1478 | source = -(pgdep(i,k)+pgaut(i,k) & |
---|
| 1479 | +piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3) & |
---|
| 1480 | +psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2) & |
---|
| 1481 | +pgaci(i,k)+paacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld |
---|
| 1482 | if (source.gt.value) then |
---|
| 1483 | factor = value/source |
---|
| 1484 | pgdep(i,k) = pgdep(i,k)*factor |
---|
| 1485 | pgaut(i,k) = pgaut(i,k)*factor |
---|
| 1486 | piacr(i,k) = piacr(i,k)*factor |
---|
| 1487 | praci(i,k) = praci(i,k)*factor |
---|
| 1488 | psacr(i,k) = psacr(i,k)*factor |
---|
| 1489 | pracs(i,k) = pracs(i,k)*factor |
---|
| 1490 | paacw(i,k) = paacw(i,k)*factor |
---|
| 1491 | pgaci(i,k) = pgaci(i,k)*factor |
---|
| 1492 | pgacr(i,k) = pgacr(i,k)*factor |
---|
| 1493 | pgacs(i,k) = pgacs(i,k)*factor |
---|
| 1494 | endif |
---|
| 1495 | ! |
---|
| 1496 | ! cloud |
---|
| 1497 | ! |
---|
| 1498 | value = max(ncmin,ncr(i,k,2)) |
---|
| 1499 | source = (nraut(i,k)+nccol(i,k)+nracw(i,k) & |
---|
| 1500 | +naacw(i,k)+naacw(i,k))*dtcld |
---|
| 1501 | if (source.gt.value) then |
---|
| 1502 | factor = value/source |
---|
| 1503 | nraut(i,k) = nraut(i,k)*factor |
---|
| 1504 | nccol(i,k) = nccol(i,k)*factor |
---|
| 1505 | nracw(i,k) = nracw(i,k)*factor |
---|
| 1506 | naacw(i,k) = naacw(i,k)*factor |
---|
| 1507 | endif |
---|
| 1508 | ! |
---|
| 1509 | ! rain |
---|
| 1510 | ! |
---|
| 1511 | value = max(nrmin,ncr(i,k,3)) |
---|
| 1512 | source = (-nraut(i,k)+nrcol(i,k)+niacr(i,k)+nsacr(i,k)+ngacr(i,k) & |
---|
| 1513 | )*dtcld |
---|
| 1514 | if (source.gt.value) then |
---|
| 1515 | factor = value/source |
---|
| 1516 | nraut(i,k) = nraut(i,k)*factor |
---|
| 1517 | nrcol(i,k) = nrcol(i,k)*factor |
---|
| 1518 | niacr(i,k) = niacr(i,k)*factor |
---|
| 1519 | nsacr(i,k) = nsacr(i,k)*factor |
---|
| 1520 | ngacr(i,k) = ngacr(i,k)*factor |
---|
| 1521 | endif |
---|
| 1522 | ! |
---|
| 1523 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pgdep(i,k)+pigen(i,k)+pidep(i,k)) |
---|
| 1524 | ! update |
---|
| 1525 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
| 1526 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
| 1527 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
---|
| 1528 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
| 1529 | +prevp(i,k)-piacr(i,k)-pgacr(i,k) & |
---|
| 1530 | -psacr(i,k))*dtcld,0.) |
---|
| 1531 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+praci(i,k) & |
---|
| 1532 | +psaci(i,k)+pgaci(i,k)-pigen(i,k)-pidep(i,k)) & |
---|
| 1533 | *dtcld,0.) |
---|
| 1534 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+paacw(i,k) & |
---|
| 1535 | -pgaut(i,k)+piacr(i,k)*delta3 & |
---|
| 1536 | +praci(i,k)*delta3+psaci(i,k)-pgacs(i,k) & |
---|
| 1537 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2) & |
---|
| 1538 | *dtcld,0.) |
---|
| 1539 | qrs(i,k,3) = max(qrs(i,k,3)+(pgdep(i,k)+pgaut(i,k) & |
---|
| 1540 | +piacr(i,k)*(1.-delta3) & |
---|
| 1541 | +praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2) & |
---|
| 1542 | +pracs(i,k)*(1.-delta2)+pgaci(i,k)+paacw(i,k) & |
---|
| 1543 | +pgacr(i,k)+pgacs(i,k))*dtcld,0.) |
---|
| 1544 | ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & |
---|
| 1545 | -naacw(i,k)-naacw(i,k))*dtcld,0.) |
---|
| 1546 | ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)-niacr(i,k) & |
---|
| 1547 | -nsacr(i,k)-ngacr(i,k))*dtcld,0.) |
---|
| 1548 | xlf = xls-xl(i,k) |
---|
| 1549 | xlwork2 = -xls*(psdep(i,k)+pgdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
| 1550 | -xl(i,k)*prevp(i,k)-xlf*(piacr(i,k)+paacw(i,k) & |
---|
| 1551 | +paacw(i,k)+pgacr(i,k)+psacr(i,k)) |
---|
| 1552 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
| 1553 | else |
---|
| 1554 | ! |
---|
| 1555 | ! cloud water |
---|
| 1556 | ! |
---|
| 1557 | value = max(qmin,qci(i,k,1)) |
---|
| 1558 | source= (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k)) & |
---|
| 1559 | *dtcld |
---|
| 1560 | if (source.gt.value) then |
---|
| 1561 | factor = value/source |
---|
| 1562 | praut(i,k) = praut(i,k)*factor |
---|
| 1563 | pracw(i,k) = pracw(i,k)*factor |
---|
| 1564 | paacw(i,k) = paacw(i,k)*factor |
---|
| 1565 | endif |
---|
| 1566 | ! |
---|
| 1567 | ! rain |
---|
| 1568 | ! |
---|
| 1569 | value = max(qmin,qrs(i,k,1)) |
---|
| 1570 | source = (-paacw(i,k)-praut(i,k)+pseml(i,k)+pgeml(i,k) & |
---|
| 1571 | -pracw(i,k)-paacw(i,k)-prevp(i,k))*dtcld |
---|
| 1572 | if (source.gt.value) then |
---|
| 1573 | factor = value/source |
---|
| 1574 | praut(i,k) = praut(i,k)*factor |
---|
| 1575 | prevp(i,k) = prevp(i,k)*factor |
---|
| 1576 | pracw(i,k) = pracw(i,k)*factor |
---|
| 1577 | paacw(i,k) = paacw(i,k)*factor |
---|
| 1578 | pseml(i,k) = pseml(i,k)*factor |
---|
| 1579 | pgeml(i,k) = pgeml(i,k)*factor |
---|
| 1580 | endif |
---|
| 1581 | ! |
---|
| 1582 | ! snow |
---|
| 1583 | ! |
---|
| 1584 | value = max(qcrmin,qrs(i,k,2)) |
---|
| 1585 | source=(pgacs(i,k)-pseml(i,k)-psevp(i,k))*dtcld |
---|
| 1586 | if (source.gt.value) then |
---|
| 1587 | factor = value/source |
---|
| 1588 | pgacs(i,k) = pgacs(i,k)*factor |
---|
| 1589 | psevp(i,k) = psevp(i,k)*factor |
---|
| 1590 | pseml(i,k) = pseml(i,k)*factor |
---|
| 1591 | endif |
---|
| 1592 | ! |
---|
| 1593 | ! graupel |
---|
| 1594 | ! |
---|
| 1595 | value = max(qcrmin,qrs(i,k,3)) |
---|
| 1596 | source=-(pgacs(i,k)+pgevp(i,k)+pgeml(i,k))*dtcld |
---|
| 1597 | if (source.gt.value) then |
---|
| 1598 | factor = value/source |
---|
| 1599 | pgacs(i,k) = pgacs(i,k)*factor |
---|
| 1600 | pgevp(i,k) = pgevp(i,k)*factor |
---|
| 1601 | pgeml(i,k) = pgeml(i,k)*factor |
---|
| 1602 | endif |
---|
| 1603 | ! |
---|
| 1604 | ! cloud |
---|
| 1605 | ! |
---|
| 1606 | value = max(ncmin,ncr(i,k,2)) |
---|
| 1607 | source = (+nraut(i,k)+nccol(i,k)+nracw(i,k)+naacw(i,k) & |
---|
| 1608 | +naacw(i,k))*dtcld |
---|
| 1609 | if (source.gt.value) then |
---|
| 1610 | factor = value/source |
---|
| 1611 | nraut(i,k) = nraut(i,k)*factor |
---|
| 1612 | nccol(i,k) = nccol(i,k)*factor |
---|
| 1613 | nracw(i,k) = nracw(i,k)*factor |
---|
| 1614 | naacw(i,k) = naacw(i,k)*factor |
---|
| 1615 | endif |
---|
| 1616 | ! |
---|
| 1617 | ! rain |
---|
| 1618 | ! |
---|
| 1619 | value = max(nrmin,ncr(i,k,3)) |
---|
| 1620 | source = (-nraut(i,k)+nrcol(i,k)-nseml(i,k)-ngeml(i,k) & |
