1 | #if ( RWORDSIZE == 4 ) |
---|
2 | # define VREC vsrec |
---|
3 | # define VSQRT vssqrt |
---|
4 | #else |
---|
5 | # define VREC vrec |
---|
6 | # define VSQRT vsqrt |
---|
7 | #endif |
---|
8 | |
---|
9 | MODULE module_mp_wdm6 |
---|
10 | ! |
---|
11 | ! |
---|
12 | ! |
---|
13 | REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops |
---|
14 | REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain |
---|
15 | REAL, PARAMETER, PRIVATE :: n0g = 4.e6 ! intercept parameter graupel |
---|
16 | REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain |
---|
17 | REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain |
---|
18 | REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m |
---|
19 | REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency |
---|
20 | REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80 |
---|
21 | REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1 |
---|
22 | REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow |
---|
23 | REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow |
---|
24 | REAL, PARAMETER, PRIVATE :: avtg = 330. ! a constant for terminal velocity of graupel |
---|
25 | REAL, PARAMETER, PRIVATE :: bvtg = 0.8 ! a constant for terminal velocity of graupel |
---|
26 | REAL, PARAMETER, PRIVATE :: deng = 500. ! density of graupel |
---|
27 | REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited) |
---|
28 | REAL, PARAMETER, PRIVATE :: lamdacmax = 1.e10 ! limited maximum value for slope parameter of cloud water |
---|
29 | REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e8 ! limited maximum value for slope parameter of rain |
---|
30 | REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow |
---|
31 | REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel |
---|
32 | REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter |
---|
33 | REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter |
---|
34 | REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow |
---|
35 | REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s |
---|
36 | REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing |
---|
37 | REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing |
---|
38 | REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg |
---|
39 | REAL, PARAMETER, PRIVATE :: ncmin = 1.e1 ! minimum value for Nc |
---|
40 | REAL, PARAMETER, PRIVATE :: nrmin = 1.e-2 ! minimum value for Nr |
---|
41 | REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency |
---|
42 | REAL, PARAMETER, PRIVATE :: dens = 100.0 ! Density of snow |
---|
43 | REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! threshold amount for aggretion to occur |
---|
44 | ! |
---|
45 | REAL, PARAMETER, PRIVATE :: satmax = 1.0048 ! maximum saturation value for CCN activation |
---|
46 | ! 1.008 for maritime /1.0048 for conti |
---|
47 | REAL, PARAMETER, PRIVATE :: actk = 0.6 ! parameter for the CCN activation |
---|
48 | REAL, PARAMETER, PRIVATE :: actr = 1.5 ! radius of activated CCN drops |
---|
49 | REAL, PARAMETER, PRIVATE :: ncrk1 = 3.03e3 ! Long's collection kernel coefficient |
---|
50 | REAL, PARAMETER, PRIVATE :: ncrk2 = 2.59e15 ! Long's collection kernel coefficient |
---|
51 | REAL, PARAMETER, PRIVATE :: di100 = 1.e-4 ! parameter related with accretion and collection of cloud drops |
---|
52 | REAL, PARAMETER, PRIVATE :: di600 = 6.e-4 ! parameter related with accretion and collection of cloud drops |
---|
53 | REAL, PARAMETER, PRIVATE :: di2000 = 2000.e-6 ! parameter related with accretion and collection of cloud drops |
---|
54 | REAL, PARAMETER, PRIVATE :: di82 = 82.e-6 ! dimater related with raindrops evaporation |
---|
55 | REAL, PARAMETER, PRIVATE :: di15 = 15.e-6 ! auto conversion takes place beyond this diameter |
---|
56 | ! |
---|
57 | REAL, SAVE :: & |
---|
58 | qc0,qck1,pidnc,bvtr1,bvtr2,bvtr3,bvtr4,bvtr5, & |
---|
59 | bvtr6,bvtr7, bvtr2o5,bvtr3o5, & |
---|
60 | g1pbr,g2pbr,g3pbr,g4pbr,g5pbr,g6pbr,g7pbr, & |
---|
61 | g5pbro2,g7pbro2,pi, & |
---|
62 | pvtr,pvtrn,eacrr,pacrr,pidn0r,pidnr, & |
---|
63 | precr1,precr2,xmmax,roqimax,bvts1,bvts2, & |
---|
64 | bvts3,bvts4,g1pbs,g3pbs,g4pbs,g5pbso2, & |
---|
65 | pvts,pacrs,precs1,precs2,pidn0s,xlv1,pacrc, & |
---|
66 | bvtg1,bvtg2,bvtg3,bvtg4,g1pbg,g3pbg,g4pbg, & |
---|
67 | g5pbgo2,pvtg,pacrg,precg1,precg2,pidn0g, & |
---|
68 | rslopecmax,rslopec2max,rslopec3max, & |
---|
69 | rslopermax,rslopesmax,rslopegmax, & |
---|
70 | rsloperbmax,rslopesbmax,rslopegbmax, & |
---|
71 | rsloper2max,rslopes2max,rslopeg2max, & |
---|
72 | rsloper3max,rslopes3max,rslopeg3max |
---|
73 | CONTAINS |
---|
74 | !=================================================================== |
---|
75 | ! |
---|
76 | SUBROUTINE wdm6(th, q, qc, qr, qi, qs, qg, & |
---|
77 | nn, nc, nr, & |
---|
78 | den, pii, p, delz, & |
---|
79 | delt,g, cpd, cpv, ccn0, rd, rv, t0c, & |
---|
80 | ep1, ep2, qmin, & |
---|
81 | XLS, XLV0, XLF0, den0, denr, & |
---|
82 | cliq,cice,psat, & |
---|
83 | rain, rainncv, & |
---|
84 | snow, snowncv, & |
---|
85 | sr, & |
---|
86 | graupel, graupelncv, & |
---|
87 | itimestep, & |
---|
88 | ids,ide, jds,jde, kds,kde, & |
---|
89 | ims,ime, jms,jme, kms,kme, & |
---|
90 | its,ite, jts,jte, kts,kte & |
---|
91 | ) |
---|
92 | !------------------------------------------------------------------- |
---|
93 | IMPLICIT NONE |
---|
94 | !------------------------------------------------------------------- |
---|
95 | ! |
---|
96 | ! This code is a WRF double-moment 6-class GRAUPEL phase |
---|
97 | ! microphyiscs scheme (WDM6). The WDM microphysics scheme predicts |
---|
98 | ! number concentrations for warm rain species including clouds and |
---|
99 | ! rain. cloud condensation nuclei (CCN) is also predicted. |
---|
100 | ! The cold rain species including ice, snow, graupel follow the |
---|
101 | ! WRF single-moment 6-class microphysics (WSM6, Hong and Lim 2006) |
---|
102 | ! in which theoretical background for WSM ice phase microphysics is |
---|
103 | ! based on Hong et al. (2004). A new mixed-phase terminal velocity |
---|
104 | ! for precipitating ice is introduced in WSM6 (Dudhia et al. 2008). |
---|
105 | ! The WDM scheme is described in Lim and Hong (2010). |
---|
106 | ! All units are in m.k.s. and source/sink terms in kgkg-1s-1. |
---|
107 | ! |
---|
108 | ! WDM6 cloud scheme |
---|
109 | ! |
---|
110 | ! Coded by Kyo-Sun Lim and Song-You Hong (Yonsei Univ.) Fall 2008 |
---|
111 | ! |
---|
112 | ! Implemented by Kyo-Sun Lim and Jimy Dudhia (NCAR) Winter 2008 |
---|
113 | ! |
---|
114 | ! Reference) Lim and Hong (LH, 2010) Mon. Wea. Rev. |
---|
115 | ! Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev. |
---|
116 | ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc. |
---|
117 | ! Cohard and Pinty (CP, 2000) Quart. J. Roy. Meteor. Soc. |
---|
118 | ! Khairoutdinov and Kogan (KK, 2000) Mon. Wea. Rev. |
---|
119 | ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan |
---|
120 | ! |
---|
121 | ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor. |
---|
122 | ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci. |
---|
123 | ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci. |
---|
124 | ! |
---|
125 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
126 | ims,ime, jms,jme, kms,kme , & |
---|
127 | its,ite, jts,jte, kts,kte |
---|
128 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
129 | INTENT(INOUT) :: & |
---|
130 | th, & |
---|
131 | q, & |
---|
132 | qc, & |
---|
133 | qi, & |
---|
134 | qr, & |
---|
135 | qs, & |
---|
136 | qg, & |
---|
137 | nn, & |
---|
138 | nc, & |
---|
139 | nr |
---|
140 | REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), & |
---|
141 | INTENT(IN ) :: & |
---|
142 | den, & |
---|
143 | pii, & |
---|
144 | p, & |
---|
145 | delz |
---|
146 | REAL, INTENT(IN ) :: delt, & |
---|
147 | g, & |
---|
148 | rd, & |
---|
149 | rv, & |
---|
150 | t0c, & |
---|
151 | den0, & |
---|
152 | cpd, & |
---|
153 | cpv, & |
---|
154 | ccn0, & |
---|
155 | ep1, & |
---|
156 | ep2, & |
---|
157 | qmin, & |
---|
158 | XLS, & |
---|
159 | XLV0, & |
---|
160 | XLF0, & |
---|
161 | cliq, & |
---|
162 | cice, & |
---|
163 | psat, & |
---|
164 | denr |
---|
165 | INTEGER, INTENT(IN ) :: itimestep |
---|
166 | REAL, DIMENSION( ims:ime , jms:jme ), & |
---|
167 | INTENT(INOUT) :: rain, & |
---|
168 | rainncv, & |
---|
169 | sr |
---|
170 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
171 | INTENT(INOUT) :: snow, & |
---|
172 | snowncv |
---|
173 | REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, & |
---|
174 | INTENT(INOUT) :: graupel, & |
---|
175 | graupelncv |
---|
176 | ! LOCAL VAR |
---|
177 | REAL, DIMENSION( its:ite , kts:kte ) :: t |
---|
178 | REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci |
---|
179 | REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs, ncr |
---|
180 | INTEGER :: i,j,k |
---|
181 | !------------------------------------------------------------------- |
---|
182 | IF (itimestep .eq. 1) THEN |
---|
183 | DO j=jms,jme |
---|
184 | DO k=kms,kme |
---|
185 | DO i=ims,ime |
---|
186 | nn(i,k,j) = ccn0 |
---|
187 | ENDDO |
---|
188 | ENDDO |
---|
189 | ENDDO |
---|
190 | ENDIF |
---|
191 | ! |
---|
192 | DO j=jts,jte |
---|
193 | DO k=kts,kte |
---|
194 | DO i=its,ite |
---|
195 | t(i,k)=th(i,k,j)*pii(i,k,j) |
---|
196 | qci(i,k,1) = qc(i,k,j) |
---|
197 | qci(i,k,2) = qi(i,k,j) |
---|
198 | qrs(i,k,1) = qr(i,k,j) |
---|
199 | qrs(i,k,2) = qs(i,k,j) |
---|
200 | qrs(i,k,3) = qg(i,k,j) |
---|
201 | ncr(i,k,1) = nn(i,k,j) |
---|
202 | ncr(i,k,2) = nc(i,k,j) |
---|
203 | ncr(i,k,3) = nr(i,k,j) |
---|
204 | ENDDO |
---|
205 | ENDDO |
---|
206 | ! Sending array starting locations of optional variables may cause |
---|
207 | ! troubles, so we explicitly change the call. |
---|
208 | CALL wdm62D(t, q(ims,kms,j), qci, qrs, ncr & |
---|
209 | ,den(ims,kms,j) & |
---|
210 | ,p(ims,kms,j), delz(ims,kms,j) & |
---|
211 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
---|
212 | ,ep1, ep2, qmin & |
---|
213 | ,XLS, XLV0, XLF0, den0, denr & |
---|
214 | ,cliq,cice,psat & |
---|
215 | ,j & |
---|
216 | ,rain(ims,j),rainncv(ims,j) & |
---|
217 | ,sr(ims,j) & |
---|
218 | ,ids,ide, jds,jde, kds,kde & |
---|
219 | ,ims,ime, jms,jme, kms,kme & |
---|
220 | ,its,ite, jts,jte, kts,kte & |
---|
221 | ,snow(ims,j),snowncv(ims,j) & |
---|
222 | ,graupel(ims,j),graupelncv(ims,j) & |
---|
223 | ) |
---|
224 | DO K=kts,kte |
---|
225 | DO I=its,ite |
---|
226 | th(i,k,j)=t(i,k)/pii(i,k,j) |
---|
227 | qc(i,k,j) = qci(i,k,1) |
---|
228 | qi(i,k,j) = qci(i,k,2) |
---|
229 | qr(i,k,j) = qrs(i,k,1) |
---|
230 | qs(i,k,j) = qrs(i,k,2) |
---|
231 | qg(i,k,j) = qrs(i,k,3) |
---|
232 | nn(i,k,j) = ncr(i,k,1) |
---|
233 | nc(i,k,j) = ncr(i,k,2) |
---|
234 | nr(i,k,j) = ncr(i,k,3) |
---|
235 | ENDDO |
---|
236 | ENDDO |
---|
237 | ENDDO |
---|
238 | END SUBROUTINE wdm6 |
---|
239 | !=================================================================== |
---|
240 | ! |
---|
241 | SUBROUTINE wdm62D(t, q, qci, qrs, ncr, den, p, delz & |
---|
242 | ,delt,g, cpd, cpv, ccn0, rd, rv, t0c & |
---|
243 | ,ep1, ep2, qmin & |
---|
244 | ,XLS, XLV0, XLF0, den0, denr & |
---|
245 | ,cliq,cice,psat & |
---|
246 | ,lat & |
---|
247 | ,rain,rainncv & |
---|
248 | ,sr & |
---|
249 | ,ids,ide, jds,jde, kds,kde & |
---|
250 | ,ims,ime, jms,jme, kms,kme & |
---|
251 | ,its,ite, jts,jte, kts,kte & |
---|
252 | ,snow,snowncv & |
---|
253 | ,graupel,graupelncv & |
---|
254 | ) |
---|
255 | !------------------------------------------------------------------- |
---|
256 | IMPLICIT NONE |
---|
257 | !------------------------------------------------------------------- |
---|
258 | INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , & |
---|
259 | ims,ime, jms,jme, kms,kme , & |
---|
260 | its,ite, jts,jte, kts,kte , & |
---|
261 | lat |
---|
262 | REAL, DIMENSION( its:ite , kts:kte ), & |
---|
263 | INTENT(INOUT) :: & |
---|
264 | t |
---|
265 | REAL, DIMENSION( its:ite , kts:kte, 2 ), & |
---|
266 | INTENT(INOUT) :: & |
---|
267 | qci |
---|
268 | REAL, DIMENSION( its:ite , kts:kte, 3 ), & |
---|
269 | INTENT(INOUT) :: & |
---|
270 | qrs, & |
---|
271 | ncr |
---|
272 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
273 | INTENT(INOUT) :: & |
---|
274 | q |
---|
275 | REAL, DIMENSION( ims:ime , kms:kme ), & |
---|
276 | INTENT(IN ) :: & |
---|
277 | den, & |
---|
278 | p, & |
---|
279 | delz |
---|
280 | REAL, INTENT(IN ) :: delt, & |
---|
281 | g, & |
---|
282 | cpd, & |
---|
283 | cpv, & |
---|
284 | ccn0, & |
---|
285 | t0c, & |
---|
286 | den0, & |
---|
287 | rd, & |
---|
288 | rv, & |
---|
289 | ep1, & |
---|
290 | ep2, & |
---|
291 | qmin, & |
---|
292 | XLS, & |
---|
293 | XLV0, & |
---|
294 | XLF0, & |
---|
295 | cliq, & |
---|
296 | cice, & |
---|
297 | psat, & |
---|
298 | denr |
---|
299 | REAL, DIMENSION( ims:ime ), & |
---|
300 | INTENT(INOUT) :: rain, & |
---|
301 | rainncv, & |
---|
302 | sr |
---|
303 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
304 | INTENT(INOUT) :: snow, & |
---|
305 | snowncv |
---|
306 | REAL, DIMENSION( ims:ime ), OPTIONAL, & |
---|
307 | INTENT(INOUT) :: graupel, & |
---|
308 | graupelncv |
---|
309 | ! LOCAL VAR |
---|
310 | REAL, DIMENSION( its:ite , kts:kte , 3) :: & |
---|
311 | rh, qs, rslope, rslope2, rslope3, rslopeb, & |
---|
312 | falk, fall, work1, qrs_tmp |
---|
313 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
314 | rslopec, rslopec2,rslopec3 |
---|
315 | REAL, DIMENSION( its:ite , kts:kte, 2) :: & |
---|
316 | avedia |
---|
317 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
318 | workn,falln,falkn |
---|
319 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
320 | worka,workr |
---|
321 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
322 | den_tmp, delz_tmp, ncr_tmp |
---|
323 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
324 | falkc, work1c, work2c, fallc |
---|
325 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
326 | pcact, prevp, psdep, pgdep, praut, psaut, pgaut, & |
---|
327 | pracw, psacw, pgacw, pgacr, pgacs, psaci, pgmlt, praci, & |
---|
328 | piacr, pracs, psacr, pgaci, pseml, pgeml |
---|
329 | REAL, DIMENSION( its:ite , kts:kte ) :: paacw |
---|
330 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
331 | nraut, nracw, ncevp, nccol, nrcol, & |
---|
332 | nsacw, ngacw, niacr, nsacr, ngacr, naacw, & |
---|
333 | nseml, ngeml, ncact |
---|
334 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
335 | pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, & |
---|
336 | denfac, xni, pgevp,n0sfac, qsum, & |