---|
| 1621 | )*dtcld |
---|
| 1622 | if (source.gt.value) then |
---|
| 1623 | factor = value/source |
---|
| 1624 | nraut(i,k) = nraut(i,k)*factor |
---|
| 1625 | nrcol(i,k) = nrcol(i,k)*factor |
---|
| 1626 | nseml(i,k) = nseml(i,k)*factor |
---|
| 1627 | ngeml(i,k) = ngeml(i,k)*factor |
---|
| 1628 | endif |
---|
| 1629 | ! |
---|
| 1630 | work2(i,k)=-(prevp(i,k)+psevp(i,k)+pgevp(i,k)) |
---|
| 1631 | ! update |
---|
| 1632 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
| 1633 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
| 1634 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
---|
| 1635 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
| 1636 | +prevp(i,k)+paacw(i,k)+paacw(i,k)-pseml(i,k) & |
---|
| 1637 | -pgeml(i,k))*dtcld,0.) |
---|
| 1638 | qrs(i,k,2) = max(qrs(i,k,2)+(psevp(i,k)-pgacs(i,k) & |
---|
| 1639 | +pseml(i,k))*dtcld,0.) |
---|
| 1640 | qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgevp(i,k) & |
---|
| 1641 | +pgeml(i,k))*dtcld,0.) |
---|
| 1642 | ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & |
---|
| 1643 | -naacw(i,k)-naacw(i,k))*dtcld,0.) |
---|
| 1644 | ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)+nseml(i,k) & |
---|
| 1645 | +ngeml(i,k))*dtcld,0.) |
---|
| 1646 | xlf = xls-xl(i,k) |
---|
| 1647 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)+pgevp(i,k)) & |
---|
| 1648 | -xlf*(pseml(i,k)+pgeml(i,k)) |
---|
| 1649 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
| 1650 | endif |
---|
| 1651 | enddo |
---|
| 1652 | enddo |
---|
| 1653 | ! |
---|
| 1654 | ! Inline expansion for fpvs |
---|
| 1655 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
| 1656 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
| 1657 | hsub = xls |
---|
| 1658 | hvap = xlv0 |
---|
| 1659 | cvap = cpv |
---|
| 1660 | ttp=t0c+0.01 |
---|
| 1661 | dldt=cvap-cliq |
---|
| 1662 | xa=-dldt/rv |
---|
| 1663 | xb=xa+hvap/(rv*ttp) |
---|
| 1664 | dldti=cvap-cice |
---|
| 1665 | xai=-dldti/rv |
---|
| 1666 | xbi=xai+hsub/(rv*ttp) |
---|
| 1667 | do k = kts, kte |
---|
| 1668 | do i = its, ite |
---|
| 1669 | tr=ttp/t(i,k) |
---|
| 1670 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
| 1671 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
---|
| 1672 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
| 1673 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
| 1674 | tr=ttp/t(i,k) |
---|
| 1675 | if(t(i,k).lt.ttp) then |
---|
| 1676 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
| 1677 | else |
---|
| 1678 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
| 1679 | endif |
---|
| 1680 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
---|
| 1681 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
| 1682 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
| 1683 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
| 1684 | enddo |
---|
| 1685 | enddo |
---|
| 1686 | ! |
---|
| 1687 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
| 1688 | rslope3,work1,workn,its,ite,kts,kte) |
---|
| 1689 | do k = kts, kte |
---|
| 1690 | do i = its, ite |
---|
| 1691 | !----------------------------------------------------------------- |
---|
| 1692 | ! re-compute the mean-volume drop diameter [LH A10] |
---|
| 1693 | ! for raindrop distribution |
---|
| 1694 | !----------------------------------------------------------------- |
---|
| 1695 | avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) |
---|
| 1696 | !---------------------------------------------------------------- |
---|
| 1697 | ! Nrevp_s: evaporation/condensation rate of rain [LH A14] |
---|
| 1698 | ! (NR->NC) |
---|
| 1699 | !---------------------------------------------------------------- |
---|
| 1700 | if(avedia(i,k,2).le.di82) then |
---|
| 1701 | ncr(i,k,2) = ncr(i,k,2)+ncr(i,k,3) |
---|
| 1702 | ncr(i,k,3) = 0. |
---|
| 1703 | !---------------------------------------------------------------- |
---|
| 1704 | ! Prevp_s: evaporation/condensation rate of rain [LH A15] [KK 23] |
---|
| 1705 | ! (QR->QC) |
---|
| 1706 | !---------------------------------------------------------------- |
---|
| 1707 | qci(i,k,1) = qci(i,k,1)+qrs(i,k,1) |
---|
| 1708 | qrs(i,k,1) = 0. |
---|
| 1709 | endif |
---|
| 1710 | enddo |
---|
| 1711 | enddo |
---|
| 1712 | ! |
---|
| 1713 | do k = kts, kte |
---|
| 1714 | do i = its, ite |
---|
| 1715 | !--------------------------------------------------------------- |
---|
| 1716 | ! rate of change of cloud drop concentration due to CCN activation |
---|
| 1717 | ! pcact: QV -> QC [LH 8] [KK 14] |
---|
| 1718 | ! ncact: NCCN -> NC [LH A2] [KK 12] |
---|
| 1719 | !--------------------------------------------------------------- |
---|
| 1720 | if(rh(i,k,1).gt.1.) then |
---|
| 1721 | ncact(i,k) = max(0.,((ncr(i,k,1)+ncr(i,k,2)) & |
---|
| 1722 | *min(1.,(rh(i,k,1)/satmax)**actk) - ncr(i,k,2)))/dtcld |
---|
| 1723 | ncact(i,k) =min(ncact(i,k),max(ncr(i,k,1),0.)/dtcld) |
---|
| 1724 | pcact(i,k) = min(4.*pi*denr*(actr*1.E-6)**3*ncact(i,k)/ & |
---|
| 1725 | (3.*den(i,k)),max(q(i,k),0.)/dtcld) |
---|
| 1726 | q(i,k) = max(q(i,k)-pcact(i,k)*dtcld,0.) |
---|
| 1727 | qci(i,k,1) = max(qci(i,k,1)+pcact(i,k)*dtcld,0.) |
---|
| 1728 | ncr(i,k,1) = max(ncr(i,k,1)-ncact(i,k)*dtcld,0.) |
---|
| 1729 | ncr(i,k,2) = max(ncr(i,k,2)+ncact(i,k)*dtcld,0.) |
---|
| 1730 | t(i,k) = t(i,k)+pcact(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
| 1731 | endif |
---|
| 1732 | !--------------------------------------------------------------- |
---|
| 1733 | ! pcond:condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
| 1734 | ! if there exists additional water vapor condensated/if |
---|
| 1735 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
| 1736 | ! (QV->QC or QC->QV) |
---|
| 1737 | !--------------------------------------------------------------- |
---|
| 1738 | tr=ttp/t(i,k) |
---|
| 1739 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
| 1740 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
---|
| 1741 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
| 1742 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
| 1743 | work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
| 1744 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
| 1745 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
---|
| 1746 | if(qci(i,k,1).gt.0. .and. work1(i,k,1).lt.0.) & |
---|
| 1747 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
| 1748 | !---------------------------------------------------------------- |
---|
| 1749 | ! ncevp: evpration of Cloud number concentration [LH A3] |
---|
| 1750 | ! (NC->NCCN) |
---|
| 1751 | !---------------------------------------------------------------- |
---|
| 1752 | if(pcond(i,k).eq.-qci(i,k,1)/dtcld) then |
---|
| 1753 | ncr(i,k,2) = 0. |
---|
| 1754 | ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,2) |
---|
| 1755 | endif |
---|
| 1756 | ! |
---|
| 1757 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
---|
| 1758 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
| 1759 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
| 1760 | enddo |
---|
| 1761 | enddo |
---|
| 1762 | ! |
---|
| 1763 | !---------------------------------------------------------------- |
---|
| 1764 | ! padding for small values |
---|
| 1765 | ! |
---|
| 1766 | do k = kts, kte |
---|
| 1767 | do i = its, ite |
---|
| 1768 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
| 1769 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
| 1770 | enddo |
---|
| 1771 | enddo |
---|
| 1772 | enddo ! big loops |
---|
| 1773 | END SUBROUTINE wdm62d |
---|
| 1774 | ! ................................................................... |
---|
| 1775 | REAL FUNCTION rgmma(x) |
---|
| 1776 | !------------------------------------------------------------------- |
---|
| 1777 | IMPLICIT NONE |
---|
| 1778 | !------------------------------------------------------------------- |
---|
| 1779 | ! rgmma function: use infinite product form |
---|
| 1780 | REAL :: euler |
---|
| 1781 | PARAMETER (euler=0.577215664901532) |
---|
| 1782 | REAL :: x, y |
---|
| 1783 | INTEGER :: i |
---|
| 1784 | if(x.eq.1.)then |
---|
| 1785 | rgmma=0. |
---|
| 1786 | else |
---|
| 1787 | rgmma=x*exp(euler*x) |
---|
| 1788 | do i=1,10000 |
---|
| 1789 | y=float(i) |
---|
| 1790 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
| 1791 | enddo |
---|
| 1792 | rgmma=1./rgmma |
---|
| 1793 | endif |
---|
| 1794 | END FUNCTION rgmma |
---|
| 1795 | ! |
---|
| 1796 | !-------------------------------------------------------------------------- |
---|
| 1797 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
| 1798 | !-------------------------------------------------------------------------- |
---|
| 1799 | IMPLICIT NONE |
---|
| 1800 | !-------------------------------------------------------------------------- |
---|
| 1801 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
| 1802 | xai,xbi,ttp,tr |
---|
| 1803 | INTEGER ice |
---|
| 1804 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
| 1805 | ttp=t0c+0.01 |
---|
| 1806 | dldt=cvap-cliq |
---|
| 1807 | xa=-dldt/rv |
---|
| 1808 | xb=xa+hvap/(rv*ttp) |
---|
| 1809 | dldti=cvap-cice |
---|
| 1810 | xai=-dldti/rv |
---|
| 1811 | xbi=xai+hsub/(rv*ttp) |
---|
| 1812 | tr=ttp/t |
---|
| 1813 | if(t.lt.ttp .and. ice.eq.1) then |
---|
| 1814 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
| 1815 | else |
---|
| 1816 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
| 1817 | endif |
---|
| 1818 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
| 1819 | END FUNCTION fpvs |
---|
| 1820 | !------------------------------------------------------------------- |
---|
| 1821 | SUBROUTINE wdm6init(den0,denr,dens,cl,cpv, ccn0, allowed_to_read) |
---|
| 1822 | !------------------------------------------------------------------- |
---|
| 1823 | IMPLICIT NONE |
---|
| 1824 | !------------------------------------------------------------------- |
---|
| 1825 | !.... constants which may not be tunable |
---|
| 1826 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv,ccn0 |
---|
| 1827 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
| 1828 | ! |
---|
| 1829 | pi = 4.*atan(1.) |
---|
| 1830 | xlv1 = cl-cpv |
---|
| 1831 | ! |
---|
| 1832 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
| 1833 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
| 1834 | pidnc = pi*denr/6. |
---|
| 1835 | ! |
---|
| 1836 | bvtr1 = 1.+bvtr |
---|
| 1837 | bvtr2 = 2.+bvtr |
---|
| 1838 | bvtr3 = 3.+bvtr |
---|
| 1839 | bvtr4 = 4.+bvtr |
---|
| 1840 | bvtr5 = 5.+bvtr |
---|
| 1841 | bvtr6 = 6.+bvtr |
---|
| 1842 | bvtr7 = 7.+bvtr |
---|
| 1843 | bvtr2o5 = 2.5+.5*bvtr |
---|
| 1844 | bvtr3o5 = 3.5+.5*bvtr |
---|
| 1845 | g1pbr = rgmma(bvtr1) |
---|
| 1846 | g2pbr = rgmma(bvtr2) |
---|
| 1847 | g3pbr = rgmma(bvtr3) |
---|
| 1848 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
| 1849 | g5pbr = rgmma(bvtr5) |
---|
| 1850 | g6pbr = rgmma(bvtr6) |
---|
| 1851 | g7pbr = rgmma(bvtr7) |
---|
| 1852 | g5pbro2 = rgmma(bvtr2o5) |
---|
| 1853 | g7pbro2 = rgmma(bvtr3o5) |
---|
| 1854 | pvtr = avtr*g5pbr/24. |
---|
| 1855 | pvtrn = avtr*g2pbr |
---|
| 1856 | eacrr = 1.0 |
---|
| 1857 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
| 1858 | precr1 = 2.*pi*1.56 |
---|
| 1859 | precr2 = 2.*pi*.31*avtr**.5*g7pbro2 |
---|
| 1860 | pidn0r = pi*denr*n0r |
---|
| 1861 | pidnr = 4.*pi*denr |
---|
| 1862 | ! |
---|
| 1863 | xmmax = (dimax/dicon)**2 |
---|
| 1864 | roqimax = 2.08e22*dimax**8 |
---|
| 1865 | ! |
---|
| 1866 | bvts1 = 1.+bvts |
---|
| 1867 | bvts2 = 2.5+.5*bvts |
---|
| 1868 | bvts3 = 3.+bvts |
---|
| 1869 | bvts4 = 4.+bvts |
---|
| 1870 | g1pbs = rgmma(bvts1) !.8875 |
---|
| 1871 | g3pbs = rgmma(bvts3) |
---|
| 1872 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
| 1873 | g5pbso2 = rgmma(bvts2) |
---|
| 1874 | pvts = avts*g4pbs/6. |
---|
| 1875 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
| 1876 | precs1 = 4.*n0s*.65 |
---|
| 1877 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
| 1878 | pidn0s = pi*dens*n0s |
---|
| 1879 | ! |
---|
| 1880 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
---|
| 1881 | ! |
---|
| 1882 | bvtg1 = 1.+bvtg |
---|
| 1883 | bvtg2 = 2.5+.5*bvtg |
---|
| 1884 | bvtg3 = 3.+bvtg |
---|
| 1885 | bvtg4 = 4.+bvtg |
---|
| 1886 | g1pbg = rgmma(bvtg1) |
---|
| 1887 | g3pbg = rgmma(bvtg3) |
---|
| 1888 | g4pbg = rgmma(bvtg4) |
---|
| 1889 | g5pbgo2 = rgmma(bvtg2) |
---|
| 1890 | pacrg = pi*n0g*avtg*g3pbg*.25 |
---|
| 1891 | pvtg = avtg*g4pbg/6. |
---|
| 1892 | precg1 = 2.*pi*n0g*.78 |