---|
337 | denqrs1, denqr1, denqrs2, denqrs3, denncr3, denqci |
---|
338 | REAL, DIMENSION( its:ite ) :: & |
---|
339 | delqrs1, delqrs2, delqrs3, delncr3, delqi |
---|
340 | REAL, DIMENSION( its:ite ) :: tstepsnow, tstepgraup |
---|
341 | REAL :: gfac, sfac |
---|
342 | ! variables for optimization |
---|
343 | REAL, DIMENSION( its:ite ) :: tvec1 |
---|
344 | REAL :: temp |
---|
345 | INTEGER, DIMENSION( its:ite ) :: mnstep, numndt |
---|
346 | INTEGER, DIMENSION( its:ite ) :: mstep, numdt |
---|
347 | LOGICAL, DIMENSION( its:ite ) :: flgcld |
---|
348 | REAL :: & |
---|
349 | cpmcal, xlcal, lamdac, & |
---|
350 | diffus, & |
---|
351 | viscos, xka, venfac, conden, diffac, & |
---|
352 | x, y, z, a, b, c, d, e, & |
---|
353 | ndt, qdt, holdrr, holdrs, holdrg, supcol, supcolt, & |
---|
354 | pvt, coeres, supsat, dtcld, xmi, eacrs, satdt, & |
---|
355 | qimax, diameter, xni0, roqi0, & |
---|
356 | fallsum, fallsum_qsi, fallsum_qg, & |
---|
357 | vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, & |
---|
358 | xlwork2, factor, source, value, coecol, & |
---|
359 | nfrzdtr, nfrzdtc, & |
---|
360 | taucon, lencon, lenconcr, & |
---|
361 | xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3 |
---|
362 | REAL :: vt2ave |
---|
363 | REAL :: holdc, holdci |
---|
364 | ! |
---|
365 | INTEGER :: i, j, k, mstepmax, & |
---|
366 | iprt, latd, lond, loop, loops, ifsat, n, idim, kdim |
---|
367 | ! Temporaries used for inlining fpvs function |
---|
368 | REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp |
---|
369 | ! |
---|
370 | !================================================================= |
---|
371 | ! compute internal functions |
---|
372 | ! |
---|
373 | cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv |
---|
374 | xlcal(x) = xlv0-xlv1*(x-t0c) |
---|
375 | !---------------------------------------------------------------- |
---|
376 | ! size distributions: (x=mixing ratio, y=air density): |
---|
377 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
378 | ! |
---|
379 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
380 | lamdac(x,y,z)= exp(log(((pidnc*z)/(x*y)))*((.33333333))) |
---|
381 | !---------------------------------------------------------------- |
---|
382 | ! diffus: diffusion coefficient of the water vapor |
---|
383 | ! viscos: kinematic viscosity(m2s-1) |
---|
384 | ! |
---|
385 | diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y |
---|
386 | viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y |
---|
387 | xka(x,y) = 1.414e3*viscos(x,y)*y |
---|
388 | diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b)) |
---|
389 | venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) & |
---|
390 | /sqrt(viscos(b,c))*sqrt(sqrt(den0/c)) |
---|
391 | conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a)) |
---|
392 | ! |
---|
393 | idim = ite-its+1 |
---|
394 | kdim = kte-kts+1 |
---|
395 | ! |
---|
396 | !---------------------------------------------------------------- |
---|
397 | ! paddint 0 for negative values generated by dynamics |
---|
398 | ! |
---|
399 | do k = kts, kte |
---|
400 | do i = its, ite |
---|
401 | qci(i,k,1) = max(qci(i,k,1),0.0) |
---|
402 | qrs(i,k,1) = max(qrs(i,k,1),0.0) |
---|
403 | qci(i,k,2) = max(qci(i,k,2),0.0) |
---|
404 | qrs(i,k,2) = max(qrs(i,k,2),0.0) |
---|
405 | qrs(i,k,3) = max(qrs(i,k,3),0.0) |
---|
406 | ncr(i,k,1) = max(ncr(i,k,1),0.0) |
---|
407 | ncr(i,k,2) = max(ncr(i,k,2),0.0) |
---|
408 | ncr(i,k,3) = max(ncr(i,k,3),0.0) |
---|
409 | enddo |
---|
410 | enddo |
---|
411 | ! |
---|
412 | !---------------------------------------------------------------- |
---|
413 | ! latent heat for phase changes and heat capacity. neglect the |
---|
414 | ! changes during microphysical process calculation |
---|
415 | ! emanuel(1994) |
---|
416 | ! |
---|
417 | do k = kts, kte |
---|
418 | do i = its, ite |
---|
419 | cpm(i,k) = cpmcal(q(i,k)) |
---|
420 | xl(i,k) = xlcal(t(i,k)) |
---|
421 | enddo |
---|
422 | enddo |
---|
423 | do k = kts, kte |
---|
424 | do i = its, ite |
---|
425 | delz_tmp(i,k) = delz(i,k) |
---|
426 | den_tmp(i,k) = den(i,k) |
---|
427 | enddo |
---|
428 | enddo |
---|
429 | ! |
---|
430 | !---------------------------------------------------------------- |
---|
431 | ! initialize the surface rain, snow, graupel |
---|
432 | ! |
---|
433 | do i = its, ite |
---|
434 | rainncv(i) = 0. |
---|
435 | if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0. |
---|
436 | if(PRESENT (graupelncv) .AND. PRESENT (graupel)) graupelncv(i) = 0. |
---|
437 | sr(i) = 0. |
---|
438 | ! new local array to catch step snow and graupel |
---|
439 | tstepsnow(i) = 0. |
---|
440 | tstepgraup(i) = 0. |
---|
441 | enddo |
---|
442 | ! |
---|
443 | !---------------------------------------------------------------- |
---|
444 | ! compute the minor time steps. |
---|
445 | ! |
---|
446 | loops = max(nint(delt/dtcldcr),1) |
---|
447 | dtcld = delt/loops |
---|
448 | if(delt.le.dtcldcr) dtcld = delt |
---|
449 | ! |
---|
450 | do loop = 1,loops |
---|
451 | ! |
---|
452 | !---------------------------------------------------------------- |
---|
453 | ! initialize the large scale variables |
---|
454 | ! |
---|
455 | do i = its, ite |
---|
456 | mstep(i) = 1 |
---|
457 | mnstep(i) = 1 |
---|
458 | flgcld(i) = .true. |
---|
459 | enddo |
---|
460 | ! |
---|
461 | do k = kts, kte |
---|
462 | CALL VREC( tvec1(its), den(its,k), ite-its+1) |
---|
463 | do i = its, ite |
---|
464 | tvec1(i) = tvec1(i)*den0 |
---|
465 | enddo |
---|
466 | CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1) |
---|
467 | enddo |
---|
468 | ! |
---|
469 | ! Inline expansion for fpvs |
---|
470 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
471 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
472 | hsub = xls |
---|
473 | hvap = xlv0 |
---|
474 | cvap = cpv |
---|
475 | ttp=t0c+0.01 |
---|
476 | dldt=cvap-cliq |
---|
477 | xa=-dldt/rv |
---|
478 | xb=xa+hvap/(rv*ttp) |
---|
479 | dldti=cvap-cice |
---|
480 | xai=-dldti/rv |
---|
481 | xbi=xai+hsub/(rv*ttp) |
---|
482 | do k = kts, kte |
---|
483 | do i = its, ite |
---|
484 | tr=ttp/t(i,k) |
---|
485 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
486 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
---|
487 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
488 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
489 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
490 | tr=ttp/t(i,k) |
---|
491 | if(t(i,k).lt.ttp) then |
---|
492 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
493 | else |
---|
494 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
495 | endif |
---|
496 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
---|
497 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
498 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
499 | rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin) |
---|
500 | enddo |
---|
501 | enddo |
---|
502 | ! |
---|
503 | !---------------------------------------------------------------- |
---|
504 | ! initialize the variables for microphysical physics |
---|
505 | ! |
---|
506 | ! |
---|
507 | do k = kts, kte |
---|
508 | do i = its, ite |
---|
509 | prevp(i,k) = 0. |
---|
510 | psdep(i,k) = 0. |
---|
511 | pgdep(i,k) = 0. |
---|
512 | praut(i,k) = 0. |
---|
513 | psaut(i,k) = 0. |
---|
514 | pgaut(i,k) = 0. |
---|
515 | pracw(i,k) = 0. |
---|
516 | praci(i,k) = 0. |
---|
517 | piacr(i,k) = 0. |
---|
518 | psaci(i,k) = 0. |
---|
519 | psacw(i,k) = 0. |
---|
520 | pracs(i,k) = 0. |
---|
521 | psacr(i,k) = 0. |
---|
522 | pgacw(i,k) = 0. |
---|
523 | paacw(i,k) = 0. |
---|
524 | pgaci(i,k) = 0. |
---|
525 | pgacr(i,k) = 0. |
---|
526 | pgacs(i,k) = 0. |
---|
527 | pigen(i,k) = 0. |
---|
528 | pidep(i,k) = 0. |
---|
529 | pcond(i,k) = 0. |
---|
530 | psmlt(i,k) = 0. |
---|
531 | pgmlt(i,k) = 0. |
---|
532 | pseml(i,k) = 0. |
---|
533 | pgeml(i,k) = 0. |
---|
534 | psevp(i,k) = 0. |
---|
535 | pgevp(i,k) = 0. |
---|
536 | pcact(i,k) = 0. |
---|
537 | falk(i,k,1) = 0. |
---|
538 | falk(i,k,2) = 0. |
---|
539 | falk(i,k,3) = 0. |
---|
540 | fall(i,k,1) = 0. |
---|
541 | fall(i,k,2) = 0. |
---|
542 | fall(i,k,3) = 0. |
---|
543 | fallc(i,k) = 0. |
---|
544 | falkc(i,k) = 0. |
---|
545 | falln(i,k) =0. |
---|
546 | falkn(i,k) =0. |
---|
547 | xni(i,k) = 1.e3 |
---|
548 | nsacw(i,k) = 0. |
---|
549 | ngacw(i,k) = 0. |
---|
550 | naacw(i,k) = 0. |
---|
551 | niacr(i,k) = 0. |
---|
552 | nsacr(i,k) = 0. |
---|
553 | ngacr(i,k) = 0. |
---|
554 | nseml(i,k) = 0. |
---|
555 | ngeml(i,k) = 0. |
---|
556 | nracw(i,k) = 0. |
---|
557 | nccol(i,k) = 0. |
---|
558 | nrcol(i,k) = 0. |
---|
559 | ncact(i,k) = 0. |
---|
560 | nraut(i,k) = 0. |
---|
561 | ncevp(i,k) = 0. |
---|
562 | enddo |
---|
563 | enddo |
---|
564 | do k = kts, kte |
---|
565 | do i = its, ite |
---|
566 | if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin ) then |
---|
567 | rslopec(i,k) = rslopecmax |
---|
568 | rslopec2(i,k) = rslopec2max |
---|
569 | rslopec3(i,k) = rslopec3max |
---|
570 | else |
---|
571 | rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) |
---|
572 | rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) |
---|
573 | rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) |
---|
574 | endif |
---|
575 | !------------------------------------------------------------- |
---|
576 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
577 | !------------------------------------------------------------- |
---|
578 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
579 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
580 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
581 | enddo |
---|
582 | enddo |
---|
583 | !---------------------------------------------------------------- |
---|
584 | ! compute the fallout term: |
---|
585 | ! first, vertical terminal velosity for minor loops |
---|
586 | !---------------------------------------------------------------- |
---|
587 | do k = kts, kte |
---|
588 | do i = its, ite |
---|
589 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
590 | qrs_tmp(i,k,2) = qrs(i,k,2) |
---|
591 | qrs_tmp(i,k,3) = qrs(i,k,3) |
---|
592 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
593 | enddo |
---|
594 | enddo |
---|
595 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
596 | rslope3,work1,workn,its,ite,kts,kte) |
---|
597 | ! |
---|
598 | ! vt update for qr and nr |
---|
599 | mstepmax = 1 |
---|
600 | numdt = 1 |
---|
601 | do k = kte, kts, -1 |
---|
602 | do i = its, ite |
---|
603 | work1(i,k,1) = work1(i,k,1)/delz(i,k) |
---|
604 | workn(i,k) = workn(i,k)/delz(i,k) |
---|
605 | numdt(i) = max(nint(max(work1(i,k,1),workn(i,k))*dtcld+.5),1) |
---|
606 | if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i) |
---|
607 | enddo |
---|
608 | enddo |
---|
609 | do i = its, ite |
---|
610 | if(mstepmax.le.mstep(i)) mstepmax = mstep(i) |
---|
611 | enddo |
---|
612 | ! |
---|
613 | do n = 1, mstepmax |
---|
614 | k = kte |
---|
615 | do i = its, ite |
---|
616 | if(n.le.mstep(i)) then |
---|
617 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
618 | falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) |
---|
619 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
620 | falln(i,k) = falln(i,k)+falkn(i,k) |
---|
621 | qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.) |
---|
622 | ncr(i,k,3) = max(ncr(i,k,3)-falkn(i,k)*dtcld,0.) |
---|
623 | endif |
---|
624 | enddo |
---|
625 | do k = kte-1, kts, -1 |
---|
626 | do i = its, ite |
---|
627 | if(n.le.mstep(i)) then |
---|
628 | falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i) |
---|
629 | falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i) |
---|
630 | fall(i,k,1) = fall(i,k,1)+falk(i,k,1) |
---|
631 | falln(i,k) = falln(i,k)+falkn(i,k) |
---|
632 | qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) & |
---|
633 | *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.) |
---|
634 | ncr(i,k,3) = max(ncr(i,k,3)-(falkn(i,k)-falkn(i,k+1)*delz(i,k+1) & |
---|
635 | /delz(i,k))*dtcld,0.) |
---|
636 | endif |
---|
637 | enddo |
---|
638 | enddo |
---|
639 | do k = kts, kte |
---|
640 | do i = its, ite |
---|
641 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
642 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
643 | enddo |
---|
644 | enddo |
---|
645 | call slope_rain(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
646 | rslope3,work1,workn,its,ite,kts,kte) |
---|
647 | do k = kte, kts, -1 |
---|
648 | do i = its, ite |
---|
649 | work1(i,k,1) = work1(i,k,1)/delz(i,k) |
---|
650 | workn(i,k) = workn(i,k)/delz(i,k) |
---|
651 | enddo |
---|
652 | enddo |
---|
653 | enddo |
---|
654 | ! for semi |
---|
655 | do k = kte, kts, -1 |
---|
656 | do i = its, ite |
---|
657 | qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15) |
---|
658 | if(qsum(i,k) .gt. 1.e-15 ) then |
---|
659 | worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3)) & |
---|
660 | /qsum(i,k) |
---|
661 | else |
---|
662 | worka(i,k) = 0. |
---|
663 | endif |
---|
664 | denqrs2(i,k) = den(i,k)*qrs(i,k,2) |
---|
665 | denqrs3(i,k) = den(i,k)*qrs(i,k,3) |
---|
666 | enddo |
---|
667 | enddo |
---|
668 | call nislfv_rain_plm6(idim,kdim,den_tmp,denfac,t,delz_tmp,worka, & |
---|
669 | denqrs2,denqrs3,delqrs2,delqrs3,dtcld,1,1) |
---|
670 | do k = kts, kte |
---|
671 | do i = its, ite |
---|
672 | qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.) |
---|
673 | qrs(i,k,3) = max(denqrs3(i,k)/den(i,k),0.) |
---|
674 | fall(i,k,2) = denqrs2(i,k)*worka(i,k)/delz(i,k) |
---|
675 | fall(i,k,3) = denqrs3(i,k)*worka(i,k)/delz(i,k) |
---|
676 | enddo |
---|
677 | enddo |
---|
678 | do i = its, ite |
---|
679 | fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld |
---|
680 | fall(i,1,3) = delqrs3(i)/delz(i,1)/dtcld |
---|
681 | enddo |
---|
682 | do k = kts, kte |
---|
683 | do i = its, ite |
---|
684 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
685 | qrs_tmp(i,k,2) = qrs(i,k,2) |
---|
686 | qrs_tmp(i,k,3) = qrs(i,k,3) |
---|
687 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
688 | enddo |
---|
689 | enddo |
---|
690 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
691 | rslope3,work1,workn,its,ite,kts,kte) |
---|
692 | ! |
---|
693 | do k = kte, kts, -1 |
---|
694 | do i = its, ite |
---|
695 | supcol = t0c-t(i,k) |
---|
696 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
697 | if(t(i,k).gt.t0c) then |
---|
698 | !--------------------------------------------------------------- |
---|
699 | ! psmlt: melting of snow [HL A33] [RH83 A25] |
---|
700 | ! (T>T0: QS->QR) |
---|
701 | !--------------------------------------------------------------- |
---|
702 | xlf = xlf0 |
---|
703 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
704 | if(qrs(i,k,2).gt.0.) then |
---|
705 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
706 | psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. & |
---|
707 | *n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
708 | +precs2*work2(i,k)*coeres) |
---|
709 | psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),-qrs(i,k,2) & |
---|
710 | /mstep(i)),0.) |
---|
711 | qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k) |
---|
712 | qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k) |
---|
713 | !------------------------------------------------------------------- |
---|
714 | ! nsmlt: melting of snow [LH A27] |
---|
715 | ! (T>T0: ->NR) |
---|
716 | !------------------------------------------------------------------- |
---|
717 | if(qrs(i,k,2).gt.qcrmin) then |
---|
718 | sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) |
---|
719 | ncr(i,k,3) = ncr(i,k,3) - sfac*psmlt(i,k) |
---|
720 | endif |
---|
721 | t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k) |
---|
722 | endif |
---|
723 | !--------------------------------------------------------------- |
---|
724 | ! pgmlt: melting of graupel [HL A23] [LFO 47] |
---|
725 | ! (T>T0: QG->QR) |
---|
726 | !--------------------------------------------------------------- |
---|
727 | if(qrs(i,k,3).gt.0.) then |
---|
728 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
729 | pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*(precg1 & |
---|
730 | *rslope2(i,k,3) + precg2*work2(i,k)*coeres) |
---|
731 | pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i), & |
---|
732 | -qrs(i,k,3)/mstep(i)),0.) |
---|
733 | qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k) |
---|
734 | qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k) |
---|
735 | !------------------------------------------------------------------- |
---|
736 | ! ngmlt: melting of graupel [LH A28] |
---|
737 | ! (T>T0: ->NR) |
---|
738 | !------------------------------------------------------------------- |
---|
739 | if(qrs(i,k,3).gt.qcrmin) then |
---|
740 | gfac = rslope(i,k,3)*n0g/qrs(i,k,3) |
---|
741 | ncr(i,k,3) = ncr(i,k,3) - gfac*pgmlt(i,k) |
---|
742 | endif |
---|
743 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k) |
---|
744 | endif |
---|
745 | endif |
---|
746 | enddo |
---|
747 | enddo |
---|
748 | !--------------------------------------------------------------- |
---|
749 | ! Vice [ms-1] : fallout of ice crystal [HDC 5a] |
---|
750 | !--------------------------------------------------------------- |
---|
751 | do k = kte, kts, -1 |
---|
752 | do i = its, ite |
---|
753 | if(qci(i,k,2).le.0.) then |
---|
754 | work1c(i,k) = 0. |
---|
755 | else |
---|
756 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
757 | diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25) |
---|
758 | work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31)) |
---|
759 | endif |
---|
760 | enddo |
---|
761 | enddo |
---|
762 | ! |
---|
763 | ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear) |
---|
764 | ! |
---|
765 | do k = kte, kts, -1 |
---|
766 | do i = its, ite |
---|
767 | denqci(i,k) = den(i,k)*qci(i,k,2) |
---|
768 | enddo |
---|
769 | enddo |
---|
770 | call nislfv_rain_plmr(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci,denqci, & |
---|
771 | delqi,dtcld,1,0,0) |
---|
772 | do k = kts, kte |
---|
773 | do i = its, ite |
---|
774 | qci(i,k,2) = max(denqci(i,k)/den(i,k),0.) |
---|
775 | enddo |
---|
776 | enddo |
---|
777 | do i = its, ite |
---|
778 | fallc(i,1) = delqi(i)/delz(i,1)/dtcld |
---|
779 | enddo |
---|
780 | ! |
---|
781 | !---------------------------------------------------------------- |
---|
782 | ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf |
---|
783 | ! |
---|
784 | do i = its, ite |
---|
785 | fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts) |
---|
786 | fallsum_qsi = fall(i,kts,2)+fallc(i,kts) |
---|
787 | fallsum_qg = fall(i,kts,3) |
---|
788 | if(fallsum.gt.0.) then |
---|
789 | rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rainncv(i) |
---|
790 | rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i) |
---|
791 | endif |
---|
792 | if(fallsum_qsi.gt.0.) then |
---|
793 | tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + tstepsnow(i) |
---|
794 | IF ( PRESENT (snowncv) .AND. PRESENT (snow)) THEN |
---|
795 | snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i) |
---|
796 | snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i) |
---|
797 | ENDIF |
---|
798 | endif |
---|
799 | if(fallsum_qg.gt.0.) then |
---|
800 | tstepgraup(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & |
---|
801 | + tstepgraup(i) |
---|
802 | IF ( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN |
---|
803 | graupelncv(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. & |
---|
804 | + graupelncv(i) |
---|
805 | graupel(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i) |
---|
806 | ENDIF |
---|
807 | endif |
---|
808 | ! if(fallsum.gt.0.) sr(i) = (snowncv(i) + graupelncv(i)) & |
---|
809 | if(fallsum.gt.0.) sr(i) = (tstepsnow(i) + tstepgraup(i)) & |
---|
810 | /(rainncv(i)+1.e-12) |
---|
811 | enddo |
---|
812 | ! |
---|
813 | !--------------------------------------------------------------- |
---|
814 | ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28] |
---|
815 | ! (T>T0: QI->QC) |
---|
816 | !--------------------------------------------------------------- |
---|
817 | do k = kts, kte |
---|
818 | do i = its, ite |
---|
819 | supcol = t0c-t(i,k) |
---|
820 | xlf = xls-xl(i,k) |
---|
821 | if(supcol.lt.0.) xlf = xlf0 |
---|
822 | if(supcol.lt.0 .and. qci(i,k,2).gt.0.) then |
---|
823 | qci(i,k,1) = qci(i,k,1) + qci(i,k,2) |
---|
824 | !--------------------------------------------------------------- |
---|
825 | ! nimlt: instantaneous melting of cloud ice [LH A18] |
---|
826 | ! (T>T0: ->NC) |
---|
827 | !-------------------------------------------------------------- |
---|
828 | ncr(i,k,2) = ncr(i,k,2) + xni(i,k) |
---|
829 | t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2) |
---|
830 | qci(i,k,2) = 0. |
---|
831 | endif |
---|
832 | !--------------------------------------------------------------- |
---|
833 | ! pihmf: homogeneous of cloud water below -40c [HL A45] |
---|
834 | ! (T<-40C: QC->QI) |
---|
835 | !--------------------------------------------------------------- |
---|
836 | if(supcol.gt.40. .and. qci(i,k,1).gt.0.) then |
---|
837 | qci(i,k,2) = qci(i,k,2) + qci(i,k,1) |
---|
838 | !--------------------------------------------------------------- |
---|
839 | ! nihmf: homogeneous of cloud water below -40c [LH A17] |
---|
840 | ! (T<-40C: NC->) |
---|
841 | !--------------------------------------------------------------- |
---|
842 | if(ncr(i,k,2).gt.0.) ncr(i,k,2) = 0. |
---|
843 | t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1) |
---|
844 | qci(i,k,1) = 0. |
---|
845 | endif |
---|
846 | !--------------------------------------------------------------- |
---|
847 | ! pihtf: heterogeneous of cloud water [HL A44] |
---|
848 | ! (T0>T>-40C: QC->QI) |
---|
849 | !--------------------------------------------------------------- |
---|
850 | if(supcol.gt.0. .and. qci(i,k,1).gt.qmin) then |
---|
851 | supcolt=min(supcol,70.) |
---|
852 | pfrzdtc = min(pi*pi*pfrz1*(exp(pfrz2*supcolt)-1.)*denr/den(i,k) & |
---|
853 | *ncr(i,k,2)*rslopec3(i,k)*rslopec3(i,k)/18.*dtcld & |
---|
854 | ,qci(i,k,1)) |
---|
855 | !--------------------------------------------------------------- |
---|
856 | ! nihtf: heterogeneous of cloud water [LH A16] |
---|
857 | ! (T0>T>-40C: NC->) |
---|
858 | !--------------------------------------------------------------- |
---|
859 | if(ncr(i,k,2).gt.ncmin) then |
---|
860 | nfrzdtc = min(pi*pfrz1*(exp(pfrz2*supcolt)-1.)*ncr(i,k,2) & |
---|
861 | *rslopec3(i,k)/6.*dtcld,ncr(i,k,2)) |
---|
862 | ncr(i,k,2) = ncr(i,k,2) - nfrzdtc |
---|
863 | endif |
---|
864 | qci(i,k,2) = qci(i,k,2) + pfrzdtc |
---|
865 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc |
---|
866 | qci(i,k,1) = qci(i,k,1)-pfrzdtc |
---|
867 | endif |
---|
868 | !--------------------------------------------------------------- |
---|
869 | ! pgfrz: freezing of rain water [HL A20] [LFO 45] |
---|
870 | ! (T<T0, QR->QG) |
---|
871 | !--------------------------------------------------------------- |
---|
872 | if(supcol.gt.0. .and. qrs(i,k,1).gt.0.) then |
---|
873 | supcolt=min(supcol,70.) |
---|
874 | pfrzdtr = min(140.*(pi*pi)*pfrz1*ncr(i,k,3)*denr/den(i,k) & |
---|
875 | *(exp(pfrz2*supcolt)-1.)*rslope3(i,k,1)*rslope3(i,k,1) & |
---|
876 | *dtcld,qrs(i,k,1)) |
---|
877 | !--------------------------------------------------------------- |
---|
878 | ! ngfrz: freezing of rain water [LH A26] |
---|
879 | ! (T<T0, NR-> ) |
---|
880 | !--------------------------------------------------------------- |
---|
881 | if(ncr(i,k,3).gt.nrmin) then |
---|
882 | nfrzdtr = min(4.*pi*pfrz1*ncr(i,k,3)*(exp(pfrz2*supcolt)-1.) & |
---|
883 | *rslope3(i,k,1)*dtcld, ncr(i,k,3)) |
---|
884 | ncr(i,k,3) = ncr(i,k,3) - nfrzdtr |
---|
885 | endif |
---|
886 | qrs(i,k,3) = qrs(i,k,3) + pfrzdtr |
---|
887 | t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr |
---|
888 | qrs(i,k,1) = qrs(i,k,1) - pfrzdtr |
---|
889 | endif |
---|
890 | enddo |
---|
891 | enddo |
---|
892 | ! |
---|
893 | do k = kts, kte |
---|
894 | do i = its, ite |
---|
895 | ncr(i,k,2) = max(ncr(i,k,2),0.0) |
---|
896 | ncr(i,k,3) = max(ncr(i,k,3),0.0) |
---|
897 | enddo |
---|
898 | enddo |
---|
899 | ! |
---|
900 | !---------------------------------------------------------------- |
---|
901 | ! update the slope parameters for microphysics computation |
---|
902 | ! |
---|
903 | do k = kts, kte |
---|
904 | do i = its, ite |
---|
905 | qrs_tmp(i,k,1) = qrs(i,k,1) |
---|
906 | qrs_tmp(i,k,2) = qrs(i,k,2) |
---|
907 | qrs_tmp(i,k,3) = qrs(i,k,3) |
---|
908 | ncr_tmp(i,k) = ncr(i,k,3) |
---|
909 | enddo |
---|
910 | enddo |
---|
911 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
912 | rslope3,work1,workn,its,ite,kts,kte) |
---|
913 | do k = kts, kte |
---|
914 | do i = its, ite |
---|
915 | !----------------------------------------------------------------- |
---|
916 | ! compute the mean-volume drop diameter [LH A10] |
---|
917 | ! for raindrop distribution |
---|
918 | !----------------------------------------------------------------- |
---|
919 | avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) |
---|
920 | ! |
---|
921 | if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin) then |
---|
922 | rslopec(i,k) = rslopecmax |
---|
923 | rslopec2(i,k) = rslopec2max |
---|
924 | rslopec3(i,k) = rslopec3max |
---|
925 | else |
---|
926 | rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2)) |
---|
927 | rslopec2(i,k) = rslopec(i,k)*rslopec(i,k) |
---|
928 | rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k) |
---|
929 | endif |
---|
930 | !-------------------------------------------------------------------- |
---|
931 | ! compute the mean-volume drop diameter [LH A7] |
---|
932 | ! for cloud-droplet distribution |
---|
933 | !-------------------------------------------------------------------- |
---|
934 | avedia(i,k,1) = rslopec(i,k) |
---|
935 | enddo |
---|
936 | enddo |
---|
937 | ! |
---|
938 | do k = kts, kte |
---|
939 | do i = its, ite |
---|
940 | work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1)) |
---|
941 | work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2)) |
---|
942 | work2(i,k) = venfac(p(i,k),t(i,k),den(i,k)) |
---|
943 | enddo |
---|
944 | enddo |
---|
945 | ! |
---|
946 | !=============================================================== |
---|
947 | ! |
---|
948 | ! warm rain processes |
---|
949 | ! |
---|
950 | ! - follows the double-moment processes in Lim and Hong |
---|
951 | ! |
---|
952 | !=============================================================== |
---|
953 | ! |
---|
954 | do k = kts, kte |
---|
955 | do i = its, ite |
---|
956 | supsat = max(q(i,k),qmin)-qs(i,k,1) |
---|
957 | satdt = supsat/dtcld |
---|
958 | !--------------------------------------------------------------- |
---|
959 | ! praut: auto conversion rate from cloud to rain [LH 9] [CP 17] |
---|
960 | ! (QC->QR) |
---|
961 | !-------------------------------------------------------------- |
---|
962 | lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) & |
---|
963 | *rslopec2(i,k)-0.4) |
---|
964 | lenconcr = max(1.2*lencon, qcrmin) |
---|
965 | if(avedia(i,k,1).gt.di15) then |
---|
966 | taucon = 3.7/den(i,k)/qci(i,k,1)/(0.5e6*rslopec(i,k)-7.5) |
---|
967 | praut(i,k) = lencon/taucon |
---|
968 | praut(i,k) = min(max(praut(i,k),0.),qci(i,k,1)/dtcld) |
---|
969 | !--------------------------------------------------------------- |
---|
970 | ! nraut: auto conversion rate from cloud to rain [LH A6] [CP 18 & 19] |
---|
971 | ! (NC->NR) |
---|
972 | !--------------------------------------------------------------- |
---|
973 | nraut(i,k) = 3.5e9*den(i,k)*praut(i,k) |
---|
974 | if(qrs(i,k,1).gt.lenconcr) & |
---|
975 | nraut(i,k) = ncr(i,k,3)/qrs(i,k,1)*praut(i,k) |
---|
976 | nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld) |
---|
977 | endif |
---|
978 | !--------------------------------------------------------------- |
---|
979 | ! pracw: accretion of cloud water by rain [LH 10] [CP 22 & 23] |
---|
980 | ! (QC->QR) |
---|
981 | ! nracw: accretion of cloud water by rain [LH A9] |
---|
982 | ! (NC->) |
---|
983 | !--------------------------------------------------------------- |
---|
984 | if(qrs(i,k,1).ge.lenconcr) then |
---|
985 | if(avedia(i,k,2).ge.di100) then |
---|
986 | nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) & |
---|
987 | + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld) |
---|
988 | pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) & |
---|
989 | *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k) & |
---|
990 | + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld) |
---|
991 | else |
---|
992 | nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) & |
---|
993 | *rslopec3(i,k)+5040.*rslope3(i,k,1) & |
---|
994 | *rslope3(i,k,1)),ncr(i,k,2)/dtcld) |
---|
995 | pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) & |
---|
996 | *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k) & |
---|
997 | *rslopec3(i,k)+5040.*rslope3(i,k,1)*rslope3(i,k,1)) & |
---|
998 | ,qci(i,k,1)/dtcld) |