---|
| 1893 | precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2 |
---|
| 1894 | pidn0g = pi*deng*n0g |
---|
| 1895 | ! |
---|
| 1896 | rslopecmax = 1./lamdacmax |
---|
| 1897 | rslopermax = 1./lamdarmax |
---|
| 1898 | rslopesmax = 1./lamdasmax |
---|
| 1899 | rslopegmax = 1./lamdagmax |
---|
| 1900 | rsloperbmax = rslopermax ** bvtr |
---|
| 1901 | rslopesbmax = rslopesmax ** bvts |
---|
| 1902 | rslopegbmax = rslopegmax ** bvtg |
---|
| 1903 | rslopec2max = rslopecmax * rslopecmax |
---|
| 1904 | rsloper2max = rslopermax * rslopermax |
---|
| 1905 | rslopes2max = rslopesmax * rslopesmax |
---|
| 1906 | rslopeg2max = rslopegmax * rslopegmax |
---|
| 1907 | rslopec3max = rslopec2max * rslopecmax |
---|
| 1908 | rsloper3max = rsloper2max * rslopermax |
---|
| 1909 | rslopes3max = rslopes2max * rslopesmax |
---|
| 1910 | rslopeg3max = rslopeg2max * rslopegmax |
---|
| 1911 | ! |
---|
| 1912 | END SUBROUTINE wdm6init |
---|
| 1913 | !------------------------------------------------------------------------------ |
---|
| 1914 | subroutine slope_wdm6(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
| 1915 | vt,vtn,its,ite,kts,kte) |
---|
| 1916 | IMPLICIT NONE |
---|
| 1917 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
| 1918 | REAL, DIMENSION( its:ite , kts:kte,3) :: & |
---|
| 1919 | qrs, & |
---|
| 1920 | rslope, & |
---|
| 1921 | rslopeb, & |
---|
| 1922 | rslope2, & |
---|
| 1923 | rslope3, & |
---|
| 1924 | vt |
---|
| 1925 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
| 1926 | ncr, & |
---|
| 1927 | vtn, & |
---|
| 1928 | den, & |
---|
| 1929 | denfac, & |
---|
| 1930 | t |
---|
| 1931 | REAL, PARAMETER :: t0c = 273.15 |
---|
| 1932 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 1933 | n0sfac |
---|
| 1934 | REAL :: lamdar, lamdas, lamdag, x, y, z, supcol |
---|
| 1935 | integer :: i, j, k |
---|
| 1936 | !---------------------------------------------------------------- |
---|
| 1937 | ! size distributions: (x=mixing ratio, y=air density): |
---|
| 1938 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
| 1939 | ! |
---|
| 1940 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
| 1941 | lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) |
---|
| 1942 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
| 1943 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
---|
| 1944 | ! |
---|
| 1945 | do k = kts, kte |
---|
| 1946 | do i = its, ite |
---|
| 1947 | supcol = t0c-t(i,k) |
---|
| 1948 | !--------------------------------------------------------------- |
---|
| 1949 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
| 1950 | !--------------------------------------------------------------- |
---|
| 1951 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
| 1952 | if(qrs(i,k,1).le.qcrmin .or. ncr(i,k).le.nrmin ) then |
---|
| 1953 | rslope(i,k,1) = rslopermax |
---|
| 1954 | rslopeb(i,k,1) = rsloperbmax |
---|
| 1955 | rslope2(i,k,1) = rsloper2max |
---|
| 1956 | rslope3(i,k,1) = rsloper3max |
---|
| 1957 | else |
---|
| 1958 | rslope(i,k,1) = min(1./lamdar(qrs(i,k,1),den(i,k),ncr(i,k)),1.e-3) |
---|
| 1959 | rslopeb(i,k,1) = rslope(i,k,1)**bvtr |
---|
| 1960 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
| 1961 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
| 1962 | endif |
---|
| 1963 | if(qrs(i,k,2).le.qcrmin) then |
---|
| 1964 | rslope(i,k,2) = rslopesmax |
---|
| 1965 | rslopeb(i,k,2) = rslopesbmax |
---|
| 1966 | rslope2(i,k,2) = rslopes2max |
---|
| 1967 | rslope3(i,k,2) = rslopes3max |
---|
| 1968 | else |
---|
| 1969 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
| 1970 | rslopeb(i,k,2) = rslope(i,k,2)**bvts |
---|
| 1971 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
| 1972 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
| 1973 | endif |
---|
| 1974 | if(qrs(i,k,3).le.qcrmin) then |
---|
| 1975 | rslope(i,k,3) = rslopegmax |
---|
| 1976 | rslopeb(i,k,3) = rslopegbmax |
---|
| 1977 | rslope2(i,k,3) = rslopeg2max |
---|
| 1978 | rslope3(i,k,3) = rslopeg3max |
---|
| 1979 | else |
---|
| 1980 | rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k)) |
---|
| 1981 | rslopeb(i,k,3) = rslope(i,k,3)**bvtg |
---|
| 1982 | rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3) |
---|
| 1983 | rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3) |
---|
| 1984 | endif |
---|
| 1985 | vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k) |
---|
| 1986 | vt(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
| 1987 | vt(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k) |
---|
| 1988 | vtn(i,k) = pvtrn*rslopeb(i,k,1)*denfac(i,k) |
---|
| 1989 | if(qrs(i,k,1).le.0.0) vt(i,k,1) = 0.0 |
---|
| 1990 | if(qrs(i,k,2).le.0.0) vt(i,k,2) = 0.0 |
---|
| 1991 | if(qrs(i,k,3).le.0.0) vt(i,k,3) = 0.0 |
---|
| 1992 | if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 |
---|
| 1993 | enddo |
---|
| 1994 | enddo |
---|
| 1995 | END subroutine slope_wdm6 |
---|
| 1996 | !----------------------------------------------------------------------------- |
---|
| 1997 | subroutine slope_rain(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
| 1998 | vt,vtn,its,ite,kts,kte) |
---|
| 1999 | IMPLICIT NONE |
---|
| 2000 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
| 2001 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
| 2002 | qrs, & |
---|
| 2003 | ncr, & |
---|
| 2004 | rslope, & |
---|
| 2005 | rslopeb, & |
---|
| 2006 | rslope2, & |
---|
| 2007 | rslope3, & |
---|
| 2008 | vt, & |
---|
| 2009 | vtn, & |
---|
| 2010 | den, & |
---|
| 2011 | denfac, & |
---|
| 2012 | t |
---|
| 2013 | REAL, PARAMETER :: t0c = 273.15 |
---|
| 2014 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 2015 | n0sfac |
---|
| 2016 | REAL :: lamdar, x, y, z, supcol |
---|
| 2017 | integer :: i, j, k |
---|
| 2018 | !---------------------------------------------------------------- |
---|
| 2019 | ! size distributions: (x=mixing ratio, y=air density): |
---|
| 2020 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
| 2021 | lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) |
---|
| 2022 | ! |
---|
| 2023 | do k = kts, kte |
---|
| 2024 | do i = its, ite |
---|
| 2025 | if(qrs(i,k).le.qcrmin .or. ncr(i,k).le.nrmin) then |
---|
| 2026 | rslope(i,k) = rslopermax |
---|