---|
999 | endif |
---|
1000 | endif |
---|
1001 | !---------------------------------------------------------------- |
---|
1002 | ! nccol: self collection of cloud water [LH A8] [CP 24 & 25] |
---|
1003 | ! (NC->) |
---|
1004 | !---------------------------------------------------------------- |
---|
1005 | if(avedia(i,k,1).ge.di100) then |
---|
1006 | nccol(i,k) = ncrk1*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) |
---|
1007 | else |
---|
1008 | nccol(i,k) = 2.*ncrk2*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) & |
---|
1009 | *rslopec3(i,k) |
---|
1010 | endif |
---|
1011 | !---------------------------------------------------------------- |
---|
1012 | ! nrcol: self collection of rain-drops and break-up [LH A21] [CP 24 & 25] |
---|
1013 | ! (NR->) |
---|
1014 | !---------------------------------------------------------------- |
---|
1015 | if(qrs(i,k,1).ge.lenconcr) then |
---|
1016 | if(avedia(i,k,2).lt.di100) then |
---|
1017 | nrcol(i,k) = 5040.*ncrk2*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) & |
---|
1018 | *rslope3(i,k,1) |
---|
1019 | elseif(avedia(i,k,2).ge.di100 .and. avedia(i,k,2).lt.di600) then |
---|
1020 | nrcol(i,k) = 24.*ncrk1*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) |
---|
1021 | elseif(avedia(i,k,2).ge.di600 .and. avedia(i,k,2).lt.di2000) then |
---|
1022 | coecol = -2.5e3*(avedia(i,k,2)-di600) |
---|
1023 | nrcol(i,k) = 24.*exp(coecol)*ncrk1*ncr(i,k,3)*ncr(i,k,3) & |
---|
1024 | *rslope3(i,k,1) |
---|
1025 | else |
---|
1026 | nrcol(i,k) = 0. |
---|
1027 | endif |
---|
1028 | endif |
---|
1029 | !--------------------------------------------------------------- |
---|
1030 | ! prevp: evaporation/condensation rate of rain [HL A41] |
---|
1031 | ! (QV->QR or QR->QV) |
---|
1032 | !--------------------------------------------------------------- |
---|
1033 | if(qrs(i,k,1).gt.0.) then |
---|
1034 | coeres = rslope(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1)) |
---|
1035 | prevp(i,k) = (rh(i,k,1)-1.)*ncr(i,k,3)*(precr1*rslope(i,k,1) & |
---|
1036 | + precr2*work2(i,k)*coeres)/work1(i,k,1) |
---|
1037 | if(prevp(i,k).lt.0.) then |
---|
1038 | prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld) |
---|
1039 | prevp(i,k) = max(prevp(i,k),satdt/2) |
---|
1040 | !---------------------------------------------------------------- |
---|
1041 | ! Nrevp: evaporation/condensation rate of rain [LH A14] |
---|
1042 | ! (NR->NCCN) |
---|
1043 | !---------------------------------------------------------------- |
---|
1044 | if(prevp(i,k).eq.-qrs(i,k,1)/dtcld) then |
---|
1045 | ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,3) |
---|
1046 | ncr(i,k,3) = 0. |
---|
1047 | endif |
---|
1048 | else |
---|
1049 | ! |
---|
1050 | prevp(i,k) = min(prevp(i,k),satdt/2) |
---|
1051 | endif |
---|
1052 | endif |
---|
1053 | enddo |
---|
1054 | enddo |
---|
1055 | ! |
---|
1056 | !=============================================================== |
---|
1057 | ! |
---|
1058 | ! cold rain processes |
---|
1059 | ! |
---|
1060 | ! - follows the revised ice microphysics processes in HDC |
---|
1061 | ! - the processes same as in RH83 and RH84 and LFO behave |
---|
1062 | ! following ice crystal hapits defined in HDC, inclduing |
---|
1063 | ! intercept parameter for snow (n0s), ice crystal number |
---|
1064 | ! concentration (ni), ice nuclei number concentration |
---|
1065 | ! (n0i), ice diameter (d) |
---|
1066 | ! |
---|
1067 | !=============================================================== |
---|
1068 | ! |
---|
1069 | do k = kts, kte |
---|
1070 | do i = its, ite |
---|
1071 | supcol = t0c-t(i,k) |
---|
1072 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
1073 | supsat = max(q(i,k),qmin)-qs(i,k,2) |
---|
1074 | satdt = supsat/dtcld |
---|
1075 | ifsat = 0 |
---|
1076 | !------------------------------------------------------------- |
---|
1077 | ! Ni: ice crystal number concentraiton [HDC 5c] |
---|
1078 | !------------------------------------------------------------- |
---|
1079 | ! xni(i,k) = min(max(5.38e7*(den(i,k) & |
---|
1080 | ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6) |
---|
1081 | temp = (den(i,k)*max(qci(i,k,2),qmin)) |
---|
1082 | temp = sqrt(sqrt(temp*temp*temp)) |
---|
1083 | xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6) |
---|
1084 | eacrs = exp(0.07*(-supcol)) |
---|
1085 | ! |
---|
1086 | xmi = den(i,k)*qci(i,k,2)/xni(i,k) |
---|
1087 | diameter = min(dicon * sqrt(xmi),dimax) |
---|
1088 | vt2i = 1.49e4*diameter**1.31 |
---|
1089 | vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k) |
---|
1090 | vt2s=pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
1091 | vt2g=pvtg*rslopeb(i,k,3)*denfac(i,k) |
---|
1092 | qsum(i,k) = max((qrs(i,k,2)+qrs(i,k,3)),1.e-15) |
---|
1093 | if(qsum(i,k) .gt. 1.e-15) then |
---|
1094 | vt2ave=(vt2s*qrs(i,k,2)+vt2g*qrs(i,k,3))/(qsum(i,k)) |
---|
1095 | else |
---|
1096 | vt2ave=0. |
---|
1097 | endif |
---|
1098 | if(supcol.gt.0. .and. qci(i,k,2).gt.qmin) then |
---|
1099 | if(qrs(i,k,1).gt.qcrmin) then |
---|
1100 | !------------------------------------------------------------- |
---|
1101 | ! praci: Accretion of cloud ice by rain [HL A15] [LFO 25] |
---|
1102 | ! (T<T0: QI->QR) |
---|
1103 | !------------------------------------------------------------- |
---|
1104 | acrfac = 6.*rslope2(i,k,1)+4.*diameter*rslope(i,k,1) + diameter**2 |
---|
1105 | praci(i,k) = pi*qci(i,k,2)*ncr(i,k,3)*abs(vt2r-vt2i)*acrfac/4. |
---|
1106 | praci(i,k) = min(praci(i,k),qci(i,k,2)/dtcld) |
---|
1107 | !------------------------------------------------------------- |
---|
1108 | ! piacr: Accretion of rain by cloud ice [HL A19] [LFO 26] |
---|
1109 | ! (T<T0: QR->QS or QR->QG) |
---|
1110 | !------------------------------------------------------------- |
---|
1111 | piacr(i,k) = pi*pi*avtr*ncr(i,k,3)*denr*xni(i,k)*denfac(i,k) & |
---|
1112 | *g7pbr*rslope3(i,k,1)*rslope2(i,k,1)*rslopeb(i,k,1) & |
---|
1113 | /24./den(i,k) |
---|
1114 | piacr(i,k) = min(piacr(i,k),qrs(i,k,1)/dtcld) |
---|
1115 | endif |
---|
1116 | !------------------------------------------------------------- |
---|
1117 | ! niacr: Accretion of rain by cloud ice [LH A25] |
---|
1118 | ! (T<T0: NR->) |
---|
1119 | !------------------------------------------------------------- |
---|
1120 | if(ncr(i,k,3).gt.nrmin) then |
---|
1121 | niacr(i,k) = pi*avtr*ncr(i,k,3)*xni(i,k)*denfac(i,k)*g4pbr & |
---|
1122 | *rslope2(i,k,1)*rslopeb(i,k,1)/4. |
---|
1123 | niacr(i,k) = min(niacr(i,k),ncr(i,k,3)/dtcld) |
---|
1124 | endif |
---|
1125 | !------------------------------------------------------------- |
---|
1126 | ! psaci: Accretion of cloud ice by snow [HDC 10] |
---|
1127 | ! (T<T0: QI->QS) |
---|
1128 | !------------------------------------------------------------- |
---|
1129 | if(qrs(i,k,2).gt.qcrmin) then |
---|
1130 | acrfac = 2.*rslope3(i,k,2)+2.*diameter*rslope2(i,k,2) & |
---|
1131 | + diameter**2*rslope(i,k,2) |
---|
1132 | psaci(i,k) = pi*qci(i,k,2)*eacrs*n0s*n0sfac(i,k) & |
---|
1133 | *abs(vt2ave-vt2i)*acrfac/4. |
---|
1134 | psaci(i,k) = min(psaci(i,k),qci(i,k,2)/dtcld) |
---|
1135 | endif |
---|
1136 | !------------------------------------------------------------- |
---|
1137 | ! pgaci: Accretion of cloud ice by graupel [HL A17] [LFO 41] |
---|
1138 | ! (T<T0: QI->QG) |
---|
1139 | !------------------------------------------------------------- |
---|
1140 | if(qrs(i,k,3).gt.qcrmin) then |
---|
1141 | egi = exp(0.07*(-supcol)) |
---|
1142 | acrfac = 2.*rslope3(i,k,3)+2.*diameter*rslope2(i,k,3) & |
---|
1143 | + diameter**2*rslope(i,k,3) |
---|
1144 | pgaci(i,k) = pi*egi*qci(i,k,2)*n0g*abs(vt2ave-vt2i)*acrfac/4. |
---|
1145 | pgaci(i,k) = min(pgaci(i,k),qci(i,k,2)/dtcld) |
---|
1146 | endif |
---|
1147 | endif |
---|
1148 | !------------------------------------------------------------- |
---|
1149 | ! psacw: Accretion of cloud water by snow [HL A7] [LFO 24] |
---|
1150 | ! (T<T0: QC->QS, and T>=T0: QC->QR) |
---|
1151 | !------------------------------------------------------------- |
---|
1152 | if(qrs(i,k,2).gt.qcrmin .and. qci(i,k,1).gt.qmin) then |
---|
1153 | psacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
---|
1154 | *qci(i,k,1)*denfac(i,k),qci(i,k,1)/dtcld) |
---|
1155 | endif |
---|
1156 | !------------------------------------------------------------- |
---|
1157 | ! nsacw: Accretion of cloud water by snow [LH A12] |
---|
1158 | ! (NC ->) |
---|
1159 | !------------------------------------------------------------- |
---|
1160 | if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then |
---|
1161 | nsacw(i,k) = min(pacrc*n0sfac(i,k)*rslope3(i,k,2)*rslopeb(i,k,2) & |
---|
1162 | *ncr(i,k,2)*denfac(i,k),ncr(i,k,2)/dtcld) |
---|
1163 | endif |
---|
1164 | !------------------------------------------------------------- |
---|
1165 | ! pgacw: Accretion of cloud water by graupel [HL A6] [LFO 40] |
---|
1166 | ! (T<T0: QC->QG, and T>=T0: QC->QR) |
---|
1167 | !------------------------------------------------------------- |
---|
1168 | if(qrs(i,k,3).gt.qcrmin .and. qci(i,k,1).gt.qmin) then |
---|
1169 | pgacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)*qci(i,k,1) & |
---|
1170 | *denfac(i,k),qci(i,k,1)/dtcld) |
---|
1171 | endif |
---|
1172 | !------------------------------------------------------------- |
---|
1173 | ! ngacw: Accretion of cloud water by graupel [LH A13] |
---|
1174 | ! (NC-> |
---|
1175 | !------------------------------------------------------------- |
---|
1176 | if(qrs(i,k,3).gt.qcrmin .and. ncr(i,k,2).gt.ncmin) then |
---|
1177 | ngacw(i,k) = min(pacrg*rslope3(i,k,3)*rslopeb(i,k,3)*ncr(i,k,2) & |
---|
1178 | *denfac(i,k),ncr(i,k,2)/dtcld) |
---|
1179 | endif |
---|
1180 | !------------------------------------------------------------- |
---|
1181 | ! paacw: Accretion of cloud water by averaged snow/graupel |
---|
1182 | ! (T<T0: QC->QG or QS, and T>=T0: QC->QR) |
---|
1183 | !------------------------------------------------------------- |
---|
1184 | if(qrs(i,k,2).gt.qcrmin .and. qrs(i,k,3).gt.qcrmin) then |
---|
1185 | paacw(i,k) = (qrs(i,k,2)*psacw(i,k)+qrs(i,k,3)*pgacw(i,k))/(qsum(i,k)) |
---|
1186 | !------------------------------------------------------------- |
---|
1187 | ! naacw: Accretion of cloud water by averaged snow/graupel |
---|
1188 | ! (Nc->) |
---|
1189 | !------------------------------------------------------------- |
---|
1190 | naacw(i,k) = (qrs(i,k,2)*nsacw(i,k)+qrs(i,k,3)*ngacw(i,k))/(qsum(i,k)) |
---|
1191 | endif |
---|
1192 | !------------------------------------------------------------- |
---|
1193 | ! pracs: Accretion of snow by rain [HL A11] [LFO 27] |
---|
1194 | ! (T<T0: QS->QG) |
---|
1195 | !------------------------------------------------------------- |
---|
1196 | if(qrs(i,k,2).gt.qcrmin .and. qrs(i,k,1).gt.qcrmin) then |
---|
1197 | if(supcol.gt.0) then |
---|
1198 | acrfac = 5.*rslope3(i,k,2)*rslope3(i,k,2) & |
---|
1199 | + 4.*rslope3(i,k,2)*rslope2(i,k,2)*rslope(i,k,1) & |
---|
1200 | + 1.5*rslope2(i,k,2)*rslope2(i,k,2)*rslope2(i,k,1) |
---|
1201 | pracs(i,k) = pi*pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2r-vt2ave) & |
---|
1202 | *(dens/den(i,k))*acrfac |
---|
1203 | pracs(i,k) = min(pracs(i,k),qrs(i,k,2)/dtcld) |
---|
1204 | endif |
---|
1205 | !------------------------------------------------------------- |
---|
1206 | ! psacr: Accretion of rain by snow [HL A10] [LFO 28] |
---|
1207 | ! (T<T0:QR->QS or QR->QG) (T>=T0: enhance melting of snow) |
---|
1208 | !------------------------------------------------------------- |
---|
1209 | acrfac = 30.*rslope3(i,k,1)*rslope2(i,k,1)*rslope(i,k,2) & |
---|
1210 | + 5.*rslope2(i,k,1)*rslope2(i,k,1)*rslope2(i,k,2) & |
---|
1211 | + 2.*rslope3(i,k,1)*rslope3(i,k,2) |
---|
1212 | psacr(i,k) = pi*pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & |
---|
1213 | *(denr/den(i,k))*acrfac |
---|
1214 | psacr(i,k) = min(psacr(i,k),qrs(i,k,1)/dtcld) |
---|
1215 | endif |
---|
1216 | if(qrs(i,k,2).gt.qcrmin .and. ncr(i,k,3).gt.nrmin) then |
---|
1217 | !------------------------------------------------------------- |
---|
1218 | ! nsacr: Accretion of rain by snow [LH A23] |
---|
1219 | ! (T<T0:NR->) |
---|
1220 | !------------------------------------------------------------- |
---|
1221 | acrfac = 1.5*rslope2(i,k,1)*rslope(i,k,2) & |
---|
1222 | + 1.0*rslope(i,k,1)*rslope2(i,k,2)+.5*rslope3(i,k,2) |
---|
1223 | nsacr(i,k) = pi*ncr(i,k,3)*n0s*n0sfac(i,k)*abs(vt2ave-vt2r) & |
---|
1224 | *acrfac |
---|
1225 | nsacr(i,k) = min(nsacr(i,k),ncr(i,k,3)/dtcld) |
---|
1226 | endif |
---|
1227 | !------------------------------------------------------------- |
---|
1228 | ! pgacr: Accretion of rain by graupel [HL A12] [LFO 42] |
---|
1229 | ! (T<T0: QR->QG) (T>=T0: enhance melting of graupel) |
---|
1230 | !------------------------------------------------------------- |
---|
1231 | if(qrs(i,k,3).gt.qcrmin .and. qrs(i,k,1).gt.qcrmin) then |
---|
1232 | acrfac = 30.*rslope3(i,k,1)*rslope2(i,k,1)*rslope(i,k,3) & |
---|
1233 | + 5.*rslope2(i,k,1)*rslope2(i,k,1)*rslope2(i,k,3) & |
---|
1234 | + 2.*rslope3(i,k,1)*rslope3(i,k,3) |
---|
1235 | pgacr(i,k) = pi*pi*ncr(i,k,3)*n0g*abs(vt2ave-vt2r)*(denr/den(i,k)) & |
---|
1236 | *acrfac |
---|
1237 | pgacr(i,k) = min(pgacr(i,k),qrs(i,k,1)/dtcld) |
---|
1238 | endif |
---|
1239 | !------------------------------------------------------------- |
---|
1240 | ! ngacr: Accretion of rain by graupel [LH A24] |
---|
1241 | ! (T<T0: NR->) |
---|
1242 | !------------------------------------------------------------- |
---|
1243 | if(qrs(i,k,3).gt.qcrmin .and. ncr(i,k,3).gt.nrmin) then |
---|
1244 | acrfac = 1.5*rslope2(i,k,1)*rslope(i,k,3) & |
---|
1245 | + 1.0*rslope(i,k,1)*rslope2(i,k,3) + .5*rslope3(i,k,3) |
---|
1246 | ngacr(i,k) = pi*ncr(i,k,3)*n0g*abs(vt2ave-vt2r)*acrfac |
---|
1247 | ngacr(i,k) = min(ngacr(i,k),ncr(i,k,3)/dtcld) |
---|
1248 | endif |
---|
1249 | ! |
---|
1250 | !------------------------------------------------------------- |
---|
1251 | ! pgacs: Accretion of snow by graupel [HL A13] [LFO 29] |
---|
1252 | ! (QS->QG) : This process is eliminated in V3.0 with the |
---|
1253 | ! new combined snow/graupel fall speeds |
---|
1254 | !------------------------------------------------------------- |
---|
1255 | if(qrs(i,k,3).gt.qcrmin .and. qrs(i,k,2).gt.qcrmin) then |
---|
1256 | pgacs(i,k) = 0. |
---|
1257 | endif |
---|
1258 | if(supcol.le.0) then |
---|
1259 | xlf = xlf0 |
---|
1260 | !------------------------------------------------------------- |
---|
1261 | ! pseml: Enhanced melting of snow by accretion of water [HL A34] |
---|
1262 | ! (T>=T0: QS->QR) |
---|
1263 | !------------------------------------------------------------- |
---|
1264 | if(qrs(i,k,2).gt.0.) & |
---|
1265 | pseml(i,k) = min(max(cliq*supcol*(paacw(i,k)+psacr(i,k)) & |
---|
1266 | /xlf,-qrs(i,k,2)/dtcld),0.) |
---|
1267 | !-------------------------------------------------------------- |
---|
1268 | ! nseml: Enhanced melting of snow by accretion of water [LH A29] |
---|
1269 | ! (T>=T0: ->NR) |
---|
1270 | !-------------------------------------------------------------- |
---|
1271 | if (qrs(i,k,2).gt.qcrmin) then |
---|
1272 | sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2) |
---|
1273 | nseml(i,k) = -sfac*pseml(i,k) |
---|
1274 | endif |
---|
1275 | !------------------------------------------------------------- |
---|
1276 | ! pgeml: Enhanced melting of graupel by accretion of water [HL A24] [RH84 A21-A22] |
---|
1277 | ! (T>=T0: QG->QR) |
---|
1278 | !------------------------------------------------------------- |
---|
1279 | if(qrs(i,k,3).gt.0.) & |
---|
1280 | pgeml(i,k) = min(max(cliq*supcol*(paacw(i,k)+pgacr(i,k))/xlf & |
---|
1281 | ,-qrs(i,k,3)/dtcld),0.) |
---|
1282 | !-------------------------------------------------------------- |
---|
1283 | ! ngeml: Enhanced melting of graupel by accretion of water [LH A30] |
---|
1284 | ! (T>=T0: -> NR) |
---|
1285 | !-------------------------------------------------------------- |
---|
1286 | if (qrs(i,k,3).gt.qcrmin) then |
---|
1287 | gfac = rslope(i,k,3)*n0g/qrs(i,k,3) |
---|
1288 | ngeml(i,k) = -gfac*pgeml(i,k) |
---|
1289 | endif |
---|
1290 | endif |
---|
1291 | if(supcol.gt.0) then |
---|
1292 | !------------------------------------------------------------- |
---|
1293 | ! pidep: Deposition/Sublimation rate of ice [HDC 9] |
---|
1294 | ! (T<T0: QV->QI or QI->QV) |
---|
1295 | !------------------------------------------------------------- |
---|
1296 | if(qci(i,k,2).gt.0. .and. ifsat.ne.1) then |
---|
1297 | pidep(i,k) = 4.*diameter*xni(i,k)*(rh(i,k,2)-1.)/work1(i,k,2) |
---|
1298 | supice = satdt-prevp(i,k) |
---|
1299 | if(pidep(i,k).lt.0.) then |
---|
1300 | pidep(i,k) = max(max(pidep(i,k),satdt/2),supice) |
---|
1301 | pidep(i,k) = max(pidep(i,k),-qci(i,k,2)/dtcld) |
---|
1302 | else |
---|
1303 | pidep(i,k) = min(min(pidep(i,k),satdt/2),supice) |
---|
1304 | endif |
---|
1305 | if(abs(prevp(i,k)+pidep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
1306 | endif |
---|
1307 | !------------------------------------------------------------- |
---|
1308 | ! psdep: deposition/sublimation rate of snow [HDC 14] |
---|
1309 | ! (T<T0: QV->QS or QS->QV) |
---|
1310 | !------------------------------------------------------------- |
---|
1311 | if(qrs(i,k,2).gt.0. .and. ifsat.ne.1) then |
---|
1312 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
1313 | psdep(i,k) = (rh(i,k,2)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
1314 | + precs2*work2(i,k)*coeres)/work1(i,k,2) |
---|
1315 | supice = satdt-prevp(i,k)-pidep(i,k) |
---|
1316 | if(psdep(i,k).lt.0.) then |
---|
1317 | psdep(i,k) = max(psdep(i,k),-qrs(i,k,2)/dtcld) |
---|
1318 | psdep(i,k) = max(max(psdep(i,k),satdt/2),supice) |
---|
1319 | else |
---|
1320 | psdep(i,k) = min(min(psdep(i,k),satdt/2),supice) |
---|
1321 | endif |
---|
1322 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)).ge.abs(satdt)) ifsat = 1 |
---|
1323 | endif |
---|
1324 | !------------------------------------------------------------- |
---|
1325 | ! pgdep: deposition/sublimation rate of graupel [HL A21] [LFO 46] |
---|
1326 | ! (T<T0: QV->QG or QG->QV) |
---|
1327 | !------------------------------------------------------------- |
---|
1328 | if(qrs(i,k,3).gt.0. .and. ifsat.ne.1) then |
---|
1329 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
1330 | pgdep(i,k) = (rh(i,k,2)-1.)*(precg1*rslope2(i,k,3) & |
---|
1331 | + precg2*work2(i,k)*coeres)/work1(i,k,2) |
---|
1332 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k) |
---|
1333 | if(pgdep(i,k).lt.0.) then |
---|
1334 | pgdep(i,k) = max(pgdep(i,k),-qrs(i,k,3)/dtcld) |
---|
1335 | pgdep(i,k) = max(max(pgdep(i,k),satdt/2),supice) |
---|
1336 | else |
---|
1337 | pgdep(i,k) = min(min(pgdep(i,k),satdt/2),supice) |
---|
1338 | endif |
---|
1339 | if(abs(prevp(i,k)+pidep(i,k)+psdep(i,k)+pgdep(i,k)).ge. & |
---|
1340 | abs(satdt)) ifsat = 1 |
---|
1341 | endif |
---|
1342 | !------------------------------------------------------------- |
---|
1343 | ! pigen: generation(nucleation) of ice from vapor [HL 50] [HDC 7-8] |
---|
1344 | ! (T<T0: QV->QI) |
---|
1345 | !------------------------------------------------------------- |
---|
1346 | if(supsat.gt.0. .and. ifsat.ne.1) then |
---|
1347 | supice = satdt-prevp(i,k)-pidep(i,k)-psdep(i,k)-pgdep(i,k) |
---|
1348 | xni0 = 1.e3*exp(0.1*supcol) |
---|
1349 | roqi0 = 4.92e-11*xni0**1.33 |
---|
1350 | pigen(i,k) = max(0.,(roqi0/den(i,k)-max(qci(i,k,2),0.))/dtcld) |
---|
1351 | pigen(i,k) = min(min(pigen(i,k),satdt),supice) |
---|
1352 | endif |
---|
1353 | ! |
---|
1354 | !------------------------------------------------------------- |
---|
1355 | ! psaut: conversion(aggregation) of ice to snow [HDC 12] |
---|
1356 | ! (T<T0: QI->QS) |
---|
1357 | !------------------------------------------------------------- |
---|
1358 | if(qci(i,k,2).gt.0.) then |
---|
1359 | qimax = roqimax/den(i,k) |
---|
1360 | psaut(i,k) = max(0.,(qci(i,k,2)-qimax)/dtcld) |
---|
1361 | endif |
---|
1362 | ! |
---|
1363 | !------------------------------------------------------------- |
---|
1364 | ! pgaut: conversion(aggregation) of snow to graupel [HL A4] [LFO 37] |
---|
1365 | ! (T<T0: QS->QG) |
---|
1366 | !------------------------------------------------------------- |
---|
1367 | if(qrs(i,k,2).gt.0.) then |
---|
1368 | alpha2 = 1.e-3*exp(0.09*(-supcol)) |
---|
1369 | pgaut(i,k) = min(max(0.,alpha2*(qrs(i,k,2)-qs0)),qrs(i,k,2)/dtcld) |
---|
1370 | endif |
---|
1371 | endif |
---|
1372 | ! |
---|
1373 | !------------------------------------------------------------- |
---|
1374 | ! psevp: Evaporation of melting snow [HL A35] [RH83 A27] |
---|
1375 | ! (T>=T0: QS->QV) |
---|
1376 | !------------------------------------------------------------- |
---|
1377 | if(supcol.lt.0.) then |
---|
1378 | if(qrs(i,k,2).gt.0. .and. rh(i,k,1).lt.1.) then |
---|
1379 | coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2)) |
---|
1380 | psevp(i,k) = (rh(i,k,1)-1.)*n0sfac(i,k)*(precs1*rslope2(i,k,2) & |
---|
1381 | +precs2*work2(i,k)*coeres)/work1(i,k,1) |
---|
1382 | psevp(i,k) = min(max(psevp(i,k),-qrs(i,k,2)/dtcld),0.) |
---|
1383 | endif |
---|
1384 | !------------------------------------------------------------- |
---|
1385 | ! pgevp: Evaporation of melting graupel [HL A25] [RH84 A19] |
---|
1386 | ! (T>=T0: QG->QV) |
---|
1387 | !------------------------------------------------------------- |
---|
1388 | if(qrs(i,k,3).gt.0. .and. rh(i,k,1).lt.1.) then |
---|
1389 | coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3)) |
---|
1390 | pgevp(i,k) = (rh(i,k,1)-1.)*(precg1*rslope2(i,k,3) & |
---|
1391 | + precg2*work2(i,k)*coeres)/work1(i,k,1) |
---|
1392 | pgevp(i,k) = min(max(pgevp(i,k),-qrs(i,k,3)/dtcld),0.) |
---|
1393 | endif |
---|
1394 | endif |
---|
1395 | enddo |
---|
1396 | enddo |
---|
1397 | ! |
---|
1398 | ! |
---|
1399 | !---------------------------------------------------------------- |
---|
1400 | ! check mass conservation of generation terms and feedback to the |
---|
1401 | ! large scale |
---|
1402 | ! |
---|
1403 | do k = kts, kte |
---|
1404 | do i = its, ite |
---|
1405 | ! |
---|
1406 | delta2=0. |
---|
1407 | delta3=0. |
---|
1408 | if(qrs(i,k,1).lt.1.e-4 .and. qrs(i,k,2).lt.1.e-4) delta2=1. |
---|
1409 | if(qrs(i,k,1).lt.1.e-4) delta3=1. |
---|
1410 | if(t(i,k).le.t0c) then |
---|
1411 | ! |
---|
1412 | ! cloud water |
---|
1413 | ! |
---|
1414 | value = max(qmin,qci(i,k,1)) |
---|
1415 | source = (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k))& |
---|
1416 | *dtcld |
---|
1417 | if (source.gt.value) then |
---|
1418 | factor = value/source |
---|
1419 | praut(i,k) = praut(i,k)*factor |
---|
1420 | pracw(i,k) = pracw(i,k)*factor |
---|
1421 | paacw(i,k) = paacw(i,k)*factor |
---|
1422 | endif |
---|
1423 | ! |
---|
1424 | ! cloud ice |
---|
1425 | ! |
---|
1426 | value = max(qmin,qci(i,k,2)) |
---|
1427 | source = (psaut(i,k)-pigen(i,k)-pidep(i,k)+praci(i,k)+psaci(i,k) & |
---|
1428 | +pgaci(i,k))*dtcld |
---|
1429 | if (source.gt.value) then |
---|
1430 | factor = value/source |
---|
1431 | psaut(i,k) = psaut(i,k)*factor |
---|
1432 | pigen(i,k) = pigen(i,k)*factor |
---|
1433 | pidep(i,k) = pidep(i,k)*factor |
---|
1434 | praci(i,k) = praci(i,k)*factor |
---|
1435 | psaci(i,k) = psaci(i,k)*factor |
---|
1436 | pgaci(i,k) = pgaci(i,k)*factor |
---|
1437 | endif |
---|
1438 | ! |
---|
1439 | ! rain |
---|
1440 | ! |
---|
1441 | value = max(qmin,qrs(i,k,1)) |
---|
1442 | source = (-praut(i,k)-prevp(i,k)-pracw(i,k)+piacr(i,k) & |
---|
1443 | +psacr(i,k)+pgacr(i,k))*dtcld |
---|
1444 | if (source.gt.value) then |
---|
1445 | factor = value/source |
---|
1446 | praut(i,k) = praut(i,k)*factor |
---|
1447 | prevp(i,k) = prevp(i,k)*factor |
---|
1448 | pracw(i,k) = pracw(i,k)*factor |
---|
1449 | piacr(i,k) = piacr(i,k)*factor |
---|
1450 | psacr(i,k) = psacr(i,k)*factor |
---|
1451 | pgacr(i,k) = pgacr(i,k)*factor |
---|
1452 | endif |
---|
1453 | ! |
---|
1454 | ! snow |
---|
1455 | ! |
---|
1456 | value = max(qmin,qrs(i,k,2)) |
---|
1457 | source = -(psdep(i,k)+psaut(i,k)-pgaut(i,k)+paacw(i,k) & |
---|
1458 | +piacr(i,k)*delta3+praci(i,k)*delta3 & |
---|
1459 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2 & |
---|
1460 | +psaci(i,k)-pgacs(i,k) )*dtcld |
---|
1461 | if (source.gt.value) then |
---|
1462 | factor = value/source |
---|
1463 | psdep(i,k) = psdep(i,k)*factor |
---|
1464 | psaut(i,k) = psaut(i,k)*factor |
---|
1465 | pgaut(i,k) = pgaut(i,k)*factor |
---|
1466 | paacw(i,k) = paacw(i,k)*factor |
---|
1467 | piacr(i,k) = piacr(i,k)*factor |
---|
1468 | praci(i,k) = praci(i,k)*factor |
---|
1469 | psaci(i,k) = psaci(i,k)*factor |
---|
1470 | pracs(i,k) = pracs(i,k)*factor |
---|
1471 | psacr(i,k) = psacr(i,k)*factor |
---|
1472 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1473 | endif |
---|
1474 | ! |
---|
1475 | ! graupel |
---|
1476 | ! |
---|
1477 | value = max(qmin,qrs(i,k,3)) |
---|
1478 | source = -(pgdep(i,k)+pgaut(i,k) & |
---|
1479 | +piacr(i,k)*(1.-delta3)+praci(i,k)*(1.-delta3) & |
---|
1480 | +psacr(i,k)*(1.-delta2)+pracs(i,k)*(1.-delta2) & |
---|
1481 | +pgaci(i,k)+paacw(i,k)+pgacr(i,k)+pgacs(i,k))*dtcld |
---|
1482 | if (source.gt.value) then |
---|
1483 | factor = value/source |
---|
1484 | pgdep(i,k) = pgdep(i,k)*factor |
---|
1485 | pgaut(i,k) = pgaut(i,k)*factor |
---|
1486 | piacr(i,k) = piacr(i,k)*factor |
---|
1487 | praci(i,k) = praci(i,k)*factor |
---|
1488 | psacr(i,k) = psacr(i,k)*factor |
---|
1489 | pracs(i,k) = pracs(i,k)*factor |
---|
1490 | paacw(i,k) = paacw(i,k)*factor |
---|
1491 | pgaci(i,k) = pgaci(i,k)*factor |
---|
1492 | pgacr(i,k) = pgacr(i,k)*factor |
---|
1493 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1494 | endif |
---|
1495 | ! |
---|
1496 | ! cloud |
---|
1497 | ! |
---|
1498 | value = max(ncmin,ncr(i,k,2)) |
---|
1499 | source = (nraut(i,k)+nccol(i,k)+nracw(i,k) & |
---|
1500 | +naacw(i,k)+naacw(i,k))*dtcld |
---|
1501 | if (source.gt.value) then |
---|
1502 | factor = value/source |
---|
1503 | nraut(i,k) = nraut(i,k)*factor |
---|
1504 | nccol(i,k) = nccol(i,k)*factor |
---|
1505 | nracw(i,k) = nracw(i,k)*factor |
---|
1506 | naacw(i,k) = naacw(i,k)*factor |
---|
1507 | endif |
---|
1508 | ! |
---|
1509 | ! rain |
---|
1510 | ! |
---|
1511 | value = max(nrmin,ncr(i,k,3)) |
---|
1512 | source = (-nraut(i,k)+nrcol(i,k)+niacr(i,k)+nsacr(i,k)+ngacr(i,k) & |
---|
1513 | )*dtcld |
---|
1514 | if (source.gt.value) then |
---|
1515 | factor = value/source |
---|
1516 | nraut(i,k) = nraut(i,k)*factor |
---|
1517 | nrcol(i,k) = nrcol(i,k)*factor |
---|
1518 | niacr(i,k) = niacr(i,k)*factor |
---|
1519 | nsacr(i,k) = nsacr(i,k)*factor |
---|
1520 | ngacr(i,k) = ngacr(i,k)*factor |
---|
1521 | endif |
---|
1522 | ! |
---|
1523 | work2(i,k)=-(prevp(i,k)+psdep(i,k)+pgdep(i,k)+pigen(i,k)+pidep(i,k)) |
---|
1524 | ! update |
---|
1525 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
1526 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1527 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
---|
1528 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1529 | +prevp(i,k)-piacr(i,k)-pgacr(i,k) & |
---|
1530 | -psacr(i,k))*dtcld,0.) |
---|
1531 | qci(i,k,2) = max(qci(i,k,2)-(psaut(i,k)+praci(i,k) & |
---|
1532 | +psaci(i,k)+pgaci(i,k)-pigen(i,k)-pidep(i,k)) & |
---|
1533 | *dtcld,0.) |
---|
1534 | qrs(i,k,2) = max(qrs(i,k,2)+(psdep(i,k)+psaut(i,k)+paacw(i,k) & |
---|
1535 | -pgaut(i,k)+piacr(i,k)*delta3 & |
---|
1536 | +praci(i,k)*delta3+psaci(i,k)-pgacs(i,k) & |
---|
1537 | -pracs(i,k)*(1.-delta2)+psacr(i,k)*delta2) & |
---|
1538 | *dtcld,0.) |
---|
1539 | qrs(i,k,3) = max(qrs(i,k,3)+(pgdep(i,k)+pgaut(i,k) & |
---|
1540 | +piacr(i,k)*(1.-delta3) & |
---|
1541 | +praci(i,k)*(1.-delta3)+psacr(i,k)*(1.-delta2) & |
---|
1542 | +pracs(i,k)*(1.-delta2)+pgaci(i,k)+paacw(i,k) & |
---|
1543 | +pgacr(i,k)+pgacs(i,k))*dtcld,0.) |
---|
1544 | ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & |
---|
1545 | -naacw(i,k)-naacw(i,k))*dtcld,0.) |
---|
1546 | ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)-niacr(i,k) & |
---|
1547 | -nsacr(i,k)-ngacr(i,k))*dtcld,0.) |
---|
1548 | xlf = xls-xl(i,k) |
---|
1549 | xlwork2 = -xls*(psdep(i,k)+pgdep(i,k)+pidep(i,k)+pigen(i,k)) & |
---|
1550 | -xl(i,k)*prevp(i,k)-xlf*(piacr(i,k)+paacw(i,k) & |
---|
1551 | +paacw(i,k)+pgacr(i,k)+psacr(i,k)) |
---|
1552 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
1553 | else |
---|
1554 | ! |
---|
1555 | ! cloud water |
---|
1556 | ! |
---|
1557 | value = max(qmin,qci(i,k,1)) |
---|
1558 | source= (praut(i,k)+pracw(i,k)+paacw(i,k)+paacw(i,k)) & |
---|
1559 | *dtcld |
---|
1560 | if (source.gt.value) then |
---|
1561 | factor = value/source |
---|
1562 | praut(i,k) = praut(i,k)*factor |
---|
1563 | pracw(i,k) = pracw(i,k)*factor |
---|
1564 | paacw(i,k) = paacw(i,k)*factor |
---|
1565 | endif |
---|
1566 | ! |
---|
1567 | ! rain |
---|
1568 | ! |
---|
1569 | value = max(qmin,qrs(i,k,1)) |
---|
1570 | source = (-paacw(i,k)-praut(i,k)+pseml(i,k)+pgeml(i,k) & |
---|
1571 | -pracw(i,k)-paacw(i,k)-prevp(i,k))*dtcld |
---|
1572 | if (source.gt.value) then |
---|
1573 | factor = value/source |