| 2027 | rslopeb(i,k) = rsloperbmax |
---|
| 2028 | rslope2(i,k) = rsloper2max |
---|
| 2029 | rslope3(i,k) = rsloper3max |
---|
| 2030 | else |
---|
| 2031 | rslope(i,k) = min(1./lamdar(qrs(i,k),den(i,k),ncr(i,k)),1.e-3) |
---|
| 2032 | rslopeb(i,k) = rslope(i,k)**bvtr |
---|
| 2033 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 2034 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 2035 | endif |
---|
| 2036 | vt(i,k) = pvtr*rslopeb(i,k)*denfac(i,k) |
---|
| 2037 | vtn(i,k) = pvtrn*rslopeb(i,k)*denfac(i,k) |
---|
| 2038 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
| 2039 | if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 |
---|
| 2040 | enddo |
---|
| 2041 | enddo |
---|
| 2042 | END subroutine slope_rain |
---|
| 2043 | !------------------------------------------------------------------------------ |
---|
| 2044 | subroutine slope_snow(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
| 2045 | vt,its,ite,kts,kte) |
---|
| 2046 | IMPLICIT NONE |
---|
| 2047 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
| 2048 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
| 2049 | qrs, & |
---|
| 2050 | rslope, & |
---|
| 2051 | rslopeb, & |
---|
| 2052 | rslope2, & |
---|
| 2053 | rslope3, & |
---|
| 2054 | vt, & |
---|
| 2055 | den, & |
---|
| 2056 | denfac, & |
---|
| 2057 | t |
---|
| 2058 | REAL, PARAMETER :: t0c = 273.15 |
---|
| 2059 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 2060 | n0sfac |
---|
| 2061 | REAL :: lamdas, x, y, z, supcol |
---|
| 2062 | integer :: i, j, k |
---|
| 2063 | !---------------------------------------------------------------- |
---|
| 2064 | ! size distributions: (x=mixing ratio, y=air density): |
---|
| 2065 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
| 2066 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
| 2067 | ! |
---|
| 2068 | do k = kts, kte |
---|
| 2069 | do i = its, ite |
---|
| 2070 | supcol = t0c-t(i,k) |
---|
| 2071 | !--------------------------------------------------------------- |
---|
| 2072 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
| 2073 | !--------------------------------------------------------------- |
---|
| 2074 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
| 2075 | if(qrs(i,k).le.qcrmin)then |
---|
| 2076 | rslope(i,k) = rslopesmax |
---|
| 2077 | rslopeb(i,k) = rslopesbmax |
---|
| 2078 | rslope2(i,k) = rslopes2max |
---|
| 2079 | rslope3(i,k) = rslopes3max |
---|
| 2080 | else |
---|
| 2081 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
| 2082 | rslopeb(i,k) = rslope(i,k)**bvts |
---|
| 2083 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 2084 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 2085 | endif |
---|
| 2086 | vt(i,k) = pvts*rslopeb(i,k)*denfac(i,k) |
---|
| 2087 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
| 2088 | enddo |
---|
| 2089 | enddo |
---|
| 2090 | END subroutine slope_snow |
---|
| 2091 | !---------------------------------------------------------------------------------- |
---|
| 2092 | subroutine slope_graup(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
| 2093 | vt,its,ite,kts,kte) |
---|
| 2094 | IMPLICIT NONE |
---|
| 2095 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
| 2096 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
| 2097 | qrs, & |
---|
| 2098 | rslope, & |
---|
| 2099 | rslopeb, & |
---|
| 2100 | rslope2, & |
---|
| 2101 | rslope3, & |
---|
| 2102 | vt, & |
---|
| 2103 | den, & |
---|
| 2104 | denfac, & |
---|
| 2105 | t |
---|
| 2106 | REAL, PARAMETER :: t0c = 273.15 |
---|
| 2107 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
| 2108 | n0sfac |
---|
| 2109 | REAL :: lamdag, x, y, z, supcol |
---|
| 2110 | integer :: i, j, k |
---|
| 2111 | !---------------------------------------------------------------- |
---|
| 2112 | ! size distributions: (x=mixing ratio, y=air density): |
---|
| 2113 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
| 2114 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
---|
| 2115 | ! |
---|
| 2116 | do k = kts, kte |
---|
| 2117 | do i = its, ite |
---|
| 2118 | !--------------------------------------------------------------- |
---|
| 2119 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
| 2120 | !--------------------------------------------------------------- |
---|
| 2121 | if(qrs(i,k).le.qcrmin)then |
---|
| 2122 | rslope(i,k) = rslopegmax |
---|
| 2123 | rslopeb(i,k) = rslopegbmax |
---|
| 2124 | rslope2(i,k) = rslopeg2max |
---|
| 2125 | rslope3(i,k) = rslopeg3max |
---|
| 2126 | else |
---|
| 2127 | rslope(i,k) = 1./lamdag(qrs(i,k),den(i,k)) |
---|
| 2128 | rslopeb(i,k) = rslope(i,k)**bvtg |
---|
| 2129 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
| 2130 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
| 2131 | endif |
---|
| 2132 | vt(i,k) = pvtg*rslopeb(i,k)*denfac(i,k) |
---|
| 2133 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
| 2134 | enddo |
---|
| 2135 | enddo |
---|
| 2136 | END subroutine slope_graup |
---|
| 2137 | !--------------------------------------------------------------------------------- |
---|
| 2138 | !------------------------------------------------------------------- |
---|
| 2139 | SUBROUTINE nislfv_rain_plmr(im,km,denl,denfacl,tkl,dzl,wwl,rql,rnl,precip,dt,id,iter,rid) |
---|
| 2140 | !------------------------------------------------------------------- |
---|
| 2141 | ! |
---|
| 2142 | ! for non-iteration semi-Lagrangain forward advection for cloud |
---|
| 2143 | ! with mass conservation and positive definite advection |
---|
| 2144 | ! 2nd order interpolation with monotonic piecewise linear method |
---|
| 2145 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
---|
| 2146 | ! |
---|
| 2147 | ! dzl depth of model layer in meter |
---|
| 2148 | ! wwl terminal velocity at model layer m/s |
---|
| 2149 | ! rql cloud density*mixing ration |
---|
| 2150 | ! precip precipitation |
---|
| 2151 | ! dt time step |
---|
| 2152 | ! id kind of precip: 0 test case; 1 raindrop |
---|
| 2153 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
---|
| 2154 | ! 0 : use departure wind for advection |
---|
| 2155 | ! 1 : use mean wind for advection |
---|
| 2156 | ! > 1 : use mean wind after iter-1 iterations |
---|
| 2157 | ! rid : 1 for number 0 for mixing ratio |
---|
| 2158 | ! |
---|