---|
1574 | praut(i,k) = praut(i,k)*factor |
---|
1575 | prevp(i,k) = prevp(i,k)*factor |
---|
1576 | pracw(i,k) = pracw(i,k)*factor |
---|
1577 | paacw(i,k) = paacw(i,k)*factor |
---|
1578 | pseml(i,k) = pseml(i,k)*factor |
---|
1579 | pgeml(i,k) = pgeml(i,k)*factor |
---|
1580 | endif |
---|
1581 | ! |
---|
1582 | ! snow |
---|
1583 | ! |
---|
1584 | value = max(qcrmin,qrs(i,k,2)) |
---|
1585 | source=(pgacs(i,k)-pseml(i,k)-psevp(i,k))*dtcld |
---|
1586 | if (source.gt.value) then |
---|
1587 | factor = value/source |
---|
1588 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1589 | psevp(i,k) = psevp(i,k)*factor |
---|
1590 | pseml(i,k) = pseml(i,k)*factor |
---|
1591 | endif |
---|
1592 | ! |
---|
1593 | ! graupel |
---|
1594 | ! |
---|
1595 | value = max(qcrmin,qrs(i,k,3)) |
---|
1596 | source=-(pgacs(i,k)+pgevp(i,k)+pgeml(i,k))*dtcld |
---|
1597 | if (source.gt.value) then |
---|
1598 | factor = value/source |
---|
1599 | pgacs(i,k) = pgacs(i,k)*factor |
---|
1600 | pgevp(i,k) = pgevp(i,k)*factor |
---|
1601 | pgeml(i,k) = pgeml(i,k)*factor |
---|
1602 | endif |
---|
1603 | ! |
---|
1604 | ! cloud |
---|
1605 | ! |
---|
1606 | value = max(ncmin,ncr(i,k,2)) |
---|
1607 | source = (+nraut(i,k)+nccol(i,k)+nracw(i,k)+naacw(i,k) & |
---|
1608 | +naacw(i,k))*dtcld |
---|
1609 | if (source.gt.value) then |
---|
1610 | factor = value/source |
---|
1611 | nraut(i,k) = nraut(i,k)*factor |
---|
1612 | nccol(i,k) = nccol(i,k)*factor |
---|
1613 | nracw(i,k) = nracw(i,k)*factor |
---|
1614 | naacw(i,k) = naacw(i,k)*factor |
---|
1615 | endif |
---|
1616 | ! |
---|
1617 | ! rain |
---|
1618 | ! |
---|
1619 | value = max(nrmin,ncr(i,k,3)) |
---|
1620 | source = (-nraut(i,k)+nrcol(i,k)-nseml(i,k)-ngeml(i,k) & |
---|
1621 | )*dtcld |
---|
1622 | if (source.gt.value) then |
---|
1623 | factor = value/source |
---|
1624 | nraut(i,k) = nraut(i,k)*factor |
---|
1625 | nrcol(i,k) = nrcol(i,k)*factor |
---|
1626 | nseml(i,k) = nseml(i,k)*factor |
---|
1627 | ngeml(i,k) = ngeml(i,k)*factor |
---|
1628 | endif |
---|
1629 | ! |
---|
1630 | work2(i,k)=-(prevp(i,k)+psevp(i,k)+pgevp(i,k)) |
---|
1631 | ! update |
---|
1632 | q(i,k) = q(i,k)+work2(i,k)*dtcld |
---|
1633 | qci(i,k,1) = max(qci(i,k,1)-(praut(i,k)+pracw(i,k) & |
---|
1634 | +paacw(i,k)+paacw(i,k))*dtcld,0.) |
---|
1635 | qrs(i,k,1) = max(qrs(i,k,1)+(praut(i,k)+pracw(i,k) & |
---|
1636 | +prevp(i,k)+paacw(i,k)+paacw(i,k)-pseml(i,k) & |
---|
1637 | -pgeml(i,k))*dtcld,0.) |
---|
1638 | qrs(i,k,2) = max(qrs(i,k,2)+(psevp(i,k)-pgacs(i,k) & |
---|
1639 | +pseml(i,k))*dtcld,0.) |
---|
1640 | qrs(i,k,3) = max(qrs(i,k,3)+(pgacs(i,k)+pgevp(i,k) & |
---|
1641 | +pgeml(i,k))*dtcld,0.) |
---|
1642 | ncr(i,k,2) = max(ncr(i,k,2)+(-nraut(i,k)-nccol(i,k)-nracw(i,k) & |
---|
1643 | -naacw(i,k)-naacw(i,k))*dtcld,0.) |
---|
1644 | ncr(i,k,3) = max(ncr(i,k,3)+(nraut(i,k)-nrcol(i,k)+nseml(i,k) & |
---|
1645 | +ngeml(i,k))*dtcld,0.) |
---|
1646 | xlf = xls-xl(i,k) |
---|
1647 | xlwork2 = -xl(i,k)*(prevp(i,k)+psevp(i,k)+pgevp(i,k)) & |
---|
1648 | -xlf*(pseml(i,k)+pgeml(i,k)) |
---|
1649 | t(i,k) = t(i,k)-xlwork2/cpm(i,k)*dtcld |
---|
1650 | endif |
---|
1651 | enddo |
---|
1652 | enddo |
---|
1653 | ! |
---|
1654 | ! Inline expansion for fpvs |
---|
1655 | ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1656 | ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c) |
---|
1657 | hsub = xls |
---|
1658 | hvap = xlv0 |
---|
1659 | cvap = cpv |
---|
1660 | ttp=t0c+0.01 |
---|
1661 | dldt=cvap-cliq |
---|
1662 | xa=-dldt/rv |
---|
1663 | xb=xa+hvap/(rv*ttp) |
---|
1664 | dldti=cvap-cice |
---|
1665 | xai=-dldti/rv |
---|
1666 | xbi=xai+hsub/(rv*ttp) |
---|
1667 | do k = kts, kte |
---|
1668 | do i = its, ite |
---|
1669 | tr=ttp/t(i,k) |
---|
1670 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1671 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
---|
1672 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
1673 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1674 | tr=ttp/t(i,k) |
---|
1675 | if(t(i,k).lt.ttp) then |
---|
1676 | qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr)) |
---|
1677 | else |
---|
1678 | qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1679 | endif |
---|
1680 | qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k)) |
---|
1681 | qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2)) |
---|
1682 | qs(i,k,2) = max(qs(i,k,2),qmin) |
---|
1683 | rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin) |
---|
1684 | enddo |
---|
1685 | enddo |
---|
1686 | ! |
---|
1687 | call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, & |
---|
1688 | rslope3,work1,workn,its,ite,kts,kte) |
---|
1689 | do k = kts, kte |
---|
1690 | do i = its, ite |
---|
1691 | !----------------------------------------------------------------- |
---|
1692 | ! re-compute the mean-volume drop diameter [LH A10] |
---|
1693 | ! for raindrop distribution |
---|
1694 | !----------------------------------------------------------------- |
---|
1695 | avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333)) |
---|
1696 | !---------------------------------------------------------------- |
---|
1697 | ! Nrevp_s: evaporation/condensation rate of rain [LH A14] |
---|
1698 | ! (NR->NC) |
---|
1699 | !---------------------------------------------------------------- |
---|
1700 | if(avedia(i,k,2).le.di82) then |
---|
1701 | ncr(i,k,2) = ncr(i,k,2)+ncr(i,k,3) |
---|
1702 | ncr(i,k,3) = 0. |
---|
1703 | !---------------------------------------------------------------- |
---|
1704 | ! Prevp_s: evaporation/condensation rate of rain [LH A15] [KK 23] |
---|
1705 | ! (QR->QC) |
---|
1706 | !---------------------------------------------------------------- |
---|
1707 | qci(i,k,1) = qci(i,k,1)+qrs(i,k,1) |
---|
1708 | qrs(i,k,1) = 0. |
---|
1709 | endif |
---|
1710 | enddo |
---|
1711 | enddo |
---|
1712 | ! |
---|
1713 | do k = kts, kte |
---|
1714 | do i = its, ite |
---|
1715 | !--------------------------------------------------------------- |
---|
1716 | ! rate of change of cloud drop concentration due to CCN activation |
---|
1717 | ! pcact: QV -> QC [LH 8] [KK 14] |
---|
1718 | ! ncact: NCCN -> NC [LH A2] [KK 12] |
---|
1719 | !--------------------------------------------------------------- |
---|
1720 | if(rh(i,k,1).gt.1.) then |
---|
1721 | ncact(i,k) = max(0.,((ncr(i,k,1)+ncr(i,k,2)) & |
---|
1722 | *min(1.,(rh(i,k,1)/satmax)**actk) - ncr(i,k,2)))/dtcld |
---|
1723 | ncact(i,k) =min(ncact(i,k),max(ncr(i,k,1),0.)/dtcld) |
---|
1724 | pcact(i,k) = min(4.*pi*denr*(actr*1.E-6)**3*ncact(i,k)/ & |
---|
1725 | (3.*den(i,k)),max(q(i,k),0.)/dtcld) |
---|
1726 | q(i,k) = max(q(i,k)-pcact(i,k)*dtcld,0.) |
---|
1727 | qci(i,k,1) = max(qci(i,k,1)+pcact(i,k)*dtcld,0.) |
---|
1728 | ncr(i,k,1) = max(ncr(i,k,1)-ncact(i,k)*dtcld,0.) |
---|
1729 | ncr(i,k,2) = max(ncr(i,k,2)+ncact(i,k)*dtcld,0.) |
---|
1730 | t(i,k) = t(i,k)+pcact(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1731 | endif |
---|
1732 | !--------------------------------------------------------------- |
---|
1733 | ! pcond:condensational/evaporational rate of cloud water [HL A46] [RH83 A6] |
---|
1734 | ! if there exists additional water vapor condensated/if |
---|
1735 | ! evaporation of cloud water is not enough to remove subsaturation |
---|
1736 | ! (QV->QC or QC->QV) |
---|
1737 | !--------------------------------------------------------------- |
---|
1738 | tr=ttp/t(i,k) |
---|
1739 | qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr)) |
---|
1740 | qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k)) |
---|
1741 | qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1)) |
---|
1742 | qs(i,k,1) = max(qs(i,k,1),qmin) |
---|
1743 | work1(i,k,1) = conden(t(i,k),q(i,k),qs(i,k,1),xl(i,k),cpm(i,k)) |
---|
1744 | work2(i,k) = qci(i,k,1)+work1(i,k,1) |
---|
1745 | pcond(i,k) = min(max(work1(i,k,1)/dtcld,0.),max(q(i,k),0.)/dtcld) |
---|
1746 | if(qci(i,k,1).gt.0. .and. work1(i,k,1).lt.0.) & |
---|
1747 | pcond(i,k) = max(work1(i,k,1),-qci(i,k,1))/dtcld |
---|
1748 | !---------------------------------------------------------------- |
---|
1749 | ! ncevp: evpration of Cloud number concentration [LH A3] |
---|
1750 | ! (NC->NCCN) |
---|
1751 | !---------------------------------------------------------------- |
---|
1752 | if(pcond(i,k).eq.-qci(i,k,1)/dtcld) then |
---|
1753 | ncr(i,k,2) = 0. |
---|
1754 | ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,2) |
---|
1755 | endif |
---|
1756 | ! |
---|
1757 | q(i,k) = q(i,k)-pcond(i,k)*dtcld |
---|
1758 | qci(i,k,1) = max(qci(i,k,1)+pcond(i,k)*dtcld,0.) |
---|
1759 | t(i,k) = t(i,k)+pcond(i,k)*xl(i,k)/cpm(i,k)*dtcld |
---|
1760 | enddo |
---|
1761 | enddo |
---|
1762 | ! |
---|
1763 | !---------------------------------------------------------------- |
---|
1764 | ! padding for small values |
---|
1765 | ! |
---|
1766 | do k = kts, kte |
---|
1767 | do i = its, ite |
---|
1768 | if(qci(i,k,1).le.qmin) qci(i,k,1) = 0.0 |
---|
1769 | if(qci(i,k,2).le.qmin) qci(i,k,2) = 0.0 |
---|
1770 | enddo |
---|
1771 | enddo |
---|
1772 | enddo ! big loops |
---|
1773 | END SUBROUTINE wdm62d |
---|
1774 | ! ................................................................... |
---|
1775 | REAL FUNCTION rgmma(x) |
---|
1776 | !------------------------------------------------------------------- |
---|
1777 | IMPLICIT NONE |
---|
1778 | !------------------------------------------------------------------- |
---|
1779 | ! rgmma function: use infinite product form |
---|
1780 | REAL :: euler |
---|
1781 | PARAMETER (euler=0.577215664901532) |
---|
1782 | REAL :: x, y |
---|
1783 | INTEGER :: i |
---|
1784 | if(x.eq.1.)then |
---|
1785 | rgmma=0. |
---|
1786 | else |
---|
1787 | rgmma=x*exp(euler*x) |
---|
1788 | do i=1,10000 |
---|
1789 | y=float(i) |
---|
1790 | rgmma=rgmma*(1.000+x/y)*exp(-x/y) |
---|
1791 | enddo |
---|
1792 | rgmma=1./rgmma |
---|
1793 | endif |
---|
1794 | END FUNCTION rgmma |
---|
1795 | ! |
---|
1796 | !-------------------------------------------------------------------------- |
---|
1797 | REAL FUNCTION fpvs(t,ice,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c) |
---|
1798 | !-------------------------------------------------------------------------- |
---|
1799 | IMPLICIT NONE |
---|
1800 | !-------------------------------------------------------------------------- |
---|
1801 | REAL t,rd,rv,cvap,cliq,cice,hvap,hsub,psat,t0c,dldt,xa,xb,dldti, & |
---|
1802 | xai,xbi,ttp,tr |
---|
1803 | INTEGER ice |
---|
1804 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1805 | ttp=t0c+0.01 |
---|
1806 | dldt=cvap-cliq |
---|
1807 | xa=-dldt/rv |
---|
1808 | xb=xa+hvap/(rv*ttp) |
---|
1809 | dldti=cvap-cice |
---|
1810 | xai=-dldti/rv |
---|
1811 | xbi=xai+hsub/(rv*ttp) |
---|
1812 | tr=ttp/t |
---|
1813 | if(t.lt.ttp .and. ice.eq.1) then |
---|
1814 | fpvs=psat*(tr**xai)*exp(xbi*(1.-tr)) |
---|
1815 | else |
---|
1816 | fpvs=psat*(tr**xa)*exp(xb*(1.-tr)) |
---|
1817 | endif |
---|
1818 | ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
1819 | END FUNCTION fpvs |
---|
1820 | !------------------------------------------------------------------- |
---|
1821 | SUBROUTINE wdm6init(den0,denr,dens,cl,cpv, ccn0, allowed_to_read) |
---|
1822 | !------------------------------------------------------------------- |
---|
1823 | IMPLICIT NONE |
---|
1824 | !------------------------------------------------------------------- |
---|
1825 | !.... constants which may not be tunable |
---|
1826 | REAL, INTENT(IN) :: den0,denr,dens,cl,cpv,ccn0 |
---|
1827 | LOGICAL, INTENT(IN) :: allowed_to_read |
---|
1828 | ! |
---|
1829 | pi = 4.*atan(1.) |
---|
1830 | xlv1 = cl-cpv |
---|
1831 | ! |
---|
1832 | qc0 = 4./3.*pi*denr*r0**3*xncr/den0 ! 0.419e-3 -- .61e-3 |
---|
1833 | qck1 = .104*9.8*peaut/(xncr*denr)**(1./3.)/xmyu*den0**(4./3.) ! 7.03 |
---|
1834 | pidnc = pi*denr/6. |
---|
1835 | ! |
---|
1836 | bvtr1 = 1.+bvtr |
---|
1837 | bvtr2 = 2.+bvtr |
---|
1838 | bvtr3 = 3.+bvtr |
---|
1839 | bvtr4 = 4.+bvtr |
---|
1840 | bvtr5 = 5.+bvtr |
---|
1841 | bvtr6 = 6.+bvtr |
---|
1842 | bvtr7 = 7.+bvtr |
---|
1843 | bvtr2o5 = 2.5+.5*bvtr |
---|
1844 | bvtr3o5 = 3.5+.5*bvtr |
---|
1845 | g1pbr = rgmma(bvtr1) |
---|
1846 | g2pbr = rgmma(bvtr2) |
---|
1847 | g3pbr = rgmma(bvtr3) |
---|
1848 | g4pbr = rgmma(bvtr4) ! 17.837825 |
---|
1849 | g5pbr = rgmma(bvtr5) |
---|
1850 | g6pbr = rgmma(bvtr6) |
---|
1851 | g7pbr = rgmma(bvtr7) |
---|
1852 | g5pbro2 = rgmma(bvtr2o5) |
---|
1853 | g7pbro2 = rgmma(bvtr3o5) |
---|
1854 | pvtr = avtr*g5pbr/24. |
---|
1855 | pvtrn = avtr*g2pbr |
---|
1856 | eacrr = 1.0 |
---|
1857 | pacrr = pi*n0r*avtr*g3pbr*.25*eacrr |
---|
1858 | precr1 = 2.*pi*1.56 |
---|
1859 | precr2 = 2.*pi*.31*avtr**.5*g7pbro2 |
---|
1860 | pidn0r = pi*denr*n0r |
---|
1861 | pidnr = 4.*pi*denr |
---|
1862 | ! |
---|
1863 | xmmax = (dimax/dicon)**2 |
---|
1864 | roqimax = 2.08e22*dimax**8 |
---|
1865 | ! |
---|
1866 | bvts1 = 1.+bvts |
---|
1867 | bvts2 = 2.5+.5*bvts |
---|
1868 | bvts3 = 3.+bvts |
---|
1869 | bvts4 = 4.+bvts |
---|
1870 | g1pbs = rgmma(bvts1) !.8875 |
---|
1871 | g3pbs = rgmma(bvts3) |
---|
1872 | g4pbs = rgmma(bvts4) ! 12.0786 |
---|
1873 | g5pbso2 = rgmma(bvts2) |
---|
1874 | pvts = avts*g4pbs/6. |
---|
1875 | pacrs = pi*n0s*avts*g3pbs*.25 |
---|
1876 | precs1 = 4.*n0s*.65 |
---|
1877 | precs2 = 4.*n0s*.44*avts**.5*g5pbso2 |
---|
1878 | pidn0s = pi*dens*n0s |
---|
1879 | ! |
---|
1880 | pacrc = pi*n0s*avts*g3pbs*.25*eacrc |
---|
1881 | ! |
---|
1882 | bvtg1 = 1.+bvtg |
---|
1883 | bvtg2 = 2.5+.5*bvtg |
---|
1884 | bvtg3 = 3.+bvtg |
---|
1885 | bvtg4 = 4.+bvtg |
---|
1886 | g1pbg = rgmma(bvtg1) |
---|
1887 | g3pbg = rgmma(bvtg3) |
---|
1888 | g4pbg = rgmma(bvtg4) |
---|
1889 | g5pbgo2 = rgmma(bvtg2) |
---|
1890 | pacrg = pi*n0g*avtg*g3pbg*.25 |
---|
1891 | pvtg = avtg*g4pbg/6. |
---|
1892 | precg1 = 2.*pi*n0g*.78 |
---|
1893 | precg2 = 2.*pi*n0g*.31*avtg**.5*g5pbgo2 |
---|
1894 | pidn0g = pi*deng*n0g |
---|
1895 | ! |
---|
1896 | rslopecmax = 1./lamdacmax |
---|
1897 | rslopermax = 1./lamdarmax |
---|
1898 | rslopesmax = 1./lamdasmax |
---|
1899 | rslopegmax = 1./lamdagmax |
---|
1900 | rsloperbmax = rslopermax ** bvtr |
---|
1901 | rslopesbmax = rslopesmax ** bvts |
---|
1902 | rslopegbmax = rslopegmax ** bvtg |
---|
1903 | rslopec2max = rslopecmax * rslopecmax |
---|
1904 | rsloper2max = rslopermax * rslopermax |
---|
1905 | rslopes2max = rslopesmax * rslopesmax |
---|
1906 | rslopeg2max = rslopegmax * rslopegmax |
---|
1907 | rslopec3max = rslopec2max * rslopecmax |
---|
1908 | rsloper3max = rsloper2max * rslopermax |
---|
1909 | rslopes3max = rslopes2max * rslopesmax |
---|
1910 | rslopeg3max = rslopeg2max * rslopegmax |
---|
1911 | ! |
---|
1912 | END SUBROUTINE wdm6init |
---|
1913 | !------------------------------------------------------------------------------ |
---|
1914 | subroutine slope_wdm6(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
1915 | vt,vtn,its,ite,kts,kte) |
---|
1916 | IMPLICIT NONE |
---|
1917 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
1918 | REAL, DIMENSION( its:ite , kts:kte,3) :: & |
---|
1919 | qrs, & |
---|
1920 | rslope, & |
---|
1921 | rslopeb, & |
---|
1922 | rslope2, & |
---|
1923 | rslope3, & |
---|
1924 | vt |
---|
1925 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
1926 | ncr, & |
---|
1927 | vtn, & |
---|
1928 | den, & |
---|
1929 | denfac, & |
---|
1930 | t |
---|
1931 | REAL, PARAMETER :: t0c = 273.15 |
---|
1932 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
1933 | n0sfac |
---|
1934 | REAL :: lamdar, lamdas, lamdag, x, y, z, supcol |
---|
1935 | integer :: i, j, k |
---|
1936 | !---------------------------------------------------------------- |
---|
1937 | ! size distributions: (x=mixing ratio, y=air density): |
---|
1938 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
1939 | ! |
---|
1940 | ! Optimizatin : A**B => exp(log(A)*(B)) |
---|
1941 | lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) |
---|
1942 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
1943 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
---|
1944 | ! |
---|
1945 | do k = kts, kte |
---|
1946 | do i = its, ite |
---|
1947 | supcol = t0c-t(i,k) |
---|
1948 | !--------------------------------------------------------------- |
---|
1949 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
1950 | !--------------------------------------------------------------- |
---|
1951 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
1952 | if(qrs(i,k,1).le.qcrmin .or. ncr(i,k).le.nrmin ) then |
---|
1953 | rslope(i,k,1) = rslopermax |
---|
1954 | rslopeb(i,k,1) = rsloperbmax |
---|
1955 | rslope2(i,k,1) = rsloper2max |
---|
1956 | rslope3(i,k,1) = rsloper3max |
---|
1957 | else |
---|
1958 | rslope(i,k,1) = min(1./lamdar(qrs(i,k,1),den(i,k),ncr(i,k)),1.e-3) |
---|
1959 | rslopeb(i,k,1) = rslope(i,k,1)**bvtr |
---|
1960 | rslope2(i,k,1) = rslope(i,k,1)*rslope(i,k,1) |
---|
1961 | rslope3(i,k,1) = rslope2(i,k,1)*rslope(i,k,1) |
---|
1962 | endif |
---|
1963 | if(qrs(i,k,2).le.qcrmin) then |
---|
1964 | rslope(i,k,2) = rslopesmax |
---|
1965 | rslopeb(i,k,2) = rslopesbmax |
---|
1966 | rslope2(i,k,2) = rslopes2max |
---|
1967 | rslope3(i,k,2) = rslopes3max |
---|
1968 | else |
---|
1969 | rslope(i,k,2) = 1./lamdas(qrs(i,k,2),den(i,k),n0sfac(i,k)) |
---|
1970 | rslopeb(i,k,2) = rslope(i,k,2)**bvts |
---|
1971 | rslope2(i,k,2) = rslope(i,k,2)*rslope(i,k,2) |
---|
1972 | rslope3(i,k,2) = rslope2(i,k,2)*rslope(i,k,2) |
---|
1973 | endif |
---|
1974 | if(qrs(i,k,3).le.qcrmin) then |
---|
1975 | rslope(i,k,3) = rslopegmax |
---|
1976 | rslopeb(i,k,3) = rslopegbmax |
---|
1977 | rslope2(i,k,3) = rslopeg2max |
---|
1978 | rslope3(i,k,3) = rslopeg3max |
---|
1979 | else |
---|
1980 | rslope(i,k,3) = 1./lamdag(qrs(i,k,3),den(i,k)) |
---|
1981 | rslopeb(i,k,3) = rslope(i,k,3)**bvtg |
---|
1982 | rslope2(i,k,3) = rslope(i,k,3)*rslope(i,k,3) |
---|
1983 | rslope3(i,k,3) = rslope2(i,k,3)*rslope(i,k,3) |
---|
1984 | endif |
---|
1985 | vt(i,k,1) = pvtr*rslopeb(i,k,1)*denfac(i,k) |
---|
1986 | vt(i,k,2) = pvts*rslopeb(i,k,2)*denfac(i,k) |
---|
1987 | vt(i,k,3) = pvtg*rslopeb(i,k,3)*denfac(i,k) |
---|
1988 | vtn(i,k) = pvtrn*rslopeb(i,k,1)*denfac(i,k) |
---|
1989 | if(qrs(i,k,1).le.0.0) vt(i,k,1) = 0.0 |
---|
1990 | if(qrs(i,k,2).le.0.0) vt(i,k,2) = 0.0 |
---|
1991 | if(qrs(i,k,3).le.0.0) vt(i,k,3) = 0.0 |
---|
1992 | if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 |
---|
1993 | enddo |
---|
1994 | enddo |
---|
1995 | END subroutine slope_wdm6 |
---|
1996 | !----------------------------------------------------------------------------- |
---|
1997 | subroutine slope_rain(qrs,ncr,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
1998 | vt,vtn,its,ite,kts,kte) |
---|
1999 | IMPLICIT NONE |
---|
2000 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
2001 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
2002 | qrs, & |
---|
2003 | ncr, & |
---|
2004 | rslope, & |
---|
2005 | rslopeb, & |
---|
2006 | rslope2, & |
---|
2007 | rslope3, & |
---|
2008 | vt, & |
---|
2009 | vtn, & |
---|
2010 | den, & |
---|
2011 | denfac, & |
---|
2012 | t |
---|
2013 | REAL, PARAMETER :: t0c = 273.15 |
---|
2014 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
2015 | n0sfac |
---|
2016 | REAL :: lamdar, x, y, z, supcol |
---|
2017 | integer :: i, j, k |
---|
2018 | !---------------------------------------------------------------- |
---|
2019 | ! size distributions: (x=mixing ratio, y=air density): |
---|
2020 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
2021 | lamdar(x,y,z)= exp(log(((pidnr*z)/(x*y)))*((.33333333))) |
---|
2022 | ! |
---|
2023 | do k = kts, kte |
---|
2024 | do i = its, ite |
---|
2025 | if(qrs(i,k).le.qcrmin .or. ncr(i,k).le.nrmin) then |
---|
2026 | rslope(i,k) = rslopermax |
---|
2027 | rslopeb(i,k) = rsloperbmax |
---|
2028 | rslope2(i,k) = rsloper2max |
---|
2029 | rslope3(i,k) = rsloper3max |
---|
2030 | else |
---|
2031 | rslope(i,k) = min(1./lamdar(qrs(i,k),den(i,k),ncr(i,k)),1.e-3) |
---|
2032 | rslopeb(i,k) = rslope(i,k)**bvtr |
---|
2033 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
2034 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
2035 | endif |
---|
2036 | vt(i,k) = pvtr*rslopeb(i,k)*denfac(i,k) |
---|
2037 | vtn(i,k) = pvtrn*rslopeb(i,k)*denfac(i,k) |
---|
2038 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
2039 | if(ncr(i,k).le.0.0) vtn(i,k) = 0.0 |
---|
2040 | enddo |
---|
2041 | enddo |
---|
2042 | END subroutine slope_rain |
---|
2043 | !------------------------------------------------------------------------------ |
---|
2044 | subroutine slope_snow(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
2045 | vt,its,ite,kts,kte) |
---|
2046 | IMPLICIT NONE |
---|
2047 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
2048 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
2049 | qrs, & |
---|
2050 | rslope, & |
---|
2051 | rslopeb, & |
---|
2052 | rslope2, & |
---|
2053 | rslope3, & |
---|
2054 | vt, & |
---|
2055 | den, & |
---|
2056 | denfac, & |
---|
2057 | t |
---|
2058 | REAL, PARAMETER :: t0c = 273.15 |
---|
2059 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
2060 | n0sfac |
---|
2061 | REAL :: lamdas, x, y, z, supcol |
---|
2062 | integer :: i, j, k |
---|
2063 | !---------------------------------------------------------------- |
---|
2064 | ! size distributions: (x=mixing ratio, y=air density): |
---|
2065 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
2066 | lamdas(x,y,z)= sqrt(sqrt(pidn0s*z/(x*y))) ! (pidn0s*z/(x*y))**.25 |
---|
2067 | ! |
---|
2068 | do k = kts, kte |
---|
2069 | do i = its, ite |
---|
2070 | supcol = t0c-t(i,k) |
---|
2071 | !--------------------------------------------------------------- |
---|
2072 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
2073 | !--------------------------------------------------------------- |
---|
2074 | n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.) |
---|
2075 | if(qrs(i,k).le.qcrmin)then |
---|
2076 | rslope(i,k) = rslopesmax |
---|
2077 | rslopeb(i,k) = rslopesbmax |
---|
2078 | rslope2(i,k) = rslopes2max |
---|
2079 | rslope3(i,k) = rslopes3max |
---|
2080 | else |
---|
2081 | rslope(i,k) = 1./lamdas(qrs(i,k),den(i,k),n0sfac(i,k)) |
---|
2082 | rslopeb(i,k) = rslope(i,k)**bvts |
---|
2083 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
2084 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
2085 | endif |
---|
2086 | vt(i,k) = pvts*rslopeb(i,k)*denfac(i,k) |
---|
2087 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
2088 | enddo |
---|
2089 | enddo |
---|
2090 | END subroutine slope_snow |
---|
2091 | !---------------------------------------------------------------------------------- |
---|
2092 | subroutine slope_graup(qrs,den,denfac,t,rslope,rslopeb,rslope2,rslope3, & |
---|
2093 | vt,its,ite,kts,kte) |
---|
2094 | IMPLICIT NONE |
---|
2095 | INTEGER :: its,ite, jts,jte, kts,kte |
---|
2096 | REAL, DIMENSION( its:ite , kts:kte) :: & |
---|
2097 | qrs, & |
---|
2098 | rslope, & |
---|
2099 | rslopeb, & |
---|
2100 | rslope2, & |
---|
2101 | rslope3, & |
---|
2102 | vt, & |
---|
2103 | den, & |
---|
2104 | denfac, & |
---|
2105 | t |
---|
2106 | REAL, PARAMETER :: t0c = 273.15 |
---|
2107 | REAL, DIMENSION( its:ite , kts:kte ) :: & |
---|
2108 | n0sfac |
---|
2109 | REAL :: lamdag, x, y, z, supcol |
---|
2110 | integer :: i, j, k |
---|
2111 | !---------------------------------------------------------------- |
---|
2112 | ! size distributions: (x=mixing ratio, y=air density): |
---|
2113 | ! valid for mixing ratio > 1.e-9 kg/kg. |
---|
2114 | lamdag(x,y)= sqrt(sqrt(pidn0g/(x*y))) ! (pidn0g/(x*y))**.25 |
---|
2115 | ! |
---|
2116 | do k = kts, kte |
---|
2117 | do i = its, ite |
---|
2118 | !--------------------------------------------------------------- |
---|
2119 | ! n0s: Intercept parameter for snow [m-4] [HDC 6] |
---|
2120 | !--------------------------------------------------------------- |
---|
2121 | if(qrs(i,k).le.qcrmin)then |
---|
2122 | rslope(i,k) = rslopegmax |
---|
2123 | rslopeb(i,k) = rslopegbmax |
---|
2124 | rslope2(i,k) = rslopeg2max |
---|
2125 | rslope3(i,k) = rslopeg3max |
---|
2126 | else |
---|
2127 | rslope(i,k) = 1./lamdag(qrs(i,k),den(i,k)) |
---|
2128 | rslopeb(i,k) = rslope(i,k)**bvtg |
---|
2129 | rslope2(i,k) = rslope(i,k)*rslope(i,k) |
---|
2130 | rslope3(i,k) = rslope2(i,k)*rslope(i,k) |
---|
2131 | endif |
---|
2132 | vt(i,k) = pvtg*rslopeb(i,k)*denfac(i,k) |
---|
2133 | if(qrs(i,k).le.0.0) vt(i,k) = 0.0 |
---|
2134 | enddo |
---|
2135 | enddo |
---|
2136 | END subroutine slope_graup |
---|
2137 | !--------------------------------------------------------------------------------- |
---|
2138 | !------------------------------------------------------------------- |
---|
2139 | SUBROUTINE nislfv_rain_plmr(im,km,denl,denfacl,tkl,dzl,wwl,rql,rnl,precip,dt,id,iter,rid) |
---|
2140 | !------------------------------------------------------------------- |
---|
2141 | ! |
---|
2142 | ! for non-iteration semi-Lagrangain forward advection for cloud |
---|
2143 | ! with mass conservation and positive definite advection |
---|
2144 | ! 2nd order interpolation with monotonic piecewise linear method |
---|
2145 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
---|
2146 | ! |
---|
2147 | ! dzl depth of model layer in meter |
---|
2148 | ! wwl terminal velocity at model layer m/s |
---|
2149 | ! rql cloud density*mixing ration |
---|
2150 | ! precip precipitation |
---|
2151 | ! dt time step |
---|
2152 | ! id kind of precip: 0 test case; 1 raindrop |
---|
2153 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
---|
2154 | ! 0 : use departure wind for advection |
---|
2155 | ! 1 : use mean wind for advection |
---|
2156 | ! > 1 : use mean wind after iter-1 iterations |
---|
2157 | ! rid : 1 for number 0 for mixing ratio |
---|
2158 | ! |
---|
2159 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
---|
2160 | ! implemented by song-you hong |
---|
2161 | ! |
---|
2162 | implicit none |
---|
2163 | integer im,km,id |
---|
2164 | real dt |
---|
2165 | real dzl(im,km),wwl(im,km),rql(im,km),rnl(im,km),precip(im) |
---|
2166 | real denl(im,km),denfacl(im,km),tkl(im,km) |
---|
2167 | ! |
---|
2168 | integer i,k,n,m,kk,kb,kt,iter,rid |
---|
2169 | real tl,tl2,qql,dql,qqd |
---|
2170 | real th,th2,qqh,dqh |
---|
2171 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
---|
2172 | real allold, allnew, zz, dzamin, cflmax, decfl |
---|
2173 | real dz(km), ww(km), qq(km), nr(km), wd(km), wa(km), wa2(km), was(km) |
---|
2174 | real den(km), denfac(km), tk(km) |
---|
2175 | real wi(km+1), zi(km+1), za(km+1) |
---|
2176 | real qn(km), qr(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
---|
2177 | real dza(km+1), qa(km+1), qmi(km+1), qpi(km+1) |
---|
2178 | ! |
---|
2179 | precip(:) = 0.0 |
---|
2180 | ! |
---|
2181 | i_loop : do i=1,im |
---|
2182 | ! ----------------------------------- |
---|
2183 | dz(:) = dzl(i,:) |
---|
2184 | qq(:) = rql(i,:) |
---|
2185 | nr(:) = rnl(i,:) |
---|
2186 | if(rid .eq. 1) nr(:) = rnl(i,:)/denl(i,:) |
---|
2187 | ww(:) = wwl(i,:) |
---|
2188 | den(:) = denl(i,:) |
---|
2189 | denfac(:) = denfacl(i,:) |
---|
2190 | tk(:) = tkl(i,:) |
---|
2191 | ! skip for no precipitation for all layers |
---|
2192 | allold = 0.0 |
---|
2193 | do k=1,km |
---|
2194 | allold = allold + qq(k) |
---|
2195 | enddo |
---|
2196 | if(allold.le.0.0) then |
---|
2197 | cycle i_loop |
---|
2198 | endif |
---|
2199 | ! |
---|
2200 | ! compute interface values |
---|
2201 | zi(1)=0.0 |
---|
2202 | do k=1,km |
---|
2203 | zi(k+1) = zi(k)+dz(k) |
---|
2204 | enddo |
---|
2205 | ! |
---|
2206 | ! save departure wind |
---|
2207 | wd(:) = ww(:) |
---|
2208 | n=1 |
---|
2209 | 100 continue |
---|
2210 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
---|
2211 | ! 2nd order interpolation to get wi |
---|
2212 | wi(1) = ww(1) |
---|
2213 | wi(km+1) = ww(km) |
---|
2214 | do k=2,km |
---|
2215 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
---|
2216 | enddo |
---|
2217 | ! 3rd order interpolation to get wi |
---|
2218 | fa1 = 9./16. |
---|
2219 | fa2 = 1./16. |
---|
2220 | wi(1) = ww(1) |
---|
2221 | wi(2) = 0.5*(ww(2)+ww(1)) |
---|
2222 | do k=3,km-1 |
---|
2223 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
---|
2224 | enddo |
---|
2225 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
---|
2226 | wi(km+1) = ww(km) |
---|
2227 | ! |
---|
2228 | ! terminate of top of raingroup |
---|
2229 | do k=2,km |
---|
2230 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
---|
2231 | enddo |
---|
2232 | ! |
---|
2233 | ! diffusivity of wi |
---|
2234 | con1 = 0.05 |
---|
2235 | do k=km,1,-1 |
---|
2236 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
---|
2237 | if( decfl .gt. con1 ) then |
---|
2238 | wi(k) = wi(k+1) - con1*dz(k)/dt |
---|
2239 | endif |
---|
2240 | enddo |
---|
2241 | ! compute arrival point |
---|
2242 | do k=1,km+1 |
---|
2243 | za(k) = zi(k) - wi(k)*dt |
---|
2244 | enddo |
---|
2245 | ! |
---|
2246 | do k=1,km |
---|
2247 | dza(k) = za(k+1)-za(k) |
---|
2248 | enddo |
---|
2249 | dza(km+1) = zi(km+1) - za(km+1) |
---|