| 2159 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
---|
| 2160 | ! implemented by song-you hong |
---|
| 2161 | ! |
---|
| 2162 | implicit none |
---|
| 2163 | integer im,km,id |
---|
| 2164 | real dt |
---|
| 2165 | real dzl(im,km),wwl(im,km),rql(im,km),rnl(im,km),precip(im) |
---|
| 2166 | real denl(im,km),denfacl(im,km),tkl(im,km) |
---|
| 2167 | ! |
---|
| 2168 | integer i,k,n,m,kk,kb,kt,iter,rid |
---|
| 2169 | real tl,tl2,qql,dql,qqd |
---|
| 2170 | real th,th2,qqh,dqh |
---|
| 2171 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
---|
| 2172 | real allold, allnew, zz, dzamin, cflmax, decfl |
---|
| 2173 | real dz(km), ww(km), qq(km), nr(km), wd(km), wa(km), wa2(km), was(km) |
---|
| 2174 | real den(km), denfac(km), tk(km) |
---|
| 2175 | real wi(km+1), zi(km+1), za(km+1) |
---|
| 2176 | real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
---|
| 2177 | real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) |
---|
| 2178 | ! |
---|
| 2179 | precip(:) = 0.0 |
---|
| 2180 | ! |
---|
| 2181 | i_loop : do i=1,im |
---|
| 2182 | ! ----------------------------------- |
---|
| 2183 | dz(:) = dzl(i,:) |
---|
| 2184 | qq(:) = rql(i,:) |
---|
| 2185 | nr(:) = rnl(i,:) |
---|
| 2186 | if(rid .eq. 1) nr(:) = rnl(i,:)/denl(i,:) |
---|
| 2187 | ww(:) = wwl(i,:) |
---|
| 2188 | den(:) = denl(i,:) |
---|
| 2189 | denfac(:) = denfacl(i,:) |
---|
| 2190 | tk(:) = tkl(i,:) |
---|
| 2191 | ! skip for no precipitation for all layers |
---|
| 2192 | allold = 0.0 |
---|
| 2193 | do k=1,km |
---|
| 2194 | allold = allold + qq(k) |
---|
| 2195 | enddo |
---|
| 2196 | if(allold.le.0.0) then |
---|
| 2197 | cycle i_loop |
---|
| 2198 | endif |
---|
| 2199 | ! |
---|
| 2200 | ! compute interface values |
---|
| 2201 | zi(1)=0.0 |
---|
| 2202 | do k=1,km |
---|
| 2203 | zi(k+1) = zi(k)+dz(k) |
---|
| 2204 | enddo |
---|
| 2205 | ! |
---|
| 2206 | ! save departure wind |
---|
| 2207 | wd(:) = ww(:) |
---|
| 2208 | n=1 |
---|
| 2209 | 100 continue |
---|
| 2210 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
---|
| 2211 | ! 2nd order interpolation to get wi |
---|
| 2212 | wi(1) = ww(1) |
---|
| 2213 | wi(km+1) = ww(km) |
---|
| 2214 | do k=2,km |
---|
| 2215 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
---|
| 2216 | enddo |
---|
| 2217 | ! 3rd order interpolation to get wi |
---|
| 2218 | fa1 = 9./16. |
---|
| 2219 | fa2 = 1./16. |
---|
| 2220 | wi(1) = ww(1) |
---|
| 2221 | wi(2) = 0.5*(ww(2)+ww(1)) |
---|
| 2222 | do k=3,km-1 |
---|
| 2223 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
---|
| 2224 | enddo |
---|
| 2225 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
---|
| 2226 | wi(km+1) = ww(km) |
---|
| 2227 | ! |
---|
| 2228 | ! terminate of top of raingroup |
---|
| 2229 | do k=2,km |
---|
| 2230 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
---|
| 2231 | enddo |
---|
| 2232 | ! |
---|
| 2233 | ! diffusivity of wi |
---|
| 2234 | con1 = 0.05 |
---|
| 2235 | do k=km,1,-1 |
---|
| 2236 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
---|
| 2237 | if( decfl .gt. con1 ) then |
---|
| 2238 | wi(k) = wi(k+1) - con1*dz(k)/dt |
---|
| 2239 | endif |
---|
| 2240 | enddo |
---|
| 2241 | ! compute arrival point |
---|
| 2242 | do k=1,km+1 |
---|
| 2243 | za(k) = zi(k) - wi(k)*dt |
---|
| 2244 | enddo |
---|
| 2245 | ! |
---|
| 2246 | do k=1,km |
---|
| 2247 | dza(k) = za(k+1)-za(k) |
---|
| 2248 | enddo |
---|
| 2249 | dza(km+1) = zi(km+1) - za(km+1) |
---|
| 2250 | ! |
---|
| 2251 | ! computer deformation at arrival point |
---|
| 2252 | do k=1,km |
---|
| 2253 | qa(k) = qq(k)*dz(k)/dza(k) |
---|
| 2254 | qr(k) = qa(k)/den(k) |
---|
| 2255 | if(rid .eq. 1) qr(k) = qa(K) |
---|
| 2256 | enddo |
---|
| 2257 | qa(km+1) = 0.0 |
---|
| 2258 | ! call maxmin(km,1,qa,' arrival points ') |
---|
| 2259 | ! |
---|
| 2260 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
---|
| 2261 | ! then back to use mean terminal velocity |
---|
| 2262 | if( n.le.iter ) then |
---|
| 2263 | if(rid.eq.1) then |
---|
| 2264 | call slope_rain(nr,qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,wa2,1,1,1,km) |
---|
| 2265 | else |
---|
| 2266 | call slope_rain(qr,nr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,wa2,1,1,1,km) |
---|
| 2267 | endif |
---|
| 2268 | if(rid.eq.1) wa(:) = wa2(:) |
---|
| 2269 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
---|
| 2270 | do k=1,km |
---|
| 2271 | !#ifdef DEBUG |
---|
| 2272 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) |
---|
| 2273 | !#endif |
---|
| 2274 | ! mean wind is average of departure and new arrival winds |
---|
| 2275 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
---|
| 2276 | enddo |
---|
| 2277 | was(:) = wa(:) |
---|
| 2278 | n=n+1 |
---|
| 2279 | go to 100 |
---|
| 2280 | endif |
---|
| 2281 | ! |
---|
| 2282 | ! estimate values at arrival cell interface with monotone |
---|
| 2283 | do k=2,km |
---|
| 2284 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
---|
| 2285 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
---|
| 2286 | if( dip*dim.le.0.0 ) then |
---|
| 2287 | qmi(k)=qa(k) |
---|
| 2288 | qpi(k)=qa(k) |
---|
| 2289 | else |
---|
| 2290 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
---|
| 2291 | qmi(k)=2.0*qa(k)-qpi(k) |
---|
| 2292 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
---|
| 2293 | qpi(k) = qa(k) |
---|
| 2294 | qmi(k) = qa(k) |
---|
| 2295 | endif |
---|
| 2296 | endif |
---|
| 2297 | enddo |
---|
| 2298 | qpi(1)=qa(1) |
---|
| 2299 | qmi(1)=qa(1) |
---|
| 2300 | qmi(km+1)=qa(km+1) |
---|
| 2301 | qpi(km+1)=qa(km+1) |
---|
| 2302 | ! |
---|
| 2303 | ! interpolation to regular point |
---|
| 2304 | qn = 0.0 |
---|
| 2305 | kb=1 |
---|
| 2306 | kt=1 |
---|
| 2307 | intp : do k=1,km |
---|
| 2308 | kb=max(kb-1,1) |
---|
| 2309 | kt=max(kt-1,1) |
---|
| 2310 | ! find kb and kt |
---|
| 2311 | if( zi(k).ge.za(km+1) ) then |
---|
| 2312 | exit intp |
---|
| 2313 | else |
---|
| 2314 | find_kb : do kk=kb,km |
---|
| 2315 | if( zi(k).le.za(kk+1) ) then |
---|
| 2316 | kb = kk |
---|
| 2317 | exit find_kb |
---|
| 2318 | else |
---|
| 2319 | cycle find_kb |
---|
| 2320 | endif |
---|
| 2321 | enddo find_kb |
---|
| 2322 | find_kt : do kk=kt,km |
---|
| 2323 | if( zi(k+1).le.za(kk) ) then |
---|
| 2324 | kt = kk |
---|
| 2325 | exit find_kt |
---|
| 2326 | else |
---|
| 2327 | cycle find_kt |
---|
| 2328 | endif |
---|
| 2329 | enddo find_kt |
---|
| 2330 | kt = kt - 1 |
---|
| 2331 | ! compute q with piecewise constant method |
---|
| 2332 | if( kt.eq.kb ) then |
---|
| 2333 | tl=(zi(k)-za(kb))/dza(kb) |
---|
| 2334 | th=(zi(k+1)-za(kb))/dza(kb) |
---|
| 2335 | tl2=tl*tl |
---|
| 2336 | th2=th*th |
---|
| 2337 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
| 2338 | qqh=qqd*th2+qmi(kb)*th |
---|
| 2339 | qql=qqd*tl2+qmi(kb)*tl |
---|
| 2340 | qn(k) = (qqh-qql)/(th-tl) |
---|
| 2341 | else if( kt.gt.kb ) then |
---|
| 2342 | tl=(zi(k)-za(kb))/dza(kb) |
---|
| 2343 | tl2=tl*tl |
---|
| 2344 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
| 2345 | qql=qqd*tl2+qmi(kb)*tl |
---|
| 2346 | dql = qa(kb)-qql |
---|
| 2347 | zsum = (1.-tl)*dza(kb) |
---|
| 2348 | qsum = dql*dza(kb) |
---|
| 2349 | if( kt-kb.gt.1 ) then |
---|
| 2350 | do m=kb+1,kt-1 |
---|
| 2351 | zsum = zsum + dza(m) |
---|
| 2352 | qsum = qsum + qa(m) * dza(m) |
---|
| 2353 | enddo |
---|
| 2354 | endif |
---|
| 2355 | th=(zi(k+1)-za(kt))/dza(kt) |
---|
| 2356 | th2=th*th |
---|
| 2357 | qqd=0.5*(qpi(kt)-qmi(kt)) |
---|
| 2358 | dqh=qqd*th2+qmi(kt)*th |
---|
| 2359 | zsum = zsum + th*dza(kt) |
---|
| 2360 | qsum = qsum + dqh*dza(kt) |
---|
| 2361 | qn(k) = qsum/zsum |
---|
| 2362 | endif |
---|
| 2363 | cycle intp |
---|
| 2364 | endif |
---|
| 2365 | ! |
---|
| 2366 | enddo intp |
---|
| 2367 | ! |
---|
| 2368 | ! rain out |
---|
| 2369 | sum_precip: do k=1,km |
---|
| 2370 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
---|
| 2371 | precip(i) = precip(i) + qa(k)*dza(k) |
---|
| 2372 | cycle sum_precip |
---|
| 2373 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
---|
| 2374 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
---|
| 2375 | exit sum_precip |
---|
| 2376 | endif |
---|
| 2377 | exit sum_precip |
---|
| 2378 | enddo sum_precip |
---|
| 2379 | ! |
---|
| 2380 | ! replace the new values |
---|
| 2381 | rql(i,:) = qn(:) |
---|
| 2382 | ! |
---|
| 2383 | ! ---------------------------------- |
---|
| 2384 | enddo i_loop |
---|
| 2385 | ! |
---|
| 2386 | END SUBROUTINE nislfv_rain_plmr |
---|
| 2387 | !------------------------------------------------------------------- |
---|
| 2388 | SUBROUTINE nislfv_rain_plm6(im,km,denl,denfacl,tkl,dzl,wwl,rql,rql2, precip1, precip2,dt,id,iter) |
---|
| 2389 | !------------------------------------------------------------------- |
---|
| 2390 | ! |
---|
| 2391 | ! for non-iteration semi-Lagrangain forward advection for cloud |
---|
| 2392 | ! with mass conservation and positive definite advection |
---|
| 2393 | ! 2nd order interpolation with monotonic piecewise linear method |
---|
| 2394 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
---|
| 2395 | ! |
---|
| 2396 | ! dzl depth of model layer in meter |
---|
| 2397 | ! wwl terminal velocity at model layer m/s |
---|
| 2398 | ! rql cloud density*mixing ration |
---|
| 2399 | ! precip precipitation |
---|
| 2400 | ! dt time step |
---|
| 2401 | ! id kind of precip: 0 test case; 1 raindrop |
---|
| 2402 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
---|
| 2403 | ! 0 : use departure wind for advection |
---|
| 2404 | ! 1 : use mean wind for advection |
---|
| 2405 | ! > 1 : use mean wind after iter-1 iterations |
---|
| 2406 | ! |
---|
| 2407 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
---|
| 2408 | ! implemented by song-you hong |
---|
| 2409 | ! |
---|
| 2410 | implicit none |
---|
| 2411 | integer im,km,id |
---|
| 2412 | real dt |
---|
| 2413 | real dzl(im,km),wwl(im,km),rql(im,km),rql2(im,km),precip(im),precip1(im),precip2(im) |
---|
| 2414 | real denl(im,km),denfacl(im,km),tkl(im,km) |
---|
| 2415 | ! |
---|
| 2416 | integer i,k,n,m,kk,kb,kt,iter,ist |
---|
| 2417 | real tl,tl2,qql,dql,qqd |
---|
| 2418 | real th,th2,qqh,dqh |
---|
| 2419 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
---|
| 2420 | real allold, allnew, zz, dzamin, cflmax, decfl |
---|
| 2421 | real dz(km), ww(km), qq(km), qq2(km), wd(km), wa(km), wa2(km), was(km) |
---|
| 2422 | real den(km), denfac(km), tk(km) |
---|
| 2423 | real wi(km+1), zi(km+1), za(km+1) |
---|
| 2424 | real qn(km), qr(km),qr2(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
---|
| 2425 | real dza(km+1), qa(km+1), qa2(km+1),qmi(km+1), qpi(km+1) |
---|
| 2426 | ! |
---|
| 2427 | precip(:) = 0.0 |
---|
| 2428 | precip1(:) = 0.0 |
---|
| 2429 | precip2(:) = 0.0 |
---|
| 2430 | ! |
---|
| 2431 | i_loop : do i=1,im |
---|
| 2432 | ! ----------------------------------- |
---|
| 2433 | dz(:) = dzl(i,:) |
---|
| 2434 | qq(:) = rql(i,:) |
---|
| 2435 | qq2(:) = rql2(i,:) |
---|
| 2436 | ww(:) = wwl(i,:) |
---|
| 2437 | den(:) = denl(i,:) |
---|
| 2438 | denfac(:) = denfacl(i,:) |
---|
| 2439 | tk(:) = tkl(i,:) |
---|
| 2440 | ! skip for no precipitation for all layers |
---|
| 2441 | allold = 0.0 |
---|
| 2442 | do k=1,km |
---|
| 2443 | allold = allold + qq(k) |
---|
| 2444 | enddo |
---|
| 2445 | if(allold.le.0.0) then |
---|
| 2446 | cycle i_loop |
---|
| 2447 | endif |
---|
| 2448 | ! |
---|
| 2449 | ! compute interface values |
---|
| 2450 | zi(1)=0.0 |
---|
| 2451 | do k=1,km |
---|
| 2452 | zi(k+1) = zi(k)+dz(k) |
---|
| 2453 | enddo |
---|
| 2454 | ! |
---|
| 2455 | ! save departure wind |
---|
| 2456 | wd(:) = ww(:) |
---|
| 2457 | n=1 |
---|
| 2458 | 100 continue |
---|
| 2459 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
---|
| 2460 | ! 2nd order interpolation to get wi |
---|
| 2461 | wi(1) = ww(1) |
---|
| 2462 | wi(km+1) = ww(km) |
---|
| 2463 | do k=2,km |
---|
| 2464 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
---|
| 2465 | enddo |
---|
| 2466 | ! 3rd order interpolation to get wi |
---|
| 2467 | fa1 = 9./16. |
---|
| 2468 | fa2 = 1./16. |
---|
| 2469 | wi(1) = ww(1) |
---|
| 2470 | wi(2) = 0.5*(ww(2)+ww(1)) |
---|
| 2471 | do k=3,km-1 |
---|
| 2472 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
---|
| 2473 | enddo |
---|
| 2474 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
---|
| 2475 | wi(km+1) = ww(km) |
---|
| 2476 | ! |
---|
| 2477 | ! terminate of top of raingroup |
---|
| 2478 | do k=2,km |
---|
| 2479 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
---|
| 2480 | enddo |
---|
| 2481 | ! |
---|