2250 | ! |
---|
2251 | ! computer deformation at arrival point |
---|
2252 | do k=1,km |
---|
2253 | qa(k) = qq(k)*dz(k)/dza(k) |
---|
2254 | qr(k) = qa(k)/den(k) |
---|
2255 | if(rid .eq. 1) qr(k) = qa(K) |
---|
2256 | enddo |
---|
2257 | qa(km+1) = 0.0 |
---|
2258 | ! call maxmin(km,1,qa,' arrival points ') |
---|
2259 | ! |
---|
2260 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
---|
2261 | ! then back to use mean terminal velocity |
---|
2262 | if( n.le.iter ) then |
---|
2263 | if(rid.eq.1) then |
---|
2264 | call slope_rain(nr,qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,wa2,1,1,1,km) |
---|
2265 | else |
---|
2266 | call slope_rain(qr,nr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,wa2,1,1,1,km) |
---|
2267 | endif |
---|
2268 | if(rid.eq.1) wa(:) = wa2(:) |
---|
2269 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
---|
2270 | do k=1,km |
---|
2271 | !#ifdef DEBUG |
---|
2272 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k),ww(k),wa(k) |
---|
2273 | !#endif |
---|
2274 | ! mean wind is average of departure and new arrival winds |
---|
2275 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
---|
2276 | enddo |
---|
2277 | was(:) = wa(:) |
---|
2278 | n=n+1 |
---|
2279 | go to 100 |
---|
2280 | endif |
---|
2281 | ! |
---|
2282 | ! estimate values at arrival cell interface with monotone |
---|
2283 | do k=2,km |
---|
2284 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
---|
2285 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
---|
2286 | if( dip*dim.le.0.0 ) then |
---|
2287 | qmi(k)=qa(k) |
---|
2288 | qpi(k)=qa(k) |
---|
2289 | else |
---|
2290 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
---|
2291 | qmi(k)=2.0*qa(k)-qpi(k) |
---|
2292 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
---|
2293 | qpi(k) = qa(k) |
---|
2294 | qmi(k) = qa(k) |
---|
2295 | endif |
---|
2296 | endif |
---|
2297 | enddo |
---|
2298 | qpi(1)=qa(1) |
---|
2299 | qmi(1)=qa(1) |
---|
2300 | qmi(km+1)=qa(km+1) |
---|
2301 | qpi(km+1)=qa(km+1) |
---|
2302 | ! |
---|
2303 | ! interpolation to regular point |
---|
2304 | qn = 0.0 |
---|
2305 | kb=1 |
---|
2306 | kt=1 |
---|
2307 | intp : do k=1,km |
---|
2308 | kb=max(kb-1,1) |
---|
2309 | kt=max(kt-1,1) |
---|
2310 | ! find kb and kt |
---|
2311 | if( zi(k).ge.za(km+1) ) then |
---|
2312 | exit intp |
---|
2313 | else |
---|
2314 | find_kb : do kk=kb,km |
---|
2315 | if( zi(k).le.za(kk+1) ) then |
---|
2316 | kb = kk |
---|
2317 | exit find_kb |
---|
2318 | else |
---|
2319 | cycle find_kb |
---|
2320 | endif |
---|
2321 | enddo find_kb |
---|
2322 | find_kt : do kk=kt,km |
---|
2323 | if( zi(k+1).le.za(kk) ) then |
---|
2324 | kt = kk |
---|
2325 | exit find_kt |
---|
2326 | else |
---|
2327 | cycle find_kt |
---|
2328 | endif |
---|
2329 | enddo find_kt |
---|
2330 | kt = kt - 1 |
---|
2331 | ! compute q with piecewise constant method |
---|
2332 | if( kt.eq.kb ) then |
---|
2333 | tl=(zi(k)-za(kb))/dza(kb) |
---|
2334 | th=(zi(k+1)-za(kb))/dza(kb) |
---|
2335 | tl2=tl*tl |
---|
2336 | th2=th*th |
---|
2337 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
2338 | qqh=qqd*th2+qmi(kb)*th |
---|
2339 | qql=qqd*tl2+qmi(kb)*tl |
---|
2340 | qn(k) = (qqh-qql)/(th-tl) |
---|
2341 | else if( kt.gt.kb ) then |
---|
2342 | tl=(zi(k)-za(kb))/dza(kb) |
---|
2343 | tl2=tl*tl |
---|
2344 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
2345 | qql=qqd*tl2+qmi(kb)*tl |
---|
2346 | dql = qa(kb)-qql |
---|
2347 | zsum = (1.-tl)*dza(kb) |
---|
2348 | qsum = dql*dza(kb) |
---|
2349 | if( kt-kb.gt.1 ) then |
---|
2350 | do m=kb+1,kt-1 |
---|
2351 | zsum = zsum + dza(m) |
---|
2352 | qsum = qsum + qa(m) * dza(m) |
---|
2353 | enddo |
---|
2354 | endif |
---|
2355 | th=(zi(k+1)-za(kt))/dza(kt) |
---|
2356 | th2=th*th |
---|
2357 | qqd=0.5*(qpi(kt)-qmi(kt)) |
---|
2358 | dqh=qqd*th2+qmi(kt)*th |
---|
2359 | zsum = zsum + th*dza(kt) |
---|
2360 | qsum = qsum + dqh*dza(kt) |
---|
2361 | qn(k) = qsum/zsum |
---|
2362 | endif |
---|
2363 | cycle intp |
---|
2364 | endif |
---|
2365 | ! |
---|
2366 | enddo intp |
---|
2367 | ! |
---|
2368 | ! rain out |
---|
2369 | sum_precip: do k=1,km |
---|
2370 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
---|
2371 | precip(i) = precip(i) + qa(k)*dza(k) |
---|
2372 | cycle sum_precip |
---|
2373 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
---|
2374 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
---|
2375 | exit sum_precip |
---|
2376 | endif |
---|
2377 | exit sum_precip |
---|
2378 | enddo sum_precip |
---|
2379 | ! |
---|
2380 | ! replace the new values |
---|
2381 | rql(i,:) = qn(:) |
---|
2382 | ! |
---|
2383 | ! ---------------------------------- |
---|
2384 | enddo i_loop |
---|
2385 | ! |
---|
2386 | END SUBROUTINE nislfv_rain_plmr |
---|
2387 | !------------------------------------------------------------------- |
---|
2388 | SUBROUTINE nislfv_rain_plm6(im,km,denl,denfacl,tkl,dzl,wwl,rql,rql2, precip1, precip2,dt,id,iter) |
---|
2389 | !------------------------------------------------------------------- |
---|
2390 | ! |
---|
2391 | ! for non-iteration semi-Lagrangain forward advection for cloud |
---|
2392 | ! with mass conservation and positive definite advection |
---|
2393 | ! 2nd order interpolation with monotonic piecewise linear method |
---|
2394 | ! this routine is under assumption of decfl < 1 for semi_Lagrangian |
---|
2395 | ! |
---|
2396 | ! dzl depth of model layer in meter |
---|
2397 | ! wwl terminal velocity at model layer m/s |
---|
2398 | ! rql cloud density*mixing ration |
---|
2399 | ! precip precipitation |
---|
2400 | ! dt time step |
---|
2401 | ! id kind of precip: 0 test case; 1 raindrop |
---|
2402 | ! iter how many time to guess mean terminal velocity: 0 pure forward. |
---|
2403 | ! 0 : use departure wind for advection |
---|
2404 | ! 1 : use mean wind for advection |
---|
2405 | ! > 1 : use mean wind after iter-1 iterations |
---|
2406 | ! |
---|
2407 | ! author: hann-ming henry juang <henry.juang@noaa.gov> |
---|
2408 | ! implemented by song-you hong |
---|
2409 | ! |
---|
2410 | implicit none |
---|
2411 | integer im,km,id |
---|
2412 | real dt |
---|
2413 | real dzl(im,km),wwl(im,km),rql(im,km),rql2(im,km),precip(im),precip1(im),precip2(im) |
---|
2414 | real denl(im,km),denfacl(im,km),tkl(im,km) |
---|
2415 | ! |
---|
2416 | integer i,k,n,m,kk,kb,kt,iter,ist |
---|
2417 | real tl,tl2,qql,dql,qqd |
---|
2418 | real th,th2,qqh,dqh |
---|
2419 | real zsum,qsum,dim,dip,c1,con1,fa1,fa2 |
---|
2420 | real allold, allnew, zz, dzamin, cflmax, decfl |
---|
2421 | real dz(km), ww(km), qq(km), qq2(km), wd(km), wa(km), wa2(km), was(km) |
---|
2422 | real den(km), denfac(km), tk(km) |
---|
2423 | real wi(km+1), zi(km+1), za(km+1) |
---|
2424 | real qn(km), qr(km),qr2(km),tmp(km),tmp1(km),tmp2(km),tmp3(km) |
---|
2425 | real dza(km+1), qa(km+1), qa2(km+1),qmi(km+1), qpi(km+1) |
---|
2426 | ! |
---|
2427 | precip(:) = 0.0 |
---|
2428 | precip1(:) = 0.0 |
---|
2429 | precip2(:) = 0.0 |
---|
2430 | ! |
---|
2431 | i_loop : do i=1,im |
---|
2432 | ! ----------------------------------- |
---|
2433 | dz(:) = dzl(i,:) |
---|
2434 | qq(:) = rql(i,:) |
---|
2435 | qq2(:) = rql2(i,:) |
---|
2436 | ww(:) = wwl(i,:) |
---|
2437 | den(:) = denl(i,:) |
---|
2438 | denfac(:) = denfacl(i,:) |
---|
2439 | tk(:) = tkl(i,:) |
---|
2440 | ! skip for no precipitation for all layers |
---|
2441 | allold = 0.0 |
---|
2442 | do k=1,km |
---|
2443 | allold = allold + qq(k) |
---|
2444 | enddo |
---|
2445 | if(allold.le.0.0) then |
---|
2446 | cycle i_loop |
---|
2447 | endif |
---|
2448 | ! |
---|
2449 | ! compute interface values |
---|
2450 | zi(1)=0.0 |
---|
2451 | do k=1,km |
---|
2452 | zi(k+1) = zi(k)+dz(k) |
---|
2453 | enddo |
---|
2454 | ! |
---|
2455 | ! save departure wind |
---|
2456 | wd(:) = ww(:) |
---|
2457 | n=1 |
---|
2458 | 100 continue |
---|
2459 | ! plm is 2nd order, we can use 2nd order wi or 3rd order wi |
---|
2460 | ! 2nd order interpolation to get wi |
---|
2461 | wi(1) = ww(1) |
---|
2462 | wi(km+1) = ww(km) |
---|
2463 | do k=2,km |
---|
2464 | wi(k) = (ww(k)*dz(k-1)+ww(k-1)*dz(k))/(dz(k-1)+dz(k)) |
---|
2465 | enddo |
---|
2466 | ! 3rd order interpolation to get wi |
---|
2467 | fa1 = 9./16. |
---|
2468 | fa2 = 1./16. |
---|
2469 | wi(1) = ww(1) |
---|
2470 | wi(2) = 0.5*(ww(2)+ww(1)) |
---|
2471 | do k=3,km-1 |
---|
2472 | wi(k) = fa1*(ww(k)+ww(k-1))-fa2*(ww(k+1)+ww(k-2)) |
---|
2473 | enddo |
---|
2474 | wi(km) = 0.5*(ww(km)+ww(km-1)) |
---|
2475 | wi(km+1) = ww(km) |
---|
2476 | ! |
---|
2477 | ! terminate of top of raingroup |
---|
2478 | do k=2,km |
---|
2479 | if( ww(k).eq.0.0 ) wi(k)=ww(k-1) |
---|
2480 | enddo |
---|
2481 | ! |
---|
2482 | ! diffusivity of wi |
---|
2483 | con1 = 0.05 |
---|
2484 | do k=km,1,-1 |
---|
2485 | decfl = (wi(k+1)-wi(k))*dt/dz(k) |
---|
2486 | if( decfl .gt. con1 ) then |
---|
2487 | wi(k) = wi(k+1) - con1*dz(k)/dt |
---|
2488 | endif |
---|
2489 | enddo |
---|
2490 | ! compute arrival point |
---|
2491 | do k=1,km+1 |
---|
2492 | za(k) = zi(k) - wi(k)*dt |
---|
2493 | enddo |
---|
2494 | ! |
---|
2495 | do k=1,km |
---|
2496 | dza(k) = za(k+1)-za(k) |
---|
2497 | enddo |
---|
2498 | dza(km+1) = zi(km+1) - za(km+1) |
---|
2499 | ! |
---|
2500 | ! computer deformation at arrival point |
---|
2501 | do k=1,km |
---|
2502 | qa(k) = qq(k)*dz(k)/dza(k) |
---|
2503 | qa2(k) = qq2(k)*dz(k)/dza(k) |
---|
2504 | qr(k) = qa(k)/den(k) |
---|
2505 | qr2(k) = qa2(k)/den(k) |
---|
2506 | enddo |
---|
2507 | qa(km+1) = 0.0 |
---|
2508 | qa2(km+1) = 0.0 |
---|
2509 | ! call maxmin(km,1,qa,' arrival points ') |
---|
2510 | ! |
---|
2511 | ! compute arrival terminal velocity, and estimate mean terminal velocity |
---|
2512 | ! then back to use mean terminal velocity |
---|
2513 | if( n.le.iter ) then |
---|
2514 | call slope_snow(qr,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa,1,1,1,km) |
---|
2515 | call slope_graup(qr2,den,denfac,tk,tmp,tmp1,tmp2,tmp3,wa2,1,1,1,km) |
---|
2516 | do k = 1, km |
---|
2517 | tmp(k) = max((qr(k)+qr2(k)), 1.E-15) |
---|
2518 | IF ( tmp(k) .gt. 1.e-15 ) THEN |
---|
2519 | wa(k) = (wa(k)*qr(k) + wa2(k)*qr2(k))/tmp(k) |
---|
2520 | ELSE |
---|
2521 | wa(k) = 0. |
---|
2522 | ENDIF |
---|
2523 | enddo |
---|
2524 | if( n.ge.2 ) wa(1:km)=0.5*(wa(1:km)+was(1:km)) |
---|
2525 | do k=1,km |
---|
2526 | !#ifdef DEBUG |
---|
2527 | ! print*,' slope_wsm3 ',qr(k)*1000.,den(k),denfac(k),tk(k),tmp(k),tmp1(k),tmp2(k), & |
---|
2528 | ! ww(k),wa(k) |
---|
2529 | !#endif |
---|
2530 | ! mean wind is average of departure and new arrival winds |
---|
2531 | ww(k) = 0.5* ( wd(k)+wa(k) ) |
---|
2532 | enddo |
---|
2533 | was(:) = wa(:) |
---|
2534 | n=n+1 |
---|
2535 | go to 100 |
---|
2536 | endif |
---|
2537 | ist_loop : do ist = 1, 2 |
---|
2538 | if (ist.eq.2) then |
---|
2539 | qa(:) = qa2(:) |
---|
2540 | endif |
---|
2541 | ! |
---|
2542 | precip(i) = 0. |
---|
2543 | ! |
---|
2544 | ! estimate values at arrival cell interface with monotone |
---|
2545 | do k=2,km |
---|
2546 | dip=(qa(k+1)-qa(k))/(dza(k+1)+dza(k)) |
---|
2547 | dim=(qa(k)-qa(k-1))/(dza(k-1)+dza(k)) |
---|
2548 | if( dip*dim.le.0.0 ) then |
---|
2549 | qmi(k)=qa(k) |
---|
2550 | qpi(k)=qa(k) |
---|
2551 | else |
---|
2552 | qpi(k)=qa(k)+0.5*(dip+dim)*dza(k) |
---|
2553 | qmi(k)=2.0*qa(k)-qpi(k) |
---|
2554 | if( qpi(k).lt.0.0 .or. qmi(k).lt.0.0 ) then |
---|
2555 | qpi(k) = qa(k) |
---|
2556 | qmi(k) = qa(k) |
---|
2557 | endif |
---|
2558 | endif |
---|
2559 | enddo |
---|
2560 | qpi(1)=qa(1) |
---|
2561 | qmi(1)=qa(1) |
---|
2562 | qmi(km+1)=qa(km+1) |
---|
2563 | qpi(km+1)=qa(km+1) |
---|
2564 | ! |
---|
2565 | ! interpolation to regular point |
---|
2566 | qn = 0.0 |
---|
2567 | kb=1 |
---|
2568 | kt=1 |
---|
2569 | intp : do k=1,km |
---|
2570 | kb=max(kb-1,1) |
---|
2571 | kt=max(kt-1,1) |
---|
2572 | ! find kb and kt |
---|
2573 | if( zi(k).ge.za(km+1) ) then |
---|
2574 | exit intp |
---|
2575 | else |
---|
2576 | find_kb : do kk=kb,km |
---|
2577 | if( zi(k).le.za(kk+1) ) then |
---|
2578 | kb = kk |
---|
2579 | exit find_kb |
---|
2580 | else |
---|
2581 | cycle find_kb |
---|
2582 | endif |
---|
2583 | enddo find_kb |
---|
2584 | find_kt : do kk=kt,km |
---|
2585 | if( zi(k+1).le.za(kk) ) then |
---|
2586 | kt = kk |
---|
2587 | exit find_kt |
---|
2588 | else |
---|
2589 | cycle find_kt |
---|
2590 | endif |
---|
2591 | enddo find_kt |
---|
2592 | kt = kt - 1 |
---|
2593 | ! compute q with piecewise constant method |
---|
2594 | if( kt.eq.kb ) then |
---|
2595 | tl=(zi(k)-za(kb))/dza(kb) |
---|
2596 | th=(zi(k+1)-za(kb))/dza(kb) |
---|
2597 | tl2=tl*tl |
---|
2598 | th2=th*th |
---|
2599 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
2600 | qqh=qqd*th2+qmi(kb)*th |
---|
2601 | qql=qqd*tl2+qmi(kb)*tl |
---|
2602 | qn(k) = (qqh-qql)/(th-tl) |
---|
2603 | else if( kt.gt.kb ) then |
---|
2604 | tl=(zi(k)-za(kb))/dza(kb) |
---|
2605 | tl2=tl*tl |
---|
2606 | qqd=0.5*(qpi(kb)-qmi(kb)) |
---|
2607 | qql=qqd*tl2+qmi(kb)*tl |
---|
2608 | dql = qa(kb)-qql |
---|
2609 | zsum = (1.-tl)*dza(kb) |
---|
2610 | qsum = dql*dza(kb) |
---|
2611 | if( kt-kb.gt.1 ) then |
---|
2612 | do m=kb+1,kt-1 |
---|
2613 | zsum = zsum + dza(m) |
---|
2614 | qsum = qsum + qa(m) * dza(m) |
---|
2615 | enddo |
---|
2616 | endif |
---|
2617 | th=(zi(k+1)-za(kt))/dza(kt) |
---|
2618 | th2=th*th |
---|
2619 | qqd=0.5*(qpi(kt)-qmi(kt)) |
---|
2620 | dqh=qqd*th2+qmi(kt)*th |
---|
2621 | zsum = zsum + th*dza(kt) |
---|
2622 | qsum = qsum + dqh*dza(kt) |
---|
2623 | qn(k) = qsum/zsum |
---|
2624 | endif |
---|
2625 | cycle intp |
---|
2626 | endif |
---|
2627 | ! |
---|
2628 | enddo intp |
---|
2629 | ! |
---|
2630 | ! rain out |
---|
2631 | sum_precip: do k=1,km |
---|
2632 | if( za(k).lt.0.0 .and. za(k+1).lt.0.0 ) then |
---|
2633 | precip(i) = precip(i) + qa(k)*dza(k) |
---|
2634 | cycle sum_precip |
---|
2635 | else if ( za(k).lt.0.0 .and. za(k+1).ge.0.0 ) then |
---|
2636 | precip(i) = precip(i) + qa(k)*(0.0-za(k)) |
---|
2637 | exit sum_precip |
---|
2638 | endif |
---|
2639 | exit sum_precip |
---|
2640 | enddo sum_precip |
---|
2641 | ! |
---|
2642 | ! replace the new values |
---|
2643 | if(ist.eq.1) then |
---|
2644 | rql(i,:) = qn(:) |
---|
2645 | precip1(i) = precip(i) |
---|
2646 | else |
---|
2647 | rql2(i,:) = qn(:) |
---|
2648 | precip2(i) = precip(i) |
---|
2649 | endif |
---|
2650 | enddo ist_loop |
---|
2651 | ! |
---|
2652 | ! ---------------------------------- |
---|
2653 | enddo i_loop |
---|
2654 | ! |
---|
2655 | END SUBROUTINE nislfv_rain_plm6 |
---|
2656 | END MODULE module_mp_wdm6 |
---|