| 2482 | ! diffusivity of wi |
---|
| 2483 | con1 = 0.05 |
---|
| 2484 | do k=km,1,-1 |
---|
| 2485 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
---|
| 2486 | if( decfl .gt. con1 ) then |
---|
| 2487 | wi(k) = wi(k+1) - con1*dz(k)/dt |
---|
| 2488 | endif |
---|
| 2489 | enddo |
---|
| 2490 | ! compute arrival point |
---|
| 2491 | do k=1,km+1 |
---|
| 2492 | za(k) = zi(k) - wi(k)*dt |
---|
| 2493 | enddo |
---|
| 2494 | ! |
---|
| 2495 | do k=1,km |
---|
| 2496 | dza(k) = za(k+1)-za(k) |
---|
| 2497 | enddo |
---|
| 2498 | dza(km+1) = zi(km+1) - za(km+1) |
---|
| 2499 | ! |
---|
| 2500 | ! computer deformation at arrival point |
---|
| 2501 | do k=1,km |
---|
| 2502 | qa(k) = qq(k)*dz(k)/dza(k) |
---|
| 2503 | qa2(k) = qq2(k)*dz(k)/dza(k) |
---|
| 2504 | qr(k) = qa(k)/den(k) |
---|
| 2505 | qr2(k) = qa2(k)/den(k) |
---|
| 2506 | enddo |
---|
| 2507 | qa(km+1) = 0.0 |
---|
| 2508 | qa2(km+1) = 0.0 |
---|
| 2509 | ! call maxmin(km,1,qa,' arrival points ') |
---|
| 2510 | ! |
---|
| 2511 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
---|
| 2512 | ! then back to use mean terminal velocity |
---|
| 2513 | if( n.le.iter ) then |
---|
| 2514 | call slope_snow(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
---|
| 2515 | call slope_graup(qr2,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa2,1,1,1,km) |
---|
| 2516 | do k = 1, km |
---|
| 2517 | tmp(k) = max((qr(k)+qr2(k)), 1.E-15) |
---|
| 2518 | IF ( tmp(k) .gt. 1.e-15 ) THEN |
---|
| 2519 | wa(k) = (wa(k)*qr(k) + wa2(k)*qr2(k))/tmp(k) |
---|
| 2520 | ELSE |
---|
| 2521 | wa(k) = 0. |
---|
| 2522 | ENDIF |
---|
| 2523 | enddo |
---|
| 2524 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
---|
| 2525 | do k=1,km |
---|
| 2526 | !#ifdef DEBUG |
---|
| 2527 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k), & |
---|
| 2528 | ! ww(k),wa(k) |
---|
| 2529 | !#endif |
---|
| 2530 | ! mean wind is average of departure and new arrival winds |
---|
| 2531 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
---|
| 2532 | enddo |
---|
| 2533 | was(:) = wa(:) |
---|
| 2534 | n=n+1 |
---|
| 2535 | go to 100 |
---|
| 2536 | endif |
---|
| 2537 | ist_loop : do ist = 1, 2 |
---|
| 2538 | if (ist.eq.2) then |
---|
| 2539 | qa(:) = qa2(:) |
---|
| 2540 | endif |
---|
| 2541 | ! |
---|
| 2542 | precip(i) = 0. |
---|
| 2543 | ! |
---|
| 2544 | ! estimate values at arrival cell interface with monotone |
---|
| 2545 | do k=2,km |
---|
| 2546 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
---|
| 2547 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
---|
| 2548 | if( dip*dim.le.0.0 ) then |
---|
| 2549 | qmi(k)=qa(k) |
---|
| 2550 | qpi(k)=qa(k) |
---|
| 2551 | else |
---|
| 2552 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
---|
| 2553 | qmi(k)=2.0*qa(k)-qpi(k) |
---|
| 2554 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
---|
| 2555 | qpi(k) = qa(k) |
---|
| 2556 | qmi(k) = qa(k) |
---|
| 2557 | endif |
---|
| 2558 | endif |
---|
| 2559 | enddo |
---|
| 2560 | qpi(1)=qa(1) |
---|
| 2561 | qmi(1)=qa(1) |
---|
| 2562 | qmi(km+1)=qa(km+1) |
---|
| 2563 | qpi(km+1)=qa(km+1) |
---|
| 2564 | ! |
---|
| 2565 | ! interpolation to regular point |
---|
| 2566 | qn = 0.0 |
---|
| 2567 | kb=1 |
---|
| 2568 | kt=1 |
---|
| 2569 | intp : do k=1,km |
---|
| 2570 | kb=max(kb-1,1) |
---|
| 2571 | kt=max(kt-1,1) |
---|
| 2572 | ! find kb and kt |
---|
| 2573 | if( zi(k).ge.za(km+1) ) then |
---|
| 2574 | exit intp |
---|
| 2575 | else |
---|
| 2576 | find_kb : do kk=kb,km |
---|
| 2577 | if( zi(k).le.za(kk+1) ) then |
---|
| 2578 | kb = kk |
---|
| 2579 | exit find_kb |
---|
| 2580 | else |
---|
| 2581 | cycle find_kb |
---|
| 2582 | endif |
---|
| 2583 | enddo find_kb |
---|
| 2584 | find_kt : do kk=kt,km |
---|
| 2585 | if( zi(k+1).le.za(kk) ) then |
---|
| 2586 | kt = kk |
---|
| 2587 | exit find_kt |
---|
| 2588 | else |
---|
| 2589 | cycle find_kt |
---|
| 2590 | endif |
---|
| 2591 | enddo find_kt |
---|
| 2592 | kt = kt - 1 |
---|
| 2593 | ! compute q with piecewise constant method |
---|
| 2594 | if( kt.eq.kb ) then |
---|
| 2595 | tl=(zi(k)-za(kb))/dza(kb) |
---|
| 2596 | th=(zi(k+1)-za(kb))/dza(kb) |
---|
| 2597 | tl2=tl*tl |
---|
| 2598 | th2=th*th |
---|
| 2599 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
| 2600 | qqh=qqd*th2+qmi(kb)*th |
---|
| 2601 | qql=qqd*tl2+qmi(kb)*tl |
---|
| 2602 | qn(k) = (qqh-qql)/(th-tl) |
---|
| 2603 | else if( kt.gt.kb ) then |
---|
| 2604 | tl=(zi(k)-za(kb))/dza(kb) |
---|
| 2605 | tl2=tl*tl |
---|
| 2606 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
| 2607 | qql=qqd*tl2+qmi(kb)*tl |
---|
| 2608 | dql = qa(kb)-qql |
---|
| 2609 | zsum = (1.-tl)*dza(kb) |
---|
| 2610 | qsum = dql*dza(kb) |
---|
| 2611 | if( kt-kb.gt.1 ) then |
---|
| 2612 | do m=kb+1,kt-1 |
---|
| 2613 | zsum = zsum + dza(m) |
---|
| 2614 | qsum = qsum + qa(m) * dza(m) |
---|
| 2615 | enddo |
---|
| 2616 | endif |
---|
| 2617 | th=(zi(k+1)-za(kt))/dza(kt) |
---|
| 2618 | th2=th*th |
---|
| 2619 | qqd=0.5*(qpi(kt)-qmi(kt)) |
---|
| 2620 | dqh=qqd*th2+qmi(kt)*th |
---|
| 2621 | zsum = zsum + th*dza(kt) |
---|
| 2622 | qsum = qsum + dqh*dza(kt) |
---|
| 2623 | qn(k) = qsum/zsum |
---|
| 2624 | endif |
---|
| 2625 | cycle intp |
---|
| 2626 | endif |
---|
| 2627 | ! |
---|
| 2628 | enddo intp |
---|
| 2629 | ! |
---|
| 2630 | ! rain out |
---|
| 2631 | sum_precip: do k=1,km |
---|
| 2632 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
---|
| 2633 | precip(i) = precip(i) + qa(k)*dza(k) |
---|
| 2634 | cycle sum_precip |
---|
| 2635 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
---|
| 2636 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
---|
| 2637 | exit sum_precip |
---|
| 2638 | endif |
---|
| 2639 | exit sum_precip |
---|
| 2640 | enddo sum_precip |
---|
| 2641 | ! |
---|
| 2642 | ! replace the new values |
---|
| 2643 | if(ist.eq.1) then |
---|
| 2644 | rql(i,:) = qn(:) |
---|
| 2645 | precip1(i) = precip(i) |
---|
| 2646 | else |
---|
| 2647 | rql2(i,:) = qn(:) |
---|
| 2648 | precip2(i) = precip(i) |
---|
| 2649 | endif |
---|
| 2650 | enddo ist_loop |
---|
| 2651 | ! |
---|
| 2652 | ! ---------------------------------- |
---|
| 2653 | enddo i_loop |
---|
| 2654 | ! |
---|
| 2655 | END SUBROUTINE nislfv_rain_plm6 |
---|
| 2656 | END MODULE module_mp_wdm6 |
---